93
First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow, Russia

First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Embed Size (px)

Citation preview

Page 1: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

First energy estimates of giant air showers

with help of the hybrid scheme of simulations

L.G. DedenkoM.V. Lomonosov Moscow State University,

119992 Moscow, Russia

Page 2: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

CONTENT

• Introduction• 5-level scheme - Monte-Carlo for leading particles - Transport equations for hadrons - Transport equations for electrons and gamma quanta - The LPM showers - The primary photons - Monte-Carlo for low energy particles in the real atmosphere - Responses of scintillator detectors • The basic formula for estimation of energy• The relativistic equation for a group of muons• Results for the giant inclined shower detected at the Yakutsk

array• Conclusion

Page 3: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 4: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

ENERGY SCALE

Page 5: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

SPACE SCALE

Page 6: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Transport equations for hadrons:

here k=1,2,....m – number of hadron types; - number of hadrons k in bin E÷E+dE and depth bin x÷x+dx; λk(E) – interaction length; Bk – decay constant; Wik(E′,E) – energy spectra of hadrons of type k produced by hadrons of type i.

),(/),(),(

)/(),()(/),(),(

1

EEEWxEPEd

xExEPBExEPx

xEP

iik

m

ii

kkkkk

dEdxxEPk ),(

Page 7: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

The integral form:

here

E0 – energy of the primary particle; Pb (E,xb) – boundary condition; xb – point of interaction of the primary particle.

),,())/ln()/()(/)(exp(

))/ln()/()(/)(exp(),(),(

EfxEBExd

xxEBExxxEPxEPx

x

bbbbk

b

0

)(/),(),(),(1

E

E

iiki

m

i

EEEWEPEdEf

Page 8: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

The decay products of neutral pions are regarded as a source function Sγ(E,x) of gamma quanta which give origins of electron-photon cascades in the atmosphere:

Here – a number of neutral pions decayed at depth x+ dx with energies E΄+dE΄

.0),(

/)),(2),(0

0

xES

EEdExEPxES

e

E

E

EdxEP ),(0

Page 9: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

The basic cascade equations for electrons and photons can be written as follows:

where Г(E,t), P(E,t) – the energy spectra of photons and electrons at the depth t; β – the ionization losses; μe, μγ – the absorption coefficients; Wb, Wp – the bremsstrahlung and the pair production cross-sections; Se, Sγ – the source terms for electrons and photons.

EdГWEdPWSEPPtP pbee //

'/ dEPWStГ b

Page 10: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

The integral form:

where

At last the solution of equations can be found by the method of subsequent approximations. It is possible to take into account the Compton effect and other physical processes.

)])((exp(),(),( 00 ttEtEГtEГ

,)],(),(),()][)(([exp0

EEWEPEdEStEd b

t

t

,)](,[),( EdtEEWEPA be

t

t

e dtEtttEPtEP0

))]([exp(]),([),( 00

t

t

t

eeee BAtEStdttEd0

]]),([[)]([exp(

EdtEEWEГB pe )](,[),(

Page 11: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Source functions for low energy electrons and gamma quanta

x=min(E0;E/ε)

)),(),(),(),((),(

),(),(),(

0

EEWtEEEWtEPEdtES

EEWtEPEdtES

p

E

E

be

x

E

b

Page 12: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1017 eV

Ethr

=0.00005 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 13: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1018 eV

Ethr

=0.00005 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 14: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1020 eV

Ethr

=0.00005 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 15: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

5

6

E0=3*1020 eV

Ethr

=0.00005 GeV

=30O

4

3

2

1

E/E

0

X, g/cm2

Page 16: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1017 eV

Ethr

=0.001 GeV

=30o

6

5

43

2

1

E/E

0

X, g/cm2

Page 17: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1018 eV

Ethr

=0.001 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 18: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1020 eV

Ethr

=0.001 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 19: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=3*1020 eV

Ethr

=0.001 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 20: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1019 eV

Ethr

=0.00005 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 21: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1019 eV

