43
CENTER FOR GEOTECHNICAL MODELING REPORT NO. UCD/CGM-01/03 FINITE DEFORMATION ANALYSIS OF GEOMATERIALS BY B. JEREMIC K. RUNESSON S. STURE DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT DAVIS SEPTEMBER 2001

FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

  • Upload
    lytram

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

CREPORT NO. UCD/CGM-01/03

FO

B BKS

DCU S

ENTER FOR GEOTECHNICAL MODELING

INITE DEFORMATION ANALYSIS F GEOMATERIALS

Y

. JEREMIC

. RUNESSON

. STURE

EPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING OLLEGE OF ENGINEERING NIVERSITY OF CALIFORNIA AT DAVIS

EPTEMBER 2001

Page 2: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

University

ofCalifo

rinaatDavis,

Center

forGeotech

nica

lModelin

gReport

UCD-CGM-01

Publish

edin

theIntern

atio

nalJournalforNumerica

landAnalytica

lMeth

odsin

Geomech

anics

incorporatin

gMech

anics

ofCohesiv

eFrictio

nalMateria

ls,Vol.25,No.8,pp.809-840,2001.

FiniteDeformationAnalysisof

Geomaterials

B.Jeremic

1K.Runesso

n2

S.Sture

3

1DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Davis95616,U.S.A.phone530.754.9248,

fax530.752.7872,Email:

[email protected].

2DivisionofSolid

Mechanics,Chalm

ersUniversityofTechnology,S-41296Goteborg,Sweden

3DepartmentofCivil,

Environmental,andArchitecturalEngineering,UniversityofColorado,Boulder,CO

80309-0428,

U.S.A.

1

Page 3: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Abstract

Themathem

atica

lstru

cture

andnumerica

lanalysis

ofcla

ssicalsm

alldefo

rmatio

n

elasto

plasticity

isgenera

llywell

establish

ed.How

ever,

develo

pmentoflargedefo

r-

matio

nela

sticplastic

numerica

lform

ulatio

nfordilatant,

pressu

resen

sitivemateria

l

models

isstill

aresea

rcharea

.

Inthispaper

wepresen

tdevelo

pmentofthenite

elementform

ulatio

nandim

ple-

mentatio

nforlargedefo

rmatio

n,ela

sticplastic

analysis

ofgeomateria

ls.Ourdevelo

p-

ments

are

based

onthemultip

licativ

edeco

mpositio

nofthedefo

rmatio

ngradien

tinto

elastic

andplastic

parts.

Aconsisten

tlin

eariza

tionoftherig

htdefo

rmatio

nten

sor

togeth

erwith

theNew

tonmeth

odattheconstitu

tiveandgloballev

elslea

dstow

ard

aneÆ

cientandrobust

numerica

lalgorith

m.Thepresen

tednumerica

lform

ulatio

nis

capable

ofaccu

rately

modelin

gdilatant,

pressu

resen

sitiveiso

tropic

and

aniso

tropic

geomateria

lssubjected

tolargedefo

rmatio

ns.

Inparticu

lar,theform

ulatio

niscapable

ofsim

ulatin

gthebehaviorofgeomateria

lsin

which

eigentria

dsofstress

andstra

indo

notcoincid

edurin

gtheloadingprocess.

Thealgorith

mis

testedin

conjunctio

nwith

thenovel

hyperela

stoplastic

model

termed

theB

materia

lmodel,

which

isasin

gle

surfa

ce(sin

gle

yield

surfa

ce,aÆne

singleultim

ate

surfa

ceandaÆnesin

glepoten

tialsurfa

ce)modelfordilatant,pressu

re

sensitiv

e,hardeningandsoften

inggeomateria

ls.It

isspeci

cally

develo

ped

tomodel

largedefo

rmatio

nhyperela

stoplastic

problem

sin

geomech

anics.

Wepresen

tanapplica

tionofthisform

ulatio

nto

numerica

lanalysis

oflowconne-

menttests

oncohesio

nless

granularsoilspecim

ensrecen

tlyperfo

rmed

inaSPACEHAB

moduleaboard

theSpace

Shuttle

durin

gtheSTS-89missio

n.Wecompare

numerica

l

modelin

gwith

testresu

ltsandshowthesig

nicance

ofadded

connem

entbythethin

hyperela

sticlatex

mem

braneunderg

oinglargestretch

ing.

KeyWords:

Hyperela

stoplasticity,

Largedefo

rmatio

ns,Geomateria

ls,Finite

element

analysis

2

Page 4: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

1Background

Theoretica

laswell

asim

plem

entatio

nissu

esin

materia

lnonlin

earnite

elementanalysis

of

solid

sandstru

ctures

are

increa

singly

beco

mingbetter

understo

odforthecase

ofinnitesi-

malstra

intheories.

Likew

ise,largedefo

rmatio

ntheories

andim

plem

entatio

nsformateria

ls

obeyingJ2plasticity

rules

arefairly

advanced

.Largestra

inanalysis

involvinggeometric

and

materia

lnonlin

earities

orpressu

resen

sitivegeomateria

lsare

stillthesubject

ofactiv

ere-

search

.Thechoice

ofappropria

testress

andstra

inmeasures,

aswell

astheissu

esperta

ining

totheinteg

ratio

nofela

stoplastic

constitu

tiveequatio

nsunder

conditio

nsoflargestra

inare

stilldisp

uted

intheresea

rchcommunity.

Thekey

assu

mptio

nin

innitesim

aldefo

rmatio

nela

stoplasticity

istheadditiv

ede-

compositio

nofstra

insinto

elastic

andplastic

parts.

Anumber

ofgenera

lizedmidpoint

numerica

lalgorith

ms,rangingfro

mpurely

explicit

topurely

implicit

schem

eswasdevelo

ped

andtheir

accu

racy

assessed

(Cris

eld[9],Kojic

andBathe[20],Ortiz

andPopov

[35],Sim

o

andTaylor[48],Ortiz

andSim

o[36],Runesso

net.

al.[41],Krieg

andKrieg

[22]to

mentio

n

afew

).Im

plicit,

backward

Euler

integ

ratio

nsch

emes

havein

recentyearsbeen

prov

ento

be

robust

andeÆ

cient.

Algorith

mictangentsti

ness

tensors

havebeen

deriv

ed(sta

rtingwith

thepioneerin

gwork

ofSim

oandTaylor[48]andRunesso

nandSamuelsso

n[40])formostof

theinteg

ratio

nsch

emes.

Itisim

porta

ntto

note

thatstra

insare

nonlin

earfunctio

nsofdisp

lacem

ents

andthus

additiv

edeco

mpositio

noftotalstra

insinto

elastic

andplastic

components

hold

only

for

innitesim

aldefo

rmatio

ns(see

more

inLubardaandLee

[29]andFamiglietti

andPrev

ost

[13])Moreov

er,asim

pleexampleispresen

ted,which

illustra

tesdieren

cesbetw

eenlargeand

smalldefo

rmatio

nanalysis.

Theresp

onse

ofasolid

interm

sofsm

allandlargedefo

rmatio

ns

iscompared

.Tothisendweuse

thedenitio

nofadefo

rmatio

ngradien

tFij=xi;j

andthe

Lagrangianstra

inten

sorEij )

andcompare

itwith

thesm

alldefo

rmatio

nstra

inten

sorij .

Clea

rlythedieren

cebetw

eenEijandijisinthenonlin

earterm

ofdisp

lacem

entderiva

tives:

Eij=

12(u

i;j+uj;i+ui;j u

j;i )ij=

12(u

i;j+uj;i )

(1)

Only

very

smalldefo

rmatio

nscanapprox

imateEijwith

ij .

Theerro

rexceed

s10%

after

a

nominalstra

inof30%.Fig.1show

sthatbyusin

gthesm

alldefo

rmatio

nstra

inmeasure

instea

dofthelargedefo

rmatio

nstra

in,sig

nicanterro

risintro

duced

.

Theearly

exten

sionsto

largedefo

rmatio

nofrate

based

numerica

lmeth

odsforela

sto

3

Page 5: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UC

D-C

GM

rep

ort

c)

ijε

Eij

500%

1000%

1500%

2000%

2500%

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Errorshea

r st

rain

deformation (arctan )Φ

Φ

Figure 1: Error introduced by using the small strain instead of Lagrangian strain tensor.

plastic analysis of solids was conducted in the Lagrangian form1. Large deformation principle

of virtual work based formulation for large strain elasticplastic analysis of solids in the

Lagrangian form was proposed by Hibbitt et al. [16]. The Eulerian form of the solution

to the problem was proposed by McMeeking and Rice [32]. The disadvantage with this

approach was in the necessary use of incrementally objective integration algorithms that

may be computationally expensive. Hypoelastic based techniques, aimed at problems with

small elastic strains were also proposed by many others, (see for example Saran and Runesson

[42]). A number of problems encountered with dierent stress rates were noted by Nagtegaal

and de Jong [34], Kojic and Bathe [21] and Szabo and Balla [52].

On the other hand, hyperelastic based techniques have been developed recently for purely

deviatoric plasticity, for example by Simo and Ortiz [47], [45], Bathe et al. [2], Simo [43],

[44], Eterovic and Bathe [12], Peric et al. [39] and Cuitino and Ortiz [10]. Most of the

multiplicative split techniques are based on the earlier works of Hill [17], Bilby et al. [3]

Kroner [23], Lee and Liu [26], Fox [14] and Lee [25].

Simo and Ortiz [47] where the rst to propose a computational approach entirely based on

the multiplicative decomposition of the deformation gradient. Their stress update algorithm,

however, used the cutting plane scheme that has been shown by de Borst and Feenstra [11]

to yield erroneous results for some yield criteria. Bathe et al. [2] have used the multiplicative

decomposition with logarithmic stored energy function and an exponential approximation of

the ow rule for nonlinear analysis of metals. Eterovic and Bathe [12] included kinematic

1Hypoelasticity is presented in spatial format. Virtual work is normally stated in the material format.

4

Page 6: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

hardeningintheir

develo

pment,butthey

didnotaddress

theissu

eoftangentsti

ness

tensors

consisten

twith

theuse

oftheNew

tonsch

emeforthesolutio

nofnite

elementequatio

nsin

thenite

defo

rmatio

nreg

ime.

They

havealso

explored

theuse

ofaseries

expansio

nofthe

Henckystra

inten

sorin

their

numerica

lalgorith

m.How

ever,

develo

pments

were

madefor

deviatoric

plasticity

only.

Peric

atal.[39]follow

edtheir

work

andexperim

ented

with

vario

usrate

form

sandtheir

approx

imatio

ns.

They

also

restrictedtheuse

oftheir

algorith

mto

thesm

allela

sticstra

in

case.

Cuitin

oandOrtiz

[10]proposed

ameth

odforexten

dingsm

allstra

insta

teupdate

algorith

msandtheir

corresp

ondingconsisten

ttangentsti

ness

moduliinto

thenite

defo

r-

matio

nreg

imebut,alth

oughthey

claim

thatthemeth

odisapplica

bleto

vario

usmateria

l

models,

they

stayed

with

theJ2plasticity

model.

Sim

o[43],[44],explored

astra

inspace

form

ulatio

n.Theanalysis

wasconducted

foralin

earhardeningJ2plasticity

problem

.In

hislater

work,Sim

o[45]consolid

ated

thetheoretica

lfra

mew

ork

andshow

edsomeexcellen

t

examples

ofthree

dim

ensio

nallargedefo

rmatio

nJ2ela

stoplastic

analysis.