Ethr

=0.001 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 22: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1019 eV

Ethr

=0.01 GeV

=30o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 23: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1019 eV

Ethr

=0.5 GeV

=30o

6

54

3

2

1

E/E

0

X, g/cm2

Page 24: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 12000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1019 eV

Ethr

=10 GeV

=30o

6

54

3

2

1

E/E

0

X, g/cm2

Page 25: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 1200 1400 1600 1800 20000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1019 eV

Ethr

=0.001 GeV

=60o

6

5 4

3

2

1

E/E

0

X, g/cm2

Page 26: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Balance of energy by 1 - the primary photon; 2 - electrons; 3 - photons and 4 - under threshold in e-ph shower; 5 - sum of 1,2,3;

6 - total sum

0 200 400 600 800 1000 1200 1400 1600 1800 20000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

E0=1019 eV

Ethr

=0.00005 GeV

=60o

6

5

4

3

2

1

E/E

0

X, g/cm2

Page 27: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

E0=1017 eV

Ethr

=0.001 GeV

=30O

4

3

2

1

E/E

0

X, g/cm2

Page 28: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

E0=1018 eV

Ethr

=0.001 GeV

=30O

4

32

1

E/E

0

X, g/cm2

Page 29: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 1200 1400 1600 1800 20000,0

0,2

0,4

0,6

0,8

1,0

E0=1019 eV

Ethr

=0.001 GeV

=60O

4

3

2

1

E/E

0

X, g/cm2

Page 30: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,00

0,05

0,10

0,15

0,20

0,25

E0=1020 eV

Ethr

=0.001 GeV

=30O

4

32

1

E/E

0

X, g/cm2

Page 31: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,00

0,05

0,10

0,15

0,20

0,25

E0=3*1020 eV

Ethr

=0.001 GeV

=30O 4

32

1

E/E

0

X, g/cm2

Page 32: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

E0=1018 eV

Ethr

=0.00005 GeV

=30O

4

3

2

1

E/E

0

X, g/cm2

Page 33: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,00

0,05

0,10

0,15

0,20

0,25

E0=1019 eV

Ethr

=0.001 GeV

=30O

4

3

2

1

E/E

0

X, g/cm2

Page 34: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,0

0,2

0,4

0,6

0,8

1,0

E0=1019 eV

Ethr

=0.01 GeV

=30O

4

3

2

1

E/E

0

X, g/cm2

Page 35: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,0

0,2

0,4

0,6

0,8

1,0

E0=1019 eV

Ethr

=0.5 GeV

=30O

4

3

2

1

E/E

0

X, g/cm2

Page 36: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,0

0,2

0,4

0,6

0,8

1,0

E0=1019 eV

Ethr

=10 GeV

=30O

4

32

1

E/E

0

X, g/cm2

Page 37: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 1200 1400 1600 1800 20000,0

0,2

0,4

0,6

0,8

1,0

E0=1019 eV

Ethr

=0.00005 GeV

=60O

4

3

2

1

E/E

0

X, g/cm2

Page 38: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,0

0,2

0,4

0,6

0,8

1,0

E0=1018 eV

Ethr

=10 GeV

=0O

3

2

1

4

E/E

0

X, g/cm2

Page 39: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,0

0,2

0,4

0,6

0,8

E0=1019 eV

Ethr

=10 GeV

=0O

3

2

1

4

E/E

0

X, g/cm2

Page 40: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy by under threshold: 1 - by electrons; 2 - by photons; 3 - by pair; 4 - sum of 1, 2, 3

0 200 400 600 800 1000 12000,0

0,2

0,4

0,6

0,8

E0=1020 eV

Ethr

=10 GeV

=0O

3

2

1

4

E/E

0

X, g/cm2

Page 41: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

B-H SHOWERS

0 200 400 600 800 1000100

101

102

103

104

105

106

107

108

109

1010

1011

1012

E0=1020 Ev

N(X

)

X, g/cm2

Page 42: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Cascade curves: - NKG; - LPM; lines - individual LPM curves

0 200 400 600 800 100010-2

10-1

100

101

102

103

104

105

106

107

108

109

1010

1011

1012

E0=1020eV

cos=1.

N(X

)

X, g/cm2

Page 43: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Cascade curves:______ - NKG; ______ - LPM

0 200 400 600 800 100010-1

100

101

102

103

104

105

106

107

108

109

1010

1011

E0=1020eV

cos=1.

N(X

)

X, g/cm2

Page 44: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Cascade curves: - NKG; - LPM; lines - individual LPM curves

0 200 400 600 800 1000 1200 1400 1600 180010-1

100

101

102

103

104

105

106

107

108

109

1010

1011

1012

E0=1020eV

cos=0.6

N(X

)

X, g/cm2

Page 45: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Cascade curves: ______ - NKG; ______ - LPM

0 200 400 600 800 1000 1200 1400 1600 1800100

101

102

103

104

105

106

107

108

109

1010

1011

1012

E0=1020eV

cos=0.6

N

(X)

X, g/CM2

Page 46: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Cascade curves: ______ - NKG; ______ - LPM

0 500 1000 1500 2000100

101

102

103

104

105

106

107

108

109

1010

1011

1012

E0=1020eV

cos=0.5

N(X

)

X, g/cm2

Page 47: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Cascade curves:_____ - NKG; ______ - LPM

500 1000 1500108

109

1010

1011

E0=1020eV

cos=0.5

N(X

)

X, g/cm2

Page 48: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Muon density in gamma-induced showers:______ - BH; ______ - LPM; ■ – Plyasheshnikov, Aharonian;

- our individual points

1E18 1E19 1E20

10-3

10-2

10-1

Lo

gN

(1

00

0)

(1/m

2 )

LogE0 (eV)

Page 49: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Muon density in gamma-induced showers:1 - AGASA; 2 - Homola et al.; 3 - BH; 4 - Plyasheshnikov, Aharonian;

5, 6 - our calculations; 7 - LPM

Page 50: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

For the grid of energies

Emin≤ Ei ≤ Eth (Emin=1 MeV, Eth=10 GeV)

and starting points of cascades

0≤Xk≤X0 (X0=1020 g∙cm-2)

simulations of ~ 2·108 cascades in the atmosphere with help of CORSIKA code and responses (signals) of the scintillator detectors using GEANT 4 code

SIGNγ(Rj,Ei,Xk)SIGNγ(Rj,Ei,Xk)10m≤Rj≤2000m

have been calculated

Page 51: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Responses of scintillator detectors at distance Rj from the shower core (signals S(Rj))

Eth=10 GeV

Emin=1 MeV

)),,(),(),,(),(()(min

0

ERSIGNESERSIGNESdEdRS jee

E

E

j

x

x

j

th

b

Page 52: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 53: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 54: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 55: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 56: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 57: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 58: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 59: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 60: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 61: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Source test function:

Sγ(E,x)dEdx=P(E0,x)/EγdEdx

P(E0,x) – a cascade profile of a shower

∫dx∫dESγ(E,x)=0.8E0

Basic formula:

E0=a·(S600)b

)2)(

)(exp(),(

2

2

00 BCxA

CxKxEP

Page 62: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy spectrum of electrons

Page 63: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Energy spectrum of photons

Page 64: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Estimates of energy with test functions

Page 65: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 66: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

AGASA simulation

Page 67: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Model of detector

Page 68: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Detector response for gammas

Page 69: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Detector response for electrons

Page 70: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Detector response for positrons

Page 71: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Detector response for muons

Page 72: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 73: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Comparison of various estimates of energy

• Experimental data:

• Test source function with γ=1

Coefficient: 4.8/3.2=1.5

• Source function from CORSIKA

Coefficient: 4.8/3=1.6

• Thinning by CORSIKA (10-6)