Lim

itedapplica

-

tionofthatwork

togeomateria

lshasbeen

show

nbySim

oandMesch

ke[46].They

applied

thedevelo

ped

framew

ork

totheCamClay

andgenera

lplasticity

typeofmodels,

used

in

geotech

nics.

They

havealso

explored

dieren

tim

plicit

explicit

schem

esforinteg

ratio

nof

thehardeninglaw

inorder

tobypass

thehardeninginduced

nonsymmetric

tangentsti

-

ness

moduli.

Theshortco

mingofthatwork

wasthatanasso

ciated

ow

rulewasadopted

,

thusresu

ltingin

overestim

atio

nofdilatatio

n.Moreov

er,loss

ofcollin

earity

betw

eenstress

andstra

ineig

entria

ds(occu

rringdurin

gnonproportio

nalloadingofgeomateria

ls)cannot

bemodeled

with

thiscateg

ory

ofalgorith

m.

More

recently

Lew

isandKhoei[27]used

arate

based

totalLangrangeanform

ulatio

nto

theanalysis

ofcompacted

pow

ders.

Peric

anddeSouza

Neto

[38]used

anopera

torsplit

algorith

min

termsofprin

cipalstresses

inconjunctio

nwith

theTresca

model.

Arm

ero[1]

exten

ded

themultip

licativ

ealgorith

m(orig

inally

develo

ped

bySim

o)foracoupled

poro

plastic

fully

saturated

medium.Borja

andAlarco

n[5][8]used

multip

licativ

edeco

mpositio

n

inprin

cipalcoordinates

(Sim

o'sform

ulatio

n)fortheproblem

oflargedefo

rmatio

nconsoli-

datio

n.Borja

etal.[6],[4],[7]applied

Sim

o'sapproach

totheCamClay

family

ofmodels.

Liu

etal.

[28]haveapplied

anearlier

algorith

mdevelo

ped

bySim

o[46]andadded

anew

nonlin

earela

sticlaw

fortheanalysis

oftire

sandcomposite

materia

l.Theabovedevelo

p-

mentsmakeanim

plicit

assu

mptio

noncolin

earity

ofprin

cipaldirectio

nsofstress

andstra

in

tensors,

which

renders

them

unusableforaniso

tropichardening/soften

ingmateria

lmodels.

5

Page 7: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Inthefollow

ing,nite

elementandconstitu

tiveform

ulatio

nsforagenera

lhyperela

stic

plastic

geomateria

lare

presen

ted.More

speci

cally,

section2presen

tsalargedefo

rmatio

n

nite

elementform

ulatio

nwith

focusontheLagrangiandescrip

tion.Sectio

n3prov

ides

hyperela

sticandhyperela

sticplastic

backgrounddescrip

tionsanddescrib

estheconstitu

tive

integ

ratio

nalgorith

m.Selected

results

are

presen

tedin

section4.

2MaterialandGeometricNonLinearFinite

Element

Formulatio

n

Inthefollow

ingwepresen

tadeta

iledform

ulatio

nofamateria

landgeometric

nonlin

ear

static

nite

elementanalysis

schem

e.Theconguratio

nofchoice

ismateria

lorLagrangian.

Thelocalform

ofequilib

rium

equatio

nsin

Lagrangianform

atforthesta

ticcase

canbe

written

as:

Pij;j0 b

i=0

(2)

where

Pij=Skj (F

ik )tandSkjare

rst

andseco

ndPiolaKirch

hostress

tensors,

respec-

tively

andbiare

bodyforces.

Theweakform

oftheequilib

rium

equatio

nsisobtained

by

prem

ultip

lying(2)with

virtu

aldisp

lacem

entsÆu

iandinteg

ratin

gbyparts

with

reference

to

theinitia

lconguratio

nB0(in

itialvolumeV0 ):

ZV0

Æui;j P

ij dV= Z

V0

0 Æu

i bi dV Z

S0

Æui ti dS

(3)

Itprov

esbenecia

lto

rewrite

theleft

handsid

eof(3)byusin

gthesymmetric

secondPiola

Kirch

hostress

tensorSij :

ZV0

Æui;j F

jl S

il dV= Z

V0

12((Æu

i;l +Æu

l;i )+(Æu

i;j uj;l +

ul;j Æu

j;i ))Sil dV

(4)

where

wehaveused

thesymmetry

ofSilanddenitio

nfordefo

rmatio

ngradien

tFki=

Æki+uk;i .

With

aconvenien

tdenitio

nofthedieren

tialopera

torEil (

1ui ;2ui )

Eil (

1ui ;2ui )=

12 1ui;l +

1ul;i

+12

1ul;j

2uj;i+

2ui;j

1uj:l

(5)

thevirtu

alwork

equatio

n(4)canbewritten

as:

Wint(Æu

i ;u(k)

i)+W

ext(Æu

i )=0

(6)

6

Page 8: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

with

:

Wint(Æu

i ;n+1

0u(k)

i)

=Zc

Eij (Æu

i ;n+1

0u(k)

i)n+1

0S(k)

ijdV

(7)

Wext(Æu

i )=

Zc

0Æu

in+1

0bidV Z

@c

Æuin+1

0tidS

(8)

Wechoose

aNew

tontypeproced

ure

forsatisfy

ingequilib

rium.Given

thedisp

lacem

ent

eld

u(k)

i(X

j ),in

iteratio

nk,theitera

tivechangeui=u(k+1)

iu(k)

iisobtained

from

the

linearized

virtu

alwork

expressio

n

W(Æu

i ;u(k+1)

i)'W(Æu

i ;u(k)

i)+W(Æu

i ;ui ;u

(k)

i)

(9)

Here,

W(Æu

i ;u(k)

i)isthevirtu

alwork

expressio

n

W(Æu

i ;u(k)

i)=W

int(Æu

i ;u(k)

i)+W

ext(Æu

i )(10)

where

W(Æu

i ;ui ;u

(k)

i)isthelin

eariza

tionofvirtu

alwork

W(Æu

i ;ui ;u

(k)

i)

=lim!0

@W(Æu

i ;ui+

ui )

@

=Zc

Eij (Æu

i ;ui )LijklEkl (

ui ;u

i )dV+ Z

c

Eij (Æu

i ;ui )SijdV(11)

Here

wehaveused

dSij=1=2Lijkl dCkl=Lijkl E

kl (

ui ;u

i ).

Inorder

toobtain

expressio

nsforthesti

ness

matrix

weshallela

borate

furth

eron(11).

Tothisend,(11)canberew

rittenbyexpandingthedenitio

nforE

as

W(Æu

i ;ui ;u

(k)

i)

=

14 Zc

((Æuj;i+Æu

i;j )+(u

j;r Æur;i+Æu

i;r ur;j ))

Lijkl ((

uk;l +

ul;k )

+(u

k;s

us;l +

ul;s u

s;k ))

dV+

+ Zc

12(uj;l Æu

l;i+Æu

i;l ul;j )

SijdV

(12)

Or,byconvenien

tlysplittin

gtheaboveequatio

nwecanwrite

1W

(Æui ;

ui ;u

(k)

i)

=

14 Zc

((Æuj;i+Æu

i;j )+(u

j;r Æur;i+Æu

i;r ur;j ))

Lijkl((

uk;l +

ul;k )

+(u

k;s

us;l+ul;s u

s;k ))

dV

(13)

7

Page 9: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

2W

(Æui ;

ui ;u

(k)

i)= Z

c

12(uj;l Æu

l;i+Æu

i;l ul;j )

SijdV

(14)

Byfurth

erreo

rganizin

g(13)andcollectin

gterm

swecanwrite:

1W

(Æui ;

ui ;u

(k)

i)=

Zc

12(Æu

j;i+Æu

i;j ) Lijkl

12(uk;l +

ul;k )

dV

+Zc

12(Æu

j;i+Æu

i;j ) Lijkl

12(u

k;s

us;l +

ul;s u

s;k )

dV

+Zc

12(u

j;r Æur;i+Æu

i;r ur;j )

Lijkl

12(u

k;s

us;l+ul;s u

s;k )dV

+Zc

12(u

j;r Æur;i+Æu

i;r ur;j )

Lijkl

12(uk;l +

ul;k )

dV

(15)

Itshould

benoted

thattheAlgorith

micTangentSti

ness

(ATS)ten

sorLijklpossesses

both

minorsymmetries

(Lijkl=Ljikl=Lijlk ).

How

ever,

majorsymmetry

cannotbeguar-

anteed

.Nonasso

ciated

ow

rules

inela

stoplasticity

leadto

theloss

ofmajorsymmetry

(Lijkl6=Lklij ).

Moreov

er,itcanbeshow

n(i.e.

[19])thatanalgorith

mica

llyinduced

sym-

metry

loss

isobserv

edeven

forasso

ciated

ow

rules.

Uponobserv

ingminorsymmetry

ofLijklonecanwrite

(15)as:

1W

(Æui ;

ui ;u

(k)

i)=

Zc

Æui;jLijklul;k d

V

+Zc

Æui;jLijkluk;s

ul;s d

V

+Zc

Æui;r u

r;jLijkluk;s

ul;s d

V

+Zc

Æui;r u

r;jLijklul;k d

V(16)

Sim

ilarly,

byobserv

ingsymmetry

oftheseco

ndPiolaKirch

hostress

tensorSijwecan

write

2W

(Æui ;

ui ;u

(k)

i)= Z

c

Æui;l

ul;jSij dV

(17)

Theweakform

ofequilib

rium

expressio

nsforintern

al(W

int)andextern

al(W

ext)virtu

al

work,with

theabovementio

ned

symmetry

ofSijcanbewritten

as

Wint(Æu

i ;n+1

0u(k)

i)= Z

c

Æui;jSij dV+ Z

c

Æui;r u

r;jSij dV

(18)

Wext(Æu

i )=

Zc

0Æu

i bidV Z

@c

ÆuitidS

(19)

Standard

nite

elementdiscretiza

tionofthedisp

lacem

enteld

is:

uiui=H

I uIi

(20)

8

Page 10: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

where

uiistheapprox

imatio

ndisp

lacem

enteld

ui ,H

Iare

FEM

shapefunctio

nsanduIi

are

nodaldisp

lacem

ents.

With

thisapprox

imatio

n,wehave:

1W

(Æui ;

ui ;u

(k)

i)=

Zc

(HI;j Æ

uIi )Lijkl(H

Q;k

uQl )dV

+Zc

(HI;j Æ

uIi )Lijkl(H

J;kuJs )(H

Q;s

uQl )dV

+Zc

(HI;r Æ

uIi )(H

J;j u

Jr )Lijkl(H

J;kuJs )(H

Q;s

uQl )dV

+Zc

(HI;r Æ

uIi )(H

J;j u

Jr )Lijkl(H

Q;k

uQl )dV

(21)

2W

(Æui ;

ui ;u

(k)

i)= Z

c

(HI;l ÆuIi )(H

Q;j

uQl )Sij dV

(22)

Wint(Æu

i ;n+1

0u(k)

i)= Z

c

(HI;j Æ

uIi )Sij dV+ Z

c

(HI;r Æ

uIi )

(HJ;j u

Jr )Sij dV

(23)

Wext(Æu

i )=

Zc

0(H

I ÆuIi )bidV Z

@c

(HI ÆuIi )tidS

(24)

Uponnotin

gthatvirtu

alnodaldisp

lacem

entsÆu

Iiare

anynonzero

,contin

uousdisp

lace-

ments,

andsin

cethey

occu

rinallexpressio

nsforlin

earized

virtu

alwork,they

canbefacto

red

outandafter

somerea

rengem

entcanbewritten

as(while

remem

berin

gthat

1W+

1W+

Wext+W

int=0):

Zc

HI;j L

ijkl H

Q;k dV+ Z

c

HI;j L

ijkl H

J;kuJs H

Q;s dV+

+Zc

HI;r H

J;j u

JrLijkl H

J;kuJs H

Q;s dV

+Zc

HI;r H

J;j u

JrLijkl H

Q;k dV+ Z

c

HI;l H

Q;j S

ij dV

uQl

+Zc

(HI;j )

Sij dV+ Z

c

(HI;r )

(HJ;j u

Jr )

Sij dV

=Zc

0(H

I )bidV+ Z

@c

(HI )

tidS

(25)

Theglobalalgorith

mictangentsti

ness

matrix

(tensor)

isgiven

as

Kt=

@(W(Æu

i ;ui ;u

(k)

i))

@(ui )

=Zc

HI;j L

ijkl H

Q;k dV+ Z

c

HI;j L

ijkl H

J;kuJs H

Q;s dV

+Zc

HI;r H

J;j u

JrLijkl H

J;kuJs H

Q;s dV

+Zc

HI;r H

J;j u

JrLijkl H

Q;k dV+ Z

c

HI;l H

Q;j S

ij dV

(26)

9

Page 11: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Theglobalalgorith

mictangentsti

ness

matrix

containsboth

thelin

earstra

inincrem

ental

stiness

matrix

andthenonlin

eargeometric

andinitia

lstress

increm

entalsti

ness

matrix

.

Thevecto

rofextern

ally

applied

loadisthen

R= Z

c

0(H

I )bidV+ Z

@c

(HI )

tidS

(27)

while

theloadvecto

rfro

melem

entstresses

isgiven

as

F= Z

c

(HI;j )

Sij dV+ Z

c

(HI;r )

(HJ;j u

Jr )Sij dV

(28)

Itisim

porta

ntto

note

thatthealgorith

mictangentsti

ness

tensor,vecto

rofextern

ally

applied

loads,andthevecto

rofelem

entstresses

are

secondandfourth

order

tensor.

Con-

versio

nfro

mten

sors

tomatrices

andvecto

rsis

perfo

rmed

bytheassem

bly

functio

ns.

It

isalso

importa

ntto

note

thattheten

sorofunknow

ndisp

lacem

ents

uQlis atten

edto

aonedim

ensio

nalvecto

r(ui )throughproper

implem

entatio

n.Theitera

tivechangein

disp

lacem

entvecto

ruiisobtained

bysettin

gthelin

earized

virtu

alwork

tozero

W(Æu

i ;u(k+1)

i)=0)

W(Æu

i ;u(k)

i)=W(Æu

i ;ui ;u

(k)

i)

(29)

Inparticu

lar,thechoice

oftheundefo

rmed

conguratio

n0foracomputatio

naldomain

(c=0 )

yield

stheTotalLagrangian(TL)form

ulatio

n.Theitera

tivedisp

lacem

entuiis

obtained

from

theequatio

n

W(Æu

i ;n+1u

(k)

i)=W(Æu

i ;ui ;n+1u

(k)

i)

(30)

where

W(Æu

i ;n+1u

(k)

i)

=Zc

Eij (Æu

i ;n+1u

(k)

i)n+1S

(k)

ijdV

Zc

0Æu

in+1bidV Z

@c

Æuin+1tidS

(31)

and

W(Æu

i ;ui ;n+1u

(k)

i)

=Zc

Eij (Æu

i ;n+1u

(k)

i)n+1L

(k)

ijklEkl (

ui ;n+1u

(k)

i)dV

+ Zc

dEij (Æu

i ;ui )

n+1S

(k)

ijdV

(32)

Inthecase

ofhyperela

sticplastic

response,

theseco

ndPiolaKirch

hostress

n+1S

(k)

ijis

obtained

byinteg

ratin

gtheconstitu

tivelaw

,describ

edin

section3.It

should

benoted

thatbyperfo

rmingtheinteg

ratio

nsin

theinterm

ediateconguratio

n,weobtain

theMandel

10

Page 12: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

stressn+1T

ijandsubseq

uently

theseco

ndPiolaKirch

hostress

Skj=

Cik

1Tij .

TheATS

tensorLijklisthen

obtained

based

on

Skj .

Inorder

toobtain

theseco

ndPiolaKirch

ho

stressSkjandATSten

sorin

theinitia

lconguratio

nweneed

toperfo

rmapull-b

ack

from

theinterm

ediate

conguratio

nto

theinitia

lsta

te

n+1S

ij=

n+1F

pipn+1F

pjqn+1S

pq

(33)

n+1L

ijkl=

n+1F

pimn+1F

pjnn+1F

pkrn+1F

plsn+1L

mnrs

(34)

Theform

ulatio

npresen

tedaboveisrather

genera

landreleva

ntto

alargeset

ofengineer-

ingsolid

s,both

isotro

picandaniso

tropic.

Thisgenera

litywill

befurth

erenhanced

insectio

n

3with

genera

l,constitu

tivelev

elcomputatio

nsthatcanhandleboth

isotro

picandgenera

l

aniso

tropicmateria

ls.

3Finite

Deformatio

nHyperelasto

Plastic

ity

3.1

Hyperelastic

ity

Amateria

liscalled

hyperela

sticorGreen

elastic,

ifthere

exists

anela

sticpoten

tialfunctio

n

W,also

called

thestra

inenergy

functio

nper

unitvolumeoftheundefo

rmed

conguratio

n,

which

represen

tsasca

larfunctio

nofstra

inofdefo

rmatio

nten

sors,

whose

deriva

tives

with

respect

toastra

incomponentdeterm

ines

thecorresp

ondingstress

component.

Themost

genera

lform

oftheela

sticpoten

tialfunctio

n,isdescrib

edinequatio

n(35),with

restrictionto

puremech

anica

ltheory,

byusin

gtheaxio

mofloca

lityandtheaxio

mofentro

pyprod

uctio

n2:

W=W

(XK;F

kK)

(35)

Byusin

gtheaxio

mofmateria

lfra

meindieren

ce3,weconclu

dethatW

dependsonly

on

XKandCIJ,thatis:

W=W

(XK;C

IJ)

or:

W=W

(XK;c

ij )(36)

2See

Marsd

enandHughes

[31]pp.190.

3See

Marsd

enandHughes

[31]pp.194.

11

Page 13: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Inthecase

ofmateria

liso

tropy,thestra

inenerg

yfunctio

nW

(XK;C

IJ)belo

ngsto

the

classofiso

tropic,

invaria

ntsca

larfunctio

ns.Itsatis

estherela

tion:

W(X

K;C

KL)=W

XK;Q

KI C

IJ(Q

JL)t

(37)

where

QKIistheproper

orth

ogonaltra

nsfo

rmatio

n.IfwechooseQKI=RKI ,where

RKI

istheorth

ogonalrotatio

ntra

nsfo

rmatio

n,dened

bythepolardeco

mpositio

ntheorem

in

equatio

n(see

Malvern

[30]),

then:

W(X

K;C

KL)=W

(XK;U

KL)=W

(XK;v

kl )

(38)

Rightandleft

stretchten

sors,

UKL,vkl havethesameprin

cipalvalues(prin

cipalstretch

es)

i

;i=

1;3

sothestra

inenerg

yfunctio

nW

canberep

resented

interm

sofprin

cipal

stretches,

orsim

ilarly

interm

sofprin

cipalinvaria

ntsofthedefo

rmatio

nten

sor:

W=W

(XK;

1 ;2 ;

3 ;)=W

(XK;I

1 ;I2 ;I

3 )(39)

where:

I1

def

=CII

I2

def

=12

I21CIJCJI

I3

def

=det(C

IJ)=

16eIJKePQRCIPCJQCKR=J2

(40)

Left

CauchyGreen

tensors

isdened

asCIJ=

(FkI )tF

kJ,andthespectra

ldeco

mpositio

n

theorem

(seeSim

oandTaylor[49])forsymmetric

positiv

edenite

tensorssta

testhatCIJ=

2A

N(A

)

IN

(A)

J Awhere

A=

1;3

andNIare

theeig

envecto

rs(kNIk=

1)ofCIJ.Wecan

then

calcu

late

roots(

2A)ofthecharacteristic

polynomial

P(

2A)def

=6A+I16AI24A+I3=0

(41)

Itshould

benoted

thatnosummatio

nisim

plied

over

indices

inparen

thesis.

Forexample,

in

thepresen

tcaseN

(A)

IistheAth

eigenvecto

rwith

mem

bers

N(A

)

1,N

(A)

2andN

(A)

3,so

thatthe

actu

alequatio

nCIJ=2A

N(A

)

IN

(A)

J Acanalso

bewritten

asCIJ= P

A=3

A=12(A

) N(A

)

IN

(A)

J.In

order

tofollow

theconsisten

cyofindicia

lnotatio

nin

thiswork,weshallmakeaneort

to

represen

talltheten

soria

lequatio

nsin

indicia

lform

.

12

Page 14: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Themappingoftheeig

envecto

rsisgiven

by

(A

)n(A

)

i=FiJN

(A)

J(42)

where

kn(A

)

ik1.Thespectra

ldeco

mpositio

nofFiJ,RiJandbijisthen

given

by

FiJ=A

n(A

)

iN

(A)

J A

(43)

RiJ=

3XA=1

n(A

)

iN

(A)

J(44)

bij=2A

n(A

)

in(A

)

j A

(45)

Recen

tly,Ting[53]andMorm

an[33]haveused

Serrin

'srep

resentatio

ntheorem

inorder

todevise

ausefu

lrep

resentatio

nforgenera

lizedstra

inten

sorsEIJthroughCmIJ.After

some

tensoralgebra

theLagrangianeig

endyadN

(A)

IN

(A)

J,canbewritten

as

N(A

)

IN

(A)

J=2(A

) CIJ

I12(A

) ÆIJ+I3

2

(A) (C

1)IJ

24(A

)I1

2(A)+I3

2

(A)

(46)

Itshould

benoted

thatthedenominatorin

equatio

n(46)canbewritten

as:

24(A

)I1

2(A)+I3

2

(A)=

2(A

)2(B

) 2(A

)2(C

) def

=D

(A)

(47)

where

indices

A;B

;Carecyclic

perm

utatio

nsof1;2;3.Itfollow

sdirectly

fromthedenitio

n

ofD

(A)in

equatio

n(47)that16=

26=

3)

D(A

)6=

0forequatio

n(46)to

bevalid

.

Sim

ilarly

wecanobtain:

(C1)IJ=2

A N

(A)

IN

(A)

J A

(48)

Themostgenera

lform

oftheiso

tropicstra

inenerg

yfunctio

nW

interm

sofofprin

cipal

stretches

canbeexpressed

as:

W=W

(XK;

1 ;2 ;

3 ;)(49)

13

Page 15: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Inorder

toobtain

theseco

ndPiolaKirch

hostress

tensorSIJ(andother

stressmea-

sures)

itis

necessa

ryto

calcu

late

thegradien

t@W=@CIJ.

Moreov

er,themateria

ltan-

gentsti

ness

tensorLIJKLreq

uire

secondorder

deriva

tives

ofthestra

inenerg

yfunctio

n

@2W

=(@CIJ@CKL).