Coefficient: 4.8/2.6=1.8

98.0600

170 108.4 sE

08.1600

170 102.3 sE

988.0600

170 103 sE

99.0600

170 106.2 sE

Page 74: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 75: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 76: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 77: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 78: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 79: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 80: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 81: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Direction of muon velocity is defined by directional cosines:

All muons are defined in groups with bins of energy Ei÷Ei+ΔE; angles αj÷αj+Δαj,

δm÷ δm+Δ δm and height production hk÷ hk +Δhk. The average values have been used: , , and . Number of muons and were regarded as some weights.

cossinsincoscos

;sinsincoscossinsincoscossinsin

;sinsinsincossincoscoscoscossin

E jm kh

N N

Page 82: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

The relativistic equation:

here mμ – muon mass; e – charge; γ – lorentz factor; t – time; – geomagnetic field.

,BVedt

Vdm

B

Page 83: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

The explicit 2-d order scheme:

here ;

Ethr , E – threshold energy and muon energy.

);5.0()(2/1ty

nzz

ny

nnx

nx hBVBVCHEVV

)5.0(2/1t

nx

nn hVxx

);5.0()(2/1tz

nxx

nz

nny

ny hBVBVCHEVV

);5.0()(2/1tx

nyy

nx

nnz

nz hBVBVCHEVV

;)( 2/12/12/11ty

nzz

ny

nnx

nx hBVBVCHEVV

;)( 2/12/12/11tz

nxx

nz

nny

ny hBVBVCHEVV

;)( 2/12/12/11tx

nyy

nx

nnz

nz hBVBVCHEVV

)5.0(2/1t

ny

nn hVyy

)5.0(2/1t

nz

nn hVzz

tn

xnn hVxx 2/11

tn

ynn hVyy 2/11

,2/11t

nz

nn hVzz

)/( EEeCHE thr

Page 84: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 85: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 86: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,
Page 87: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

assuming aerosol-free air … more typical air => E ≈ 200 EeV

(atmospheric monitoring not yet routine in early 2004 …)

Page 88: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Summary: Air Fluorescence Yield Measurements

• Kakimoto et al., NIM A372 (1996)

• Nagano et al., Astroparticle Physics 20 (2003)

• Belz et al., submitted to Astroparticle Physics 2005; astro-ph/0506741

• Huentemeyer et al., proceedings of this conference usa-huentemeyer-P-abs2-he15- oral

Page 89: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

2,7

2,9

3,1

3,3

3,5

3,7

3,9

4,1

4,3

0 2 4 6 8 10 12 14 16 18 20

altitude (km a.s.l.)

flu

ore

scen

ce y

ield

(p

ho

ton

s/m

)

Keilhauer with Ulrich cross sections, only 10wavelengths as for NaganoKeilhauer with Ulrich cross sections, all 19wavelengthsNagano (2004)

Kakimoto (1996)

Altitude dependence

Page 90: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Lateral width of shower image in the Auger fluorescence detector.

Figure 1. Image of two showers in the photomultiplier camera. The reconstructed energy of both showers is 2.2 EeV. The shower on the left had a core 10.5 km from the telescope, while that on the right landed 4.5 km away. Note the number of pixels and the lateral spread in the image in each shower.

Page 91: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Figure 2. FD energy vs. ground parameter S38. These are hybrid events that were recorded when there were contemporaneous aerosol measurements, whose FD longitudinal profiles include shower maximum in a measured range of at least 350 g cm-2, and in which there is less than 10% Cherenkov contamination.

Page 92: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

CONCLUSION

In terms of the hybrid scheme with help of CORSIKA

• The energy estimates for the Yakutsk array are a factor of 1.5-1.8 may be lower.

• The energy estimates for the AGASA array have been confirmed.

• Estimates of energy of the most giant air shower detected at the Yakutsk array should be checked.

• The LPM showers have a very small muon content.

Page 93: First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, 119992 Moscow,

Acknowledgements

We thank G.T. Zatsepin for useful discussions, the RFFI (grant 03-02-16290), INTAS (grant 03-51-5112) and LSS-5573.2006.2 for financial support.