Inorder

toobtain

these

quantities

weintro

duce

aseco

ndorder

tensor

M(A

)

IJ

M(A

)

IJ

def

=2

(A)N

(A)

IN

(A)

J(50)

=(F

iI )1

n(A

)

in(A

)

j (F

jJ)t

=1

D(A

) CIJ

I12(A

) ÆIJ+I3

2

(A) (C

1)IJ

from

(46)

where

D(A

)wasdened

byequatio

n(47).With

M(A

)

IJ

dened

byequatio

n(50),weobtain

CIJ=4A

M(A

)

IJ

A(51)

anditalso

follow

s

(C1)IJ=M

(1)

IJ+M

(2)

IJ+M

(3)

IJ

(52)

Itcanalso

beconclu

ded

that:

ÆIJ=2(1) M

(1)

IJ+2(2) M

(2)

IJ+2(3) M

(3)

IJ=2A

M(A

)

IJ

A(53)

since,

from

theorth

ogonalproperties

ofeig

envecto

rs

ÆIJ=

3XA=1

N(A

)

IN

(A)

J=

N(A

)

I A

N(A

)

J A

(54)

Wealso

denetheSim

oSerrin

fourth

order

tensorM

IJKLas:

M(A

)

IJKL

def

=@M

(A)

IJ

@CKL

=

1

D(A

) IIJKLÆKLÆIJ+2(A

) ÆIJM

(A)

KL+M

(A)

IJÆKL

+

+I3

2

(A)

(C1)IJ(C

1)KL+12

(C1)IK(C

1)JL+(C

1)IL(C

1)JK

2

(A)I3

(C1)IJM

(A)

KL+M

(A)

IJ

(C1)KL D0(A

)M

(A)

IJM

(A)

KL

(55)

Acomplete

deriva

tionofM

IJKLisgiven

bySim

oandTaylor[49].

Wecanthen

denehyperela

sticstress

measures

as

2.PiolaKirch

hostress

tensorSIJ=2

@W

@CIJ

14

Page 16: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Mandelstress

tensorTIJ=CIKSKJ

1.PiolaKirch

hostress

tensorPiJ=SIJ(F

iI )t

Kirch

hostress

tensorab=FaI (F

bJ)tS

IJ

where

@W(

(A) )

@CIJ

=@volW

((A

) )

@CIJ

+@isoW

((A

) )

@CIJ

=12

@volW

(J)

@J

J(C

1)IJ+12wA(M

(A)

IJ)A

(56)

and

wA=13

@isoW

( ~(A

) )

@~B

~B

+@isoW

( ~(A

) )

@~(A

)

~(A

)(57)

Thetangentsti

ness

opera

torisdened

as

LIJKL=

volL

IJKL+

isoLIJKL

(58)

with

volL

IJKL=

J2@2volW

(J)

@J@J

(C1)KL(C

1)IJ+J@volW

(J)

@J

(C1)KL(C

1)IJ+2J@volW

(J)

@J

I(C1)

IJKL

(59)

isoLIJKL=YAB(M

(B)

KL)B(M

(A)

IJ)A+2wA(M

(A)

IJKL)A

(60)

3.2

Multip

licativ

eDecompositio

n

Multip

licativ

edeco

mpositio

nofthedefo

rmatio

ngradien

tisused

asakinem

atica

lbasis

for

thedevelo

pmentsdescrib

edhere.

Themotiva

tionforthemultip

licativ

edeco

mpositio

ncanbe

traced

back

totheearly

worksofBilbyetal.[3],andKroner[23]onmicro

mech

anics

ofcry

stal

dislo

catio

nsandapplica

tionto

contin

uum

modelin

g.In

thecontex

toflargedefo

rmatio

n

15

Page 17: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UC

D-C

GM

rep

ort

elastoplastic computations, the work by Lee and Liu [26], Fox [14] and Lee [25] generated

an early interest in multiplicative decomposition.

The appropriateness of multiplicative decomposition technique for soils may be justied

from the particulate nature of the material. From the micromechanical point of view, plastic

deformation in soils arises from slipping, crushing, yielding and plastic bending4 of granules or

platelets comprising the assembly5. It can certainly be argued that deformations in soils are

predominantly plastic, however, reversible deformations could develop from the elasticity of

individual soil grains, and could be relatively large, when particles are locked in high density

specimens.

Fp

FeReference

Configuration

X

d X

Ω0

Intermediate

Configurationdx

Ω

dx

Current

Configuration

x

Ω

Fe

-1

Fp-1

σ x

F

X ux

Figure 2: Multiplicative decomposition of deformation gradient: schematics.

The reasoning behind multiplicative decomposition is a rather simple one. If an innites-

imal neighborhood of a body xi; xi + dxi in an inelastically deformed body is cutout and

unloaded to an unstressed conguration, it would be mapped into xi; xi+dxi. The transfor-

mation would be comprised of a rigid body displacement6 and purely elastic unloading. The

elastic unloading is ctitious, since in materials with a strong Baushinger's eect unloading

will lead to loading in another stress direction, and if there are residual stresses, the body

must be cutout in small pieces, and then every piece relieved of stresses. The unstressed

4For plate like clay particles.

5See also Borja and Alarcon [5] and Lambe and Whitman [24].

6Translation and rotation.

16

Page 18: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

conguratio

nisthusincompatib

leanddisco

ntin

uous.

Thepositio

nxiisarbitra

ry,andwe

may

assu

mealin

earrela

tionship

betw

eendxianddxi ,in

theform

7:

dxk=(F

eik )1dxi

(61)

where

(Feik )

1isnotto

beundersto

odasadefo

rmatio

ngradien

t,sin

ceitmay

represen

tthe

incompatib

le,disco

ntin

uousdefo

rmatio

nofabody.

Byconsid

eringthereferen

cecongura-

tionofabodydX

i ,then

theconnectio

nto

thecurren

tconguratio

nis:

dxk=Fki dX

i)

dxk=(F

eik )1Fij dX

j(62)

sothatonecandene:

Fpkj

def=

(Feik )

1Fij)

Fij

def

=Feki F

pkj

(63)

Theplastic

partofthedefo

rmatio

ngradien

t,Fpkjrep

resentsmicro

mech

anica

lly,theirre-

versib

leprocess

ofslip

ping,cru

shingdislo

catio

nandmacro

scopica

llytheirrev

ersibleplastic

defo

rmatio

nofabody.

Theela

sticpart,

Fekirep

resentsmicro

mech

anica

llyapure

elastic

re-

versa

lofdefo

rmatio

nfortheparticu

lateassem

bly,

macro

scopica

llyalin

earela

sticunloading

toward

astress

freesta

teofthebody,notnecessa

rilyacompatib

le,contin

uousdefo

rmatio

n

butrather

actitio

usela

sticunloadingofsm

allcutoutsofadefo

rmed

particu

late

assem

bly

orcontin

uum

body,

3.3

Constitu

tiveRelatio

ns

Wepropose

thefree

energ

ydensity

W,which

isdened

intheinterm

ediate

conguratio

n,

as

0 W

(Ceij ;

)=0 W

e(Ceij )

+0 W

p()

(64)

where

We(Ceij )

represen

tsasuita

blehyperela

sticmodelin

termsoftheela

sticrig

htdefo

r-

matio

nten

sorCeij ,

wherea

sW

p()rep

resents

thehardening.Thepertin

entdissip

atio

n

inequality

beco

mes:

D=

TijLpij+ X

K_0

(65)

7referredto

sameCartesia

ncoordinate

system

.

17

Page 19: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

where

TijistheMandelstress

andLpijistheplastic

velo

citygradien

tdened

on.Wenow

denetheela

sticdomainBasB=fTij ;

Kj(Tij ;

K)0g

(66)

When

yield

functio

nisiso

tropicin

Tij(which

isthecase

here)

inconjunctio

nwith

elastic

isotro

py,wecanconclu

dethatTijissymmetric

andwemay

replace

Tijbyijinyield

functio

n

.

Asto

thechoice

ofanela

sticlaw

,it

isem

phasized

thatthis

islargely

amatter

of

convenien

ce,sin

ceweshallbedealin

gwith

smallela

sticdefo

rmatio

ns.

Here,

theNeo

Hookeanela

sticlaw

isadopted

.Theconstitu

tiverela

tionscannow

bewritten

as

Lpij:=

_Fpik

Fpjk

1

=_@

@Tij

=_Mij

(67)

K=

K( )

(68)

_=

_@

@K

, (0

)=0

(69)

where

K;

=1;2;isthe\hardeningstress"

,(

ij ;K)istheplastic

poten

tial,is

intern

alvaria

bles,

_isconsisten

cyparameter

determ

ined

from

theloadingconditio

ns8and

Fpik=(Feli )1F

lkistheplastic

part

ofthedefo

rmatio

ngradien

t.

3.4

ImplicitIntegratio

nAlgorith

m

Theincrem

entaldefo

rmatio

nandplastic

ow

are

govern

edbythesystem

ofevolutio

nequa-

tions(67)and(69).The ow

rule(67)canbeinteg

rated

togive

n+1F

pij=exp

n+1Mik

nFpkj

(70)

Byusin

gthemultip

licativ

edeco

mpositio

n

Fij=

FeikFpkj)

Feik=Fij

Fpkj 1

(71)

andequatio

n(70)weobtain

n+1F

eij=

n+1F

im(nF

pmk )1exp n+1Mkj

=n+1F

e;tr

ikexp n+1Mkj

(72)

8These

are

theKarushKuhnTucker

complem

entary

conditio

nsin

thespecia

lcase

offully

asso

ciativ

e

theory,

deningtheStandard

Dissip

ativ

eMateria

l,cf.

[15].

18

Page 20: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

where

weused

that

n+1F

e;tr

ik=

n+1F

im(nF

pkm)1

(73)

Theela

sticdefo

rmatio

nisthen

n+1C

eijdef

=n+1F

eim T

n+1F

emj

=exp n+1MTir

n+1F

e;tr

rk

Tn+1F

e;tr

kl

exp n+1Mlj

=exp n+1MTir

n+1C

e;tr

rl

exp n+1Mlj

(74)

Byreco

gnizin

gthattheexponentofaten

sorcanbeexpanded

inTaylorseries

9

exp n+1Mlj

=Æljn+1Mlj+12

n+1Mls

n+1Msj +

(75)

andbyusin

gtheseco

ndorder

expansio

nin

equatio

n(74)andafter

someten

soralgebra

we

obtain

n+1C

eij=

n+1C

e;tr

rj

n+1Mir

n+1C

e;tr

rj

+n+1C

e;tr

iln+1Mlj

+

+()2

2

n+1Misn+1Msrn+1C

e;tr

rj

+2n+1Mirn+1C

e;tr

rl

n+1Mlj+

n+1Mlsn+1Msjn+1C

e;tr

rl

()3

12n+1Misn+1Msrn+1C

e;tr

rl

n+1Mlj

12n+1Mir

n+1C

e;tr

rl

n+1Mls

n+1Msj

+

+()4

4

n+1Misn+1Msrn+1C

e;tr

rl

n+1Mls

n+1Msj

(76)

First

order

seriesexpansio

ninclu

des

consta

ntandlin

ear(upto

)mem

bers.

Seco

ndorder

expansio

ninclu

des

thecomplete

equatio

nabove.

Remark3.1

TheTaylor's

seriesexpansio

nin

equatio

n(75)isaproper

approx

imatio

nfor

thegenera

lnonsymmetric

tensorMlj .

Thatis,

theapprox

imate

solutio

ngiven

byequatio

n

(76)isvalid

foragenera

laniso

tropicsolid

.Thiscontra

stswith

thespectra

ldeco

mpositio

n

family

ofsolutio

ns10which

are

restrictedto

isotro

picsolid

s.

Remark3.2

Inthelim

it,when

thedefo

rmatio

nsare

suÆcien

tlysm

all,

thesolutio

n(76)

collapses

tolimFij!Æij

Æij+2n+1ij=

+Æij+2n+1e;trij

9See

forexamplePearso

n[37].

10See

Sim

o[45].

19

Page 21: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

n+1Mij2n+1Mirn+1trrj

n+1Mij2

n+1tril

n+1Mlj

+2n+1Miln+1Mlj+22n+1Mir

n+1trrl n+1Mlj

=Æij+2n+1e;trij

2

n+1Mij

)n+1ij=

n+1trij

n+1Mij

(77)

which

represen

tsasm

alldefo

rmatio

nela

sticpred

ictorplastic

correcto

requatio

nin

strain

space.

Inworkingoutthesm

alldefo

rmatio

ncounterp

art

(77)itwasused

that

limFij!Æij

n+1C

eij=

Æij+2n+1ij

2

n+1tril

n+1Mlj

n+1Mij

1

(78)

Byneglectin

gthehigher

order

termwith

2in

equatio

n(76),thesolutio

nfortherig

ht

elastic

defo

rmatio

nten

sorn+1C

eijcanbewritten

as

n+1C

eij=

n+1C

e;tr

ij

n+1Mir

n+1C

e;tr

rj

+n+1C

e;tr

iln+1Mlj

(79)

Thehardeningrule(69)canbeinteg

rated

togive

n+1=

n+

@

@K

n+1

(80)

Theincrem

entalproblem

isdened

byequatio

ns(79),(80),theconstitu

tiverela

tions

n+1S

IJ=2@W

@CIJ n

+1

(81)

n+1K

=@W

@ n

+1

(82)

andtheKarushKuhnTucker

(KKT)conditio

ns

<0

;n+10

;

n+1

=0

(83)

where

=(Tij ;K

)

(84)

20

Page 22: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Remark3.3

TheMandelstress

tensorTijcanbeobtained

fromtheseco

ndPiolaKirch

ho

stressten

sorSkjandtherig

htela

sticdefo

rmatio

nten

sorCeikasTij=

CeikSkj

Thisset

ofnonlin

earequatio

nswill

besolved

with

aNew

tontypeproced

ure,

describ

ed

below

.Foragiven

n+1F

ij ,or

n+1C

e;tr

ij,theupgraded

quantities

n+1S

IJand

n+1K

canbe

found,then

theappropria

tepullback

to0orpushforward

towill

given+1S

IJand

n+1ij

n+1S

IJ=

n+1F

piI 1

n+1S

IJ

n+1F

pjJ

T

(85)

n+1ij=

n+1F

eiIn+1S

IJ

n+1F

ejJ

1

(86)

Theela

sticpred

ictor,plastic

correcto

requatio

n

n+1C

eij=

n+1C

e;tr

ij

n+1Z

ij(87)

isused

asasta

rtingpointforaNew

tonitera

tivealgorith

m.In

theprev

iousequatio

n,we

haveintro

duced

tensorZij

Zij

=

n+1Mir

n+1C

e;tr

rj

+n+1C

e;tr

iln+1Mlj

(88)

Thedenitio

nofZijaboveassu

mesuseofrst

orderexpansio

nin(76).Thetria

lrig

htela

stic

defo

rmatio

nten

sorisdened

as

n+1C

e;tr

ij=

n+1F

e;tr

ri

T n+1F

e;tr

rj

= n+1F

rM

(nF

piM)1

T n+1F

rS

nFpjS

1

(89)

Weintro

duce

aten

sorofdefo

rmatio

nresid

uals

Rij=

Ceij

|zcurrent

n+1C

e;tr

ij

n+1Z

ij |

z

BackwardEuler

(90)

Theten

sorRijrep

resentsthedieren

cebetw

eenthecurren

trig

htela

sticdefo

rmatio

nten

sor

andtheBackward

Euler

rightela

sticdefo

rmatio

nten

sor.Thetria

lrig

htela

sticdefo

rmatio

n

tensorn+1C

e;tr

ijismaintained

xed

durin

gtheitera

tionprocess.

Therst

order

Taylorseries

expansio

ncanbeapplied

totheten

sorofresid

ualsRijinorderto

obtaintheitera

tivechange,

thenew

residualRnew

ijfro

mtheoldRoldij

Rnew

ij=Roldij

+dCeij+d()n+1Z

ij+@n+1Z

ij

@Tmn

dTmn+@n+1Z

ij

@K

dK

(91)

21

Page 23: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Furth

ermore,

since

Tmn=

CemkSkn

)

Cesk

1Tsn=

Skn

(92)

wecanwrite

dTmn

=dCemkSkn+

CemkdSkn

=dCemkSkn+12

CemkLeknpqdCepq

=dCemk

Cesk

1Tsn+12

CemkLeknpqdCepq

(93)

sothatafter

settingRnew

ij=0andsometen

soralgebra

weobtain

0=

Roldij

+d()n+1Z

ij+@n+1Z

ij

@K

dK

+

+(Æ

imÆnj+@n+1Z

mn

@Tik

Cesj

1Tsk+12@n+1Z

mn

@Tpq

CepkLekqij)dCeij

(94)

Uponintro

ducin

gthenotatio

n

Tmnij=ÆimÆnj+@n+1Z

mn

@Tik

Cesj 1Tsk+12@n+1Z

mn

@Tpq

CepkLekqij

(95)

wecansolvefordCeij

dCepq=(Tmnpq )1 Roldmnd()n+1Z

mn@n+1Z

mn

@K

dK

!(96)

Byusin

gthatdK

=@K

@

d=d()@K

@

@Q

@K

=d()H

@Q

@K

(97)

itfollow

sfro

m(96)

dCepq=(Tmnpq )1 Roldmnd()n+1Z

mn+@n+1Z

mn

@K

d()H

@Q

@K

!(98)

Arst

order

Taylorseries

expansio

nofayield

functio

ntogeth

erwith

(97)prov

ides

new(Tij ;K

)=

old

(Tij ;K

)+

+

@(Tij ;K

)

@Tpn

Cesq

1Tsn+12

@(Tij ;K

)

@Tmn

CemkLeknpq !

dCepq

d()@(Tij ;K

)

@K

H

@

@K

(99)

22

Page 24: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Uponintro

ducin

gthefollow

ingnotatio

n

Fpq=@(Tij ;K

)

@Tpn

Cesq

1Tsn+12

@(Tij ;K

)

@Tmn

CemkLeknpq

(100)

andwith

thesolutio

nfordCepqfro

m(98),(99)beco

mes

new(Tij ;K

)=

old

(Tij ;K

)+

+Fpq

(Tmnpq )1 Roldmnd()n+1Z

mn+d()@n+1Z

mn

@K

H

@

@K

!!

d()@(Tij ;K

)

@K

H

@

@K

(101)

After

setting

new(Tij ;K

)=

0wecansolvefortheincrem

entalconsisten

cyparameter

d()

d()=

old

Fpq(Tmnpq )1Roldmn

Fpq(Tmnpq )1

n+1Z

mnFpq(Tmnpq )1@n+1Z

mn

@K

H

@

@K

+@

@K

H

@

@K

(102)

Remark3.4

Inthelim

it,forsm

alldefo

rmatio

ns,theincrem

entalconsisten

cyparameter

d()beco

mes

d()=

old

(n

mnEmnpq )

ÆpmÆnq+@m

mn

@ij

Eijpq !

1

Roldmn

nmnEmnpq

Æmp Æ

qn+@m

pq

@ij

Eijmn !

1

n+1m

mn+

@

@K

H

@

@K

(103)

since

inthelim

it,asdefo

rmatio

nsbeco

mesm

all

limFij!Æij

Tmnpq

=ÆpmÆnq+@m

mn

@ij

Eijpq

limFij!Æij

Fpq

=12

@

@mn

Emnpq

limFij!Æij

Zpq

=2m

pq

limFij!Æij

Rpq

=2pq

(104)

Uponnotin

gthattheresid

ualRpqisdened

instra

inspace,

theincrem

entalconsisten

cy

parameter

d()compares

exactly

with

it'ssm

allstra

incounterp

art

(Jerem

icandSture

[19]).Theproced

ure

describ

edbelow

summarizes

theim

plem

entatio

noftheretu

rnalgorith

m.

23

Page 25: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

3.4.1

ReturnAlgorith

m

Given

therig

htela

sticdefo

rmatio

nten

sornCepqandaset

ofhardeningvaria

bles

nKata

speci

cquadrature

pointin

anite

element,wecompute

therela

tivedefo

rmatio

ngradien

t

n+1fijforagiven

disp

lacem

entincrem

ent

n+1ui

n+1fij=Æij+ui;j

(105)

andtherig

htdefo

rmatio

nten

sor

n+1C

e;tr

ij=

n+1fir

nFerk

T n+1fklnF

elj =(nF

erk )

T n+1fir

T n+1fklnF

elj (106)

Then

wecompute

thetria

lela

sticseco

ndPiolaKirch

hostress

andthetria

lela

sticMandel

stressten

sor

n+1S

e;trij

=2

@W

@n+1C

e;tr

ij

(107)

n+1T

e;tr

ij=

n+1C

e;tr

iln+1S

e;trlj

(108)

Wethen

evaluate

theyield

functio

nn+1

tr(Te;tr

ij;K

),andset

n+1C

eij=

n+1C

e;tr

ij

n+1K

=

nK

n+1T

ij=

nTe;tr

ij

andexitconstitu

tiveinteg

ratio

nproced

ure.

Ifn+1

tr

0there

isnoplastic

ow

inthe

curren

tincrem

ent.

Iftheyield

criterionhasbeen

violated

(n+1

tr>0)proceed

step1.kthitera

tion.Know

nvaria

bles

n+1C

e(k)

ij;

n+1

(k)

;

n+1K

(k)

;

n+1T

(k)

ij;

n+1(k)

evaluate

theyield

functio

nandtheresid

ual

(k)

=(n+1T

e(k)

ij;n+1K

(k)

)

R(k)

ij=

n+1C

e;(k

)

ij

n+1C

e;tr

ij

n+1(k)n+1Z

(k)

ij

step2.Check

forconverg

ence,

(k)NTOLandkR(k)

ijkNTOL.Ifconverg

ence

criterion

issatis

edset

n+1C

eij=

n+1C

e(k)

ij

24

Page 26: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

n+1

=n+1

(k)

n+1K

=

n+1K

(k)

n+1Tij

=n+1T

(k)

ij

n+1

=n+1(k)

Exitconstitu

tiveinteg

ratio

nproced

ure.

step3.11Ifconverg

ence

isnotachiev

edcompute

theela

sticsti

ness

tensorLijkl

L(k)

ijkl=4

@2W

@Ce(k)

ij@Ce(k)

kl

(109)

step4.Compute

theincrem

entalconsisten

cyparameter

d((k+1))

d((k+1))=

(k)

F(k)

mnRmn(k)

F(k)

mnZmn(k)(k)Fmn(k)@Zmn(k)

@K

H(k)+@(k)

@K

H(k)

(110)

where

H(k)=H

(k)@;(k

)

@K

;Fmn(k)=Fpq(k) Tmnpq(k) 1

Fpq=@(T(k)

ij;K

(k)

)

@Tpn

Ce;(k

)

sq

1T(k)

sn+12

@(T(k)

ij;K

(k)

)

@Tmn

Ce;(k

)

mk

Le;(k

)

knpq

Tmnij=ÆimÆnj+(k)@Z(k)

mn

@T(k)

ik

Ce;(k

)

sj

1T(k)

sk+12(k)@Z(k)

mn

@Tpq

Ce;(k

)

pk

Le;(k

)

kqij

step5.Update

theconsisten

cyparameter

(k+1)

(k+1)=(k)+d((k+1))

(111)

step6.Calcu

latetheincrem

entsfortherig

htdefo

rmatio

nten

sor,thehardeningvaria

ble

andtheMandelstress

dCe;(k

+1)

pq

=

T

(k)

mnpq

1 R(k)

mnd((k+1))

n+1Z

(k)

mn+(k)@Z(k)

mn

@K

d((k+1))

H(k)

!(112)

11From

step3.to

step9.allofthevaria

bles

are

ininterm

ediate

n+1conguratio

n.Forthesakeof

brev

ityweare

omittin

gsuperscrip

tn+1.

25

Page 27: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

d(k+1)

=d((k+1))@;(k

)

@K

(113)

dK

(k+1)

=d((k+1))H

(k)

@;(k

)

@K

(114)

dT(k+1)

mn

=dCe;(k

+1)

mk

Ce;(k

)

sk

1T(k)

sn+12

Ce;(k

)

mk

Le;(k

)

knpqdCe;(k

+1)

pq

(115)

step7.Update

therig

htdefo

rmatio

nten

sorCe;(k

+1)

pq

,hardeningvaria

bleK

(k+1)

and

Mandelstress

T(k+1)

mn

Ce;(k

+1)

pq

=Ce;(k

)

pq

+d(Ce;(k

+1)

pq

)

(k+1)

=

(k)

+d(

(k+1)

)

K(k+1)

=

K(k)

+d(K

(k+1)

)

T(k+1)

mn

=T(k)

mn+d(T(k+1)

mn

)(116)

step8.eva

luate

theyield

functio

nandtheresid

ual

(k+1)=(Te(k+1)

ij;K

(k+1)

)

R(k+1)

ij=

Ce;(k

+1)

ij

Ce;tr

ij(k+1)Z

(k+1)

ij

(117)

step9.Setk=k+1and

(k)

=(k+1)

Ce;(k

)

pq

=Ce;(k

+1)

pq

(k)

=

(k+1)

K(k)

=

K(k+1)

T(k)

mn

=T(k+1)

mn

(118)

andretu

rnto

step2.

3.5

Algorith

micTangentSti

ness

Tensor

Startin

gfro

mtheela

sticpred

ictorplastic

correcto

requatio

n

n+1C

eij=

n+1C

e;tr

ij

n+1Z

ij(119)

26

Page 28: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

towhich

weapplyarst

order

Taylorseries

expansio

nto

obtain

(after

someten

soralgebra),

dCeij=(Tmnij )

1

dCe;tr

ijd()Zij+d()@Zij

@K

H

@

@K

!(120)

where

Tmnijwasdened

in(95)

Nextweuse

therst

order

Taylorseries

expansio

noftheyield

functio

nd(Tij ;K

)=0

@

@Tmn

dTmn+

@

@K

dK

=FpqdCepq

@

@K

d()H

@

@K

=0

(121)

with

Fpqdened

in(100).

Byusin

gthesolutio

nfordCeijfro

m(120)wecanwrite

Fpq(Tmnpq )1

dCe;tr

mnd()Zmn+d()@Zmn

@K

H

@

@K

!

@

@K

d()H

@

@K

=0

(122)

Weare

now

inthepositio

nto

solvefortheincrem

entalconsisten

cyparameter

d()

d()=Fpq(Tmnpq )1dCe;tr

mn

(123)

where

wehaveused

to

denote

=Fpq(Tmnpq )1n+1Z

mnFpq(Tmnpq )1@n+1Z

mn

@K

H

@

@K

+@

@K

H

@

@K

(124)

Since

dSkn=

12LknpqdCepq

(125)

andbyusin

g(120)wecanwrite

dCepq=

(Tmnpq )1

ÆmvÆntFop(Trsop )1ÆrvÆst

Zmn +

Fop(Trsop )1ÆrvÆst

@Zij

@K

H

@

@K

!dCe;tr

vt

(126)

Then

dCepq=

PpqvtdCe;tr

vt

(127)

27

Page 29: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

where

Ppqvt=(Tmnpq )1

Æmv Æ

ntFab (Tvtab )1

Zmn@n+1Z

mn

@K

H

@

@K

!!(128)

Thealgorith

mictangentsti

ness

tensorLATS

ijkl(in

interm

ediate

conguratio

n)isthen

dened

as

LATS

knvt=

LeknpqPpqvt

(129)

Pullback

tothereferen

ceconguratio

n0yield

sthealgorith

mictangentsti

ness

tensor

Lijklin

thereferen

ceconguratio

n0

n+1L

ATS

ijkl=

n+1F

pimn+1F

pjnn+1F

pkrn+1F

plsn+1L

ATS

mnrs

(130)

Remark3.5

Inthelim

it,forsm

alldefo

rmatio

nsandiso

tropicresp

onse,

theAlgorith

mic

TangentSti

ness

tensorLATS

ijklbeco

mes

limFij!Æij

LATS

vtpq=EATS

vtpq=R

knvtncdR

cdvt R

knmrH

mr

since

limFij!Æij

Tmnpq=mnpq=ÆpmÆnq+@m

mn

@rs

Eekspq

limFij!Æij

Fab=

12ncd E

ecdab

limFij!Æij

Hmn=m

mn@m

mn

@K

H

@

@K

limFij!Æij

=nab R

abm

nH

mn+

@

@K

H

@

@K

Itisnoted

thattheAlgorith

micTangentSti

ness

tensorgiven

by(131)compares

exactly

with

it'ssm

allstra

incounterp

art

(Jerem

icandSture

[19]).

3.6

MaterialModel

Alargedefo

rmatio

nmateria

lmodel

used

incomputatio

nsisbrie

ydescrib

edhere.

The

modelrelies

onthedevelo

pmentbehindtheso

called

MRSLademodel(Sture

etal.

[51])

28

Page 30: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

andissubseq

uently

denoted

theBModel.

TheBModelisasin

glesurfa

cemodel,

with

un-

coupled

coneportio

nandcapportio

nhardening.Very

lowconnem

entreg

ionwascarefu

lly

modeled

andtheyield

surfa

cewasshaped

insuch

away

tomim

icrecen

tndingsobtained

durin

gMicro

Grav

ityMech

anics

testsaboard

Space

Shuttle

(Sture

etal.

[50]).

Thelarge

defo

rmatio

nmodeldenitio

nisbased

ontheuse

oftheMandelstress

Tijfordescrib

ingyield

andpoten

tialsurfa

ces.Adeta

ileddescrip

tionofthemodelisgiven

byJerem

icet

al.[18].

4NumericalSimulatio

nsofMicroGravity

Mechanics

Inthissectio

nwepresen

tnumerica

lmodelin

goflow

connem

ent,

micro

grav

itylargede-

form

atio

ntria

xialtest

perfo

rmed

durin

gSpace

Shuttle

STS79missio

nin

Septem

ber

1996.

Figure

3show

sloaddisp

lacem

entandvolumedisp

lacem

entdata

forthree

lowconnem

ent

tests.Theresp

onse

curves

represen

tloaddisp

lacem

entdata

asthey

were

measured

dur-

0.00

0.00

0.08

0.06

0.04

0.02

0.010.02

0.030.04

vertical displacement [m

]

vertical force [kN]

MG

M052

MG

M005

MG

M130

volume change (dilation) [10 m ]-6 3

0.0000.010

0.0200.030

0.040

MG

M005

MG

M130

MG

M052

0.0

20.0

40.0

60.0

80.0

100.0

displacement [m

]

Figure

3:Micro

Grav

ityMech

anics,

loaddisp

lacem

entandvolumedisp

lacem

entcurves

for

thethree

tests.

ingtheexperim

ents.

Thesig

nalcontainssig

nicantnoise

andthepresen

teddata

are

in

rawform

.Theela

sticresp

onse

appears

tobevery

sti(fro

munloadingrelo

adingloops).

Deta

ileddescrip

tionoftheexperim

entalsetu

pisgiven

bySture

etal.[50].

Thethree

dim

ensio

nalnite

elementmesh

used

tomodel

theMGM

testis

depicted

inFigures

4.Instea

dofdevelo

pingtwodim

ensio

nalnite

elementform

ulatio

n,wehave

opted

forafullthree

dim

ensio

nalim

plem

entatio

n.Alth

oughthesta

teofstress

istria

xial,

wemodeltheexperim

ents

with

a3D

model.

Six

quadratic

20nodebrick

elements

where

29

Page 31: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

0.0375m0.0375m

0.075m

Figure

4:Finite

elementmesh

fortheMGM

specim

en.

chosen

tomodel

oneeig

hth

ofthespecim

en.Theanalysis

wasperfo

rmed

intwosta

ges.

First

stageinvolved

isotro

pic

compressio

nto

thedesig

npressu

re.Fortherst

stageonly

symmetry

disp

lacem

entboundary

conditio

nswere

inplace.

In uence

ofthemem

brane

wasrem

oved,sin

cethemem

branedoes

nothavesig

nicantsti

ness

incompressio

n,and

mem

braneprestressin

ghadaminoreect

atthissta

ge.

Durin

gthissta

getheresp

onse

was

purely

hyperela

stic.

After

thetherst

stage,thedisp

lacem

entboundary

conditio

nswere

changed

byadding

themova

bleboundary

atthetop.Thetopmova

bleboundary

applied

disp

lacem

entsto

the

topnodes

bymeansofequiva

lentforces,

obtained

throughthepartia

linversio

nofasti

ness

matrix

.Themem

branein uence

wasmodeled

byaddingequiva

lentsti

ness

(sprin

gs)to

the

boundary

nodes.

Instea

dofusin

gthin,highlydisto

rtedbrick

elements(m

embraneis0:3mm,

disto

rtionratio

would

be(237:5mm=8)=(0:3mm)100=1).weopted

fortheequiva

lent

sprin

gmeth

od.Theoutputfro

mtheoneelem

entexten

siontests

onthehyperela

sticlatex

rubber

specim

enwhere

used

toform

anonlin

earsprin

gofappropria

testi

ness.

Consisten

t

integ

ratio

nofthesti

ness

termsforthequadratic

brick

elementthen

supplied

equiva

lent

sprin

gsti

ness.

Specia

latten

tionwasgiven

tothespecim

enends,where

thelatex

mem

brane

30

Page 32: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UC

D-C

GM

rep

ort

was wrapped around the end platen and created a ring in the horizontal plane (parallel to end

platen) which was stier than the unstretched membrane surrounding the specimen. The

last row of nodes was thus supported by stier equivalent membrane elements. The material

parameters for the B Material Model for all three conning pressures12 were kept the same

except for the Young's modulus. This consistency in material parameters is important, since

all three specimens contained the same Ottawa F-75 sand at 85% relative density.

(a)0.00 0.01 0.02 0.03 0.04 0.05

0.05

0.04

0.03

0.02

0.01

0.00

-0.01

vertical displacement [m]

initial confinment p = 0.05kPa

vert

ical

for

ce [

kN]

MGM experiment

(b)

volu

me

chan

ge [

10

m ]

-63

0.000 0.010 0.020 0.030 0.040 0.050

displacement [m]

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Figure 5: Mechanics of granular materials responses, initial connement (p0 = 0:05kPa) test

(a) loaddeformation and (b) volumedeformation experiments and numerical results.

(a)0.00

vertical displacement [m]

MGM experiment

initial confinment p = 0.52kPa

0.01 0.02 0.03 0.04 0.05

0.06

0.05

0.04

0.03

0.02

0.01

vert

ical

for

ce [

kN]

(b)

volu

me

chan

ge [

10

m ]

-63

0.000 0.010 0.020 0.030 0.040 0.050-10.0

10.0

30.0

50.0

70.0

90.0

110.0

displacement [m]

Figure 6: Mechanics of granular materials responses, initial connement (p0 = 0:52kPa) test

(a) loaddeformation and (b) volumedeformation experiments and numerical results.

12E = 300:0; 360:0; 700:0 kN=m2; = 0:2 ; pc = 1000:0 kN=m2 ; pt = 0:0 kN=m2 ; n = 0:2 ; a = 5:0 ; b

= 0:707 ; init = 2:5 ; b1 = 1:0 ; dhard = 5000:0 ; ehard = 0:5 ; res = 0:15 ; peak = 1:75 ; start = 0:25 ; l

= 1:0 ; ccone = 0:030 ; r = 1:00 ; ccap = 0:30 ; pc;0 = 1000:0 kN=m2 ; as = 100:0 ; bs = 0:707)

31

Page 33: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UC

D-C

GM

rep

ort

(a)0.00

MGM experiment

vertical displacement [m]

initial confinment p = 1.30kPa0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.01 0.02 0.03 0.04 0.05

vert

ical

for

ce [

kN]

(b)

volu

me

chan

ge [

10

m ]

-63

0.000 0.020 0.040-10.0

10.0

30.0

50.0

70.0

90.0

displacement [m]

Figure 7: Mechanics of granular materials responses, initial connement (p0 = 1:30kPa) test

(a) loaddeformation and (b) volumedeformation experiments and numerical results.

Figures 5(a), 6(a) and 7(a) show comparison of numerical modeling with the test data

for loaddisplacement. Following observations are made. The initial (elastic) stiness is

higher in the actual experiments. The peak strength is modeled quite accurately, while the

postpeak behavior is slightly stier in the numerical experiment. The residual stiness is

softer in the numerical model than observed in the MGM tests. This can be explained by

the stier specimen ends in a physical test. In other words, the latex membrane wrapped

around the end platens (the end platens are 30% wider than the specimen) usually sticks to

the end platen after some radial displacements and then acts as a full restraint. The friction

between end platens and the sand specimen can also add to the whole specimen stiness,

however, the end platens were made of highly polished tungstencarbide, which has a very

low friction angle with quartz sand (3Æ), and we have thus decided to neglect the in uence

of end platen friction on the overall response. It is of interest to note that the maximum

mobilized friction angle is in the range of 70Æ and the dilatancy angles observed in the early

parts of the experiments are 30Æ, which is unusually high.

Figures 5(b), 6(b) and 7(b) shows comparison of volumetricdisplacement data for exper-

iments and numerical modeling. In modeling the lowest connement (p0 = 0:05kPa) level

we correctly predict complete lack of volumetric compression. Numerical predictions for two

other connements (p0 = 0:52kPa, p0 = 1:20kPa) shows small amount of initial volume

compression which was not observed in experiments. Figure 8 shows a typical specimen be-

fore and after the test. The latex ring formed by wrapping of membrane around end platens

is visible on both specimen ends.

32

Page 34: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

Figure

8:Thespecim

en(p

=1:30kPa)befo

reandafter

thetest.

Theeect

ofthelatex

mem

braneontheloaddisp

lacem

entbehaviorofspecim

encannot

beneglected

forthelow

connem

entexperim

ents.

Asatria

xialspecim

enexpands,

the

mem

braneexpandsaswell.

Thestretch

ingofthehyperela

sticmem

braneproduces

additio

nal

stressesandincrea

setheorig

inalconnem

entlev

el.Figures

9,10and11show

sthein uence

oflatex

mem

braneonthespecim

enbehavior.

Theresp

onse

with

outlatex

mem

braneis

softer,

anditdoes

notlev

eloin

thepost

peakreg

ion.Theloaddisp

lacem

entresp

onse

hasa atportio

n,butsta

rtshardeningafter

approx

imately

15%

axialdefo

rmatio

nfortwo

higher

connem

enttests

(p=

0:52kPaandp=

1:30kPa),

while

forthethevery

low

connem

enttest

(p=

0:05kPa)ithardensmonotonica

lly.Thiscanbeexplained

bythe

largedisp

lacem

enteects.

Forlargeaxialdefo

rmatio

ns,latera

lbulgingissig

nicant.

As

theaxialdefo

rmatio

nprogresses,

themateria

l(sa

nd)moves

from

thespecim

encen

terto

theboundary

region,thuscrea

tingaslig

hthardeningeect.

Theincrea

sein

peakstren

gth

dueto

thelatex

mem

braneeects

isnottoopronounced

.Thepost

peakreg

ion,how

ever,

show

sadditio

nalsti

ening.Forthelow

estconnem

enttest,

thein uence

ofthemem

brane

issubsta

ntia

lsin

cethespecim

enitself

(atonlyp=0:05kPa)isquite

soft.

Figure

12depicts

thedefo

rmed

shapeofaspecim

en.With

outthelatex

mem

brane,the

33

Page 35: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

(a)

vertical force [kN]

vertical displacement [m

]0.000

with m

embrane

without m

embrane

0.040

0.030

0.020

0.010

0.0200.040

0.060

(b)

volume change [10 m ]-6 3

0.0000.020

0.0400.060

displacement [m

]

0.0

50.0

100.0

150.0

with m

embrane

without m

embrane

Figure

9:Mech

anics

ofgranularmateria

lsresp

onses,

initia

lconnem

ent(p

0=

0:05kPa)

(a)loaddefo

rmatio

nand(b)volumedefo

rmatio

nnumerica

lpred

ictions.In uence

oflatex

mem

braneontheovera

llresp

onse.

0.00

vertical displacement [m

]

vertical force [kN]

0.06

0.05

0.04

0.03

0.02

0.01

0.010.02

0.030.04

without m

embrane

with m

embrane

volume change [10 m ]-6 3

0.0000.020

0.040-20.0 0.0

20.0

40.0

60.0

80.0

100.0

120.0

displacement [m

]

with m

embrane

without m

embrane

Figure

10:Mech

anics

ofgranularmateria

lsresp

onses,

initia

lconnem

ent(p

0=

0:52kPa)

(a)loaddefo

rmatio

nand(b)volumedefo

rmatio

nnumerica

lpred

ictions.In uence

oflatex

mem

braneontheovera

llresp

onse.

specim

endefo

rmsuniform

ly.Theabovementio

ned

endrestra

intresu

ltsin

adiuse

bulging

defo

rmed

shape,show

nin

Figure

12.

5ConcludingRemarks

Inthispaper

wehavepresen

tedanew

largedefo

rmatio

nconstitu

tiveform

ulatio

nforge-

omateria

ls.Constitu

tiveform

ulatio

nwasused

inconjunctio

nwith

largedefo

rmatio

nLa-

grangiannite

elementmeth

od.Theform

ulatio

niscapableofsim

ulatin

glargedefo

rmatio

n

hyperela

sticplastic

behaviorofgeomateria

ls,even

when

collin

earity

betw

eeneig

entria

dsof

34

Page 36: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UC

D-C

GM

rep

ort

vertical displacement [m]

vert

ical

for

ce [

kN]

with membrane

without membrane

0.00

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.01 0.02 0.03 0.04

volu

me

chan

ge [

10

m ]

-63

0.000 0.020 0.040-10.0

10.0

30.0

50.0

70.0

90.0

displacement [m]

without membrane

with membrane

Figure 11: Mechanics of granular materials responses, initial connement (p0 = 1:30kPa)

(a) loaddeformation and (b) volumedeformation numerical predictions. In uence of latex

membrane on the overall response.

Initial

with membrane

without membrane

Figure 12: Uniform and bulging deformed shape of a specimen.

stress and strains is lost (for anisotropic and cyclic response). A detailed constitutive formu-

lation has been presented. Moreover, the return algorithm was outlined with implementation

details. The developed formulation and implementation were used to simulate large defor-

mation tests on sand performed under very low connement. To this end, a consistent set

35

Page 37: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

ofmateria

lparameters

fortheBmateria

lmodelwasused

toaccu

rately

simulate

three

low

connem

enttests.

Itwasshow

nthatthelatex

mem

branehassubsta

ntia

lin uence

onthe

behaviorofsandspecim

enatvery

lowconnem

entpressu

res.

Acknowledgment

Partia

lsupportbyNASAGrantNAS8-38779fro

mMarsh

allS

pace

FlightCenter

isgrea

tfully

acknow

ledged.

36

Page 38: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

References

[1]Armero,F.Form

ulatio

nandnite

elementim

plem

entatio

nofamultip

licativ

emodel

ofcoupled

poroplasticity

atnite

strainsunderfully

saturated

conditio

ns.Intern

atio

nal

JournalforComputer

Meth

odsin

Applied

Mech

anics

andEngin

eering171(1999),205

241.

[2]Bathe,K.,Slavkovi c,R.,andKoji c

,M.Onlargestra

inela

stoplastic

andcreep

analysis.

InFinite

Elem

entMeth

odsforNonlin

earProblem

s,Europe

USSymposiu

m,

Trondheim

,Norway(1985),W.Berg

an,Bathe,Ed.,pp.176190.

[3]Bilby,B.A.,Gardner,L.R.T.,andStroh,A.N.Contin

uousdistrib

utio

nsof

dislo

catio

nsandthetheory

ofplasticity.

InIX

eCongres

Intern

atio

naldeMech

aniqu

e

Appliqu

ee(U

niversite

deBruxelles,

50.AvenueFranklin

Roosev

elt,1957),

vol.VIII,

pp.3544.

[4]Borja,R.I.Cam

clay

plasticity,

part1

:Im

plicit

integ

ratio

nofconstitu

tiveequatio

n

based

onanonlin

earela

sticstress

pred

ictor.

Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering88(1991),225240.

[5]Borja,R.I.,

andAlarcon,E.Amathem

atica

lfra

mew

ork

fornite

strain

elasto

-

plastic

consolid

atio

npart

1:Balance

laws,varia

tionalform

ulatio

n,andlin

eariza

tion.

Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering122(1995),145171.

[6]Borja,R.I.,

andLee,S.R.

Camclay

plasticity,

part

I:Im

plicit

integ

ratio

n

ofela

stoplastic

constitu

tiverela

tions.

Computer

Meth

odsIn

Applied

Mech

anics

and

Engin

eering78(1990),4972.

[7]Borja,R.I.,

andTamagnini,C.Camclay

plasticity

partiii:

Exten

sionofthein-

nitesim

almodelto

inclu

denite

strains.Intern

atio

nalJournalforComputer

Meth

ods

inApplied

Mech

anics

andEngin

eering155(1998),7395.

[8]Borja,R.I.,

Tamagnini,C.,andAlarcon,E.Elasto

plastic

consolid

atio

natnite

strain

part

2:Finite

elementim

plem

entatio

nandnumerica

lexamples.

Intern

atio

nal

JournalforComputer

Meth

odsin

Applied

Mech

anics

andEngin

eering159(1998),103

122.

37

Page 39: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

[9]Crisfield,M.A.

Consisten

tsch

emes

forplasticity

computatio

nwith

theNew

-

tonRaphsonmeth

od.

Computatio

nalPlasticity

Models,

Softw

are,

andApplica

tions

1(1987),136160.

[10]Cuiti ~no,A.,andOrtiz,M.Amateria

lindependentmeth

odforexten

dingstress

update

algorith

msfro

msm

allstra

inplasticity

tonite

plasticity

with

multip

licativ

e

kinem

atics.

Engin

eeringComputatio

ns9(1992),437451.

[11]deBorst,R.,andFeenstra,P.H.Studies

inanysotro

picplasticity

with

reference

tothehill

criterion.Intern

atio

nalJournalforNumerica

lMeth

odsin

Engin

eering29

(1990),315336.

[12]Eterovic,A.L.,andBathe,K.-J.A

hyperela

sticbased

largestra

inela

sto

plastic

constitu

tiveform

ulatio

nwith

combined

isotro

pic

kinem

atic

hardeningusin

g

thelogarith

micstress

andstra

inmeasures.

Intern

atio

nalJournalforNumerica

lMeth

ods

inEngin

eering30(1990),10991114.

[13]Famiglietti,C.M.,andPrevost,J.H.Solutio

noftheslu

mptest

usin

ganite

defo

rmatio

nela

stoplastic

drucker

prager

model.

Intern

atio

nalJournalforNumerica

l

Meth

odsin

Engin

eering37(1994),38693903.

[14]Fox,N.Onthecontin

uum

theories

ofdislo

catio

nsandplasticity.

Quarterly

Journal

ofMech

anics

andApplied

Mathem

atics

XXI,1(1968),6775.

[15]Halphen,B.,andSon,N.Q.Surles

materia

uxsta

ndardsgen

eralises.

JournalDe

Mech

aniqu

e14,1(1975),3963.

[16]Hibbitt,H.D.,Marcal,P.V.,andRice,J.R.Anite

elementform

ulatio

nfor

problem

soflargestra

inandlargedisp

lacem

ents.

Intern

atio

nalJournalofSolidsand

Stru

ctures

6(1970),10691086.

[17]Hill,R.TheMathem

atica

lTheory

ofPlasticity,

1st.

ed.TheOxford

Engineerin

g

Scien

ceSeries.

Oxford

attheClaren

donPress,

1950.

[18]Jeremi c,B.,Runesson,K.,andSture,S.A

modelforela

sticplastic

pressu

re

sensitiv

emateria

lssubjected

tolargedefo

rmatio

ns.Intern

atio

nalJournalofSolidsand

Stru

ctures

36,31/32(1999),49014918.38

Page 40: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

[19]Jeremi c,B.,andSture,S.Im

plicit

integ

ratio

nsin

elasto

plastic

geotech

nics.

In-

ternatio

nalJournalofMech

anics

ofCohesive

Frictio

nalMateria

ls2(1997),165183.

[20]Koji c

,M.,andBathe,K.-J.The"eectiv

estress

functio

n"algorith

mfortherm

o

elasto

plasticity

and,creep

.Intern

atio

nalJournalforNumerica

lMeth

odsin

Engin

eering

24(1987),15091532.

[21]Koji c

,M.,andBathe,K.-J.Studies

ofnite

elementproced

ures

stress

solutio

nof

aclo

sedela

sticstra

inpath

with

stretchingandshearin

gusin

gtheupdated

lagrangian

jaumannform

ulatio

n.Computers

andStru

ctures

26,1/2(1987),175179.

[22]Krieg,R.D.,andKrieg,D.B.

Accu

racies

ofnumerica

lsolutio

nmeth

odsfor

theela

stic-perfectly

plastic

model.

JournalofPressu

reVessel

Tech

nology

(Novem

ber

1977),510515.

[23]Kroner,E.

Algem

einekontin

uumsth

eorie

der

versetzu

ngen

undeig

enspanungen.

Arch

iveforRatio

nalMech

anics

andAnalysis

4,4(1960),273334.

[24]Lambe,W.T.,andWhitman,R.V.SoilMech

anics,

SIVersio

n.JohnWiley

and

Sons,1979.

[25]Lee,E.H.Elastic

plastic

defo

rmatio

natnite

strains.JournalofApplied

Mech

anics

36,1(1969),16.

[26]Lee,E.H.,andLiu,D.T.Finite

strain

elastic

plastic

theory

with

applica

tionto

planewaveanalysis.

JournalofApplied

Physics

38,1(January

1967),1927.

[27]Lewis,R.W.,andKhoei,A.R.Numerica

lmodelin

goflargedefo

rmatio

nin

meta

l

pow

der

form

ing.Intern

atio

nalJournalforComputer

Meth

odsin

Applied

Mech

anics

andEngin

eering159(1998),291328.

[28]Liu,C.H.,Wong,J.Y.,andMang,H.A.

Largestra

innite

elementanal-

ysis

ofsand:model,

algorith

mandapplica

tionto

numerica

lsim

ulatio

nsoftire

sand

intera

ction.Computers

andStru

ctures

159(1999),253265.

[29]Lubarda,V.A.,andLee,E.H.A

correct

denitio

nofela

sticandplastic

defo

r-

matio

nandits

computatio

nalsig

nicance.

JournalofApplied

Mech

anics

48(1981),

3540.

39

Page 41: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

[30]Malvern,L.E.Introd

uctio

nto

theMech

anics

ofaContin

uousMedium.In

Engi-

neerin

gofthePhysica

lScien

ces.Pren

ticeHallInc.,

1969.

[31]Marsden,J.E.,andHughes,T.J.R.Mathem

atica

lFoundatio

nsofElasticity.

Pren

ticeHallInc,,

1983.localCM65;4QA931.M

42;ISBN0-13-561076-1.

[32]McMeeking,R.M.,andRice,J.R.Finite

elem

entform

ulatio

nsforproblem

sof

largeela

sticplastic

defo

rmatio

n.Intern

atio

nalJopurnalofSOlidsandStru

ctures

11

(1975),601616.

[33]Morman,K.N.Thegenera

lizedstra

inmeassu

reswith

applica

tionto

nonhomogeneous

defo

rmatio

nin

rubber

likesolid

s.JournalofApplied

Mech

anics

53(1986),726728.

[34]Nagtegaal,J.C.,anddeJong,J.E.Someaspects

ofnoniso

tropicworkhard-

eningin

nite

strain

plasticity.

InPlasticity

ofMeta

lsatnite

strains,E.H.Lee

and

R.L.Mallet,

Eds.Stanford

University,

1981,pp.65106.

[35]Ortiz,M.,andPopov,E.P.

Accu

racy

andsta

bility

ofinteg

ratio

nalgorith

ms

forela

stoplastic

constitu

tiverela

tions.Intern

atio

nalJournalforNumerica

lMeth

odsin

Engin

eering21(1985),15611576.

[36]Ortiz,M.,andSimo,J.C.Ananalysis

ofanew

class

ofinteg

ratio

nalgorith

ms

forela

stoplastic,

constitu

tiverela

tions.Intern

atio

nalJournalforNumerica

lMeth

odsin

Engin

eering23(1986),353366.

[37]Pearson,C.E.,Ed.Handboo

kofApplied

Mathem

atics.

VanNostra

ndRein

hold

Company,1974.

[38]Peri c,D.,anddeSouzaNeto,E.A.A

new

computatio

nalmodel

forTresca

plasticity

atnite

strainswith

anoptim

alparametriza

tionin

theprin

cipalspace.

In-

ternatio

nalJournalforComputer

Meth

odsin

Applied

Mech

anics

andEngin

eering159

(1998),463489.

[39]Peri c,D.,Owen,D.R.J.,andHonnor,M.E.Amodelfornite

strain

elasto

plasticity

based

onlogarith

micstra

ins:

Computatio

nalissu

es.Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering94(1992),3561.

40

Page 42: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

[40]Runesson,K.,andSamuelsson,A.

Aspects

onnumerica

ltech

niques

insm

all

defo

rmatio

nplasticity.

InNUMETA

85Numerica

lMeth

odsin

Engin

eering,

Theory

andApplica

tions(1985),G.N.P.J.Middleto

n,Ed.,AA.Balkem

a.,pp.337347.

[41]Runesson,K.,Sture,S.,andWillam,K.Integ

ratio

nincomputatio

nalplasticity.

Computers

&Stru

ctures

30,1/2(1988),119130.

[42]Saran,M.J.,andRunesson,K.A

genera

lizedclo

sestpointprojectio

nmeth

od

fordefo

rmatio

nneutra

lizedform

ualtio

nin

nite

strain

plasticity.

Engin

eeringCompu-

tatio

ns9(1992),359370.

[43]Simo,J.C.A

framew

ork

fornite

strain

elasto

plasticity

based

onmaximum

plas-

ticdissip

atio

nandthemultip

licativ

edeco

mpositio

n:Part

i.contin

uum

form

ulatio

n.

Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering66(1988),199219.TA345.

C6425.

[44]Simo,J.C.A

framew

ork

fornite

strain

elasto

plasticity

based

onmaximum

plas-

ticdissip

atio

nandthemultip

licativ

edeco

mpositio

n:Part

ii.computatio

nalaspects.

Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering68(1988),

131.TA345.

C6425.

[45]Simo,J.C.Algorith

msforsta

ticanddynamicmultip

licativ

eplasticity

thatpreserv

e

thecla

ssicalretu

rnmappingsch

emes

oftheinnitesim

altheory.

Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering99(1992),61112.

[46]Simo,J.C.,andMeschke,G.A

new

class

ofalgorith

msforcla

ssicalplasticity

exten

ded

tonite

strain.applica

tionto

geomateria

ls.Computatio

nalMech

anics

11

(1993),253278.

[47]Simo,J.C.,andOrtiz,M.A

unied

approach

tonite

defo

rmatio

nela

stoplastic

analysis

based

ontheuse

ofhyperela

sticconstitu

tiveequatio

ns.

Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering49(1985),221245.

[48]Simo,J.C.,andTaylor,R.L.Consisten

ttangentopera

tors

forrate-in

dependent

elasto

plasticity.

Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering48(1985),

101118.

41

Page 43: FINITE DEFORMATION ANALYSIS OF GEOMATERIALSsokocalo.engr.ucdavis.edu/~jeremic/ Deformation Analysis of Geomaterials B. Jeremi c 1 K. Runesson 2 S. Sture 3 1 Departmen t of Civil and

UCD-CGM report

[49]Simo,J.C.,andTaylor,R.L.Quasi

incompressib

lenite

elasticity

inprin

cipal

stretches.

contin

uum

basis

andnumerica

lalgorith

ms.

Computer

Meth

odsin

Applied

Mech

anics

andEngin

eering85(1991),273310.

[50]Sture,S.,Costes,N.,Batiste,S.,Lankton,M.,AL-Shibli,K.,Jeremi c,

B.,Swanson,R.,andFrank,M.Mech

anics

ofgranularmateria

lsatlow

eectiv

e

stresses.ASCEJournalofAero

space

Engin

eering11,3(July

1998),6772.

[51]Sture,S.,Runesson,K.,andMacari-P

asqualino,E.J.Analysis

andcalib

ra-

tionofathree

invaria

ntplasticity

modelforgranularmateria

ls.Ingen

ieurArch

iv59

(1989),253266.

[52]Szabo,L.,andBalla,M.Compariso

nofsomestress

rates.

Intern

atio

nalJournal

ofSolidsandStru

ctures

25,3(1989),279297.

[53]Ting,T.C.T.

Determ

inatio

nofC

1=2,

C1=2andmore

genera

liso

tropic

tensor

functio

nsofC.JournalofElasticity

15(1985),319323.

42