23
FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS IMPACT ON PRODUCT VIU

FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

FINES CIRCUIT DESIGN AND PERFORMANCE 

ENHANCEMENT ELEMENTS IMPACT ON PRODUCT VIU

Page 2: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Presentation SummaryOverview of Fine Circuit challengesOverview of Fine Circuit challenges …Fines Circuit design data generation …

o Sample treat techniques and data repairp q po Analytical loss attribution impactso Laboratory flotation data challenges

Design and Performance considerationsDesign and Performance considerations …o Factor affecting design and performanceo Recirculating frother exampleo Recirculating slimes product quality impacto Bottom size selection aspects

Value in Use ImpactsValue in Use Impacts …o Coking coal scenarioo Thermal coal scenario

2

Page 3: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Fines Circuit Challenges Overview

Historical Discarding of Excess Fines

• Maintaining 

Issues & Problems in Fines Processing

• Inadequate fines

Solutions & Rewards from Fines Processing

• Borecore pre‐gexpected throughput

• Avoiding penalties• Inadequate b fi i ti

Inadequate fines circuit design

• Insufficient or incorrectly pre‐t t d d i d t

Borecore pretreatment procedures & fines loss attribution Fl h t d ibeneficiation 

technologies• Achieving (budget) production targets

treated design data• Throughput bottlenecks, avoidable coal 

• Flowsheet design considerations

• Evaluation of all resource data and production targets 

losses, dewatering issues, etc.

• Product handling, contract al penalties

product options• Total plant design value addinglcontractual penalties • Value assessment 

models (Value in Use linkages)

3

Page 4: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Fines Circuit Design Data Generation Aspects

Page 5: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Fines Circuit Design Data GenerationGeneration

Crushed Drill Core Data ‐generates an unnatural liberation state (not 

representative of run‐of‐

Applying Liberation and Circuit Segregation Models 

to Crushed Data can transform it into “pseudo”representative of run of

mine coal)transform it into  pseudo  pre‐treated washability data

B t ti i f lBest practice is for samples to be “drop‐shattered” with 

“wet pre‐treatment “ (simulates natural breakage occurring during mining /

This is the only reliable way to deliver realistic data from borecores to model fines 

circuit yield and ashoccurring during mining / CPP operations)

5

Page 6: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Fi ti l l l t d i l b t t t t

Analytical Loss Attribution Aspects• Fine particles are commonly lost during laboratory pre‐treatment processes.• Important to attribute laboratory processing losses correctly to deliver 

accurate data for design the fine coal circuit.

Loss Occurring

Determine ARD

Drop / shatter 20 times.Dry size @ 31.5mm

Loss Occurring

L

Hand Knap/Size Adjust to pass 31.5mm.

y @

Loss Occurring

RSD RSD

Dry Size @ 16.0mm, 8.0mm, 4.0mm and 2.0mm.

1/4 3/4

Loss Occurring

Raw Coal Analysis

Wet Tumble for 5 Minutes with cubes. Wet Size @ 16.0, 4.0, 2.0,

0.250 and 0.125mm

6

Page 7: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Under‐Estimating Fines GenerationIt is very important to carry laboratory processing losses across all pre‐treatment phases to correctly model the proportion that will report to the fine coal circuit. 

Generation of samples with a

1234samples with a representative plant feed size distributioncan only be

99 99

95 95

90 90

80 80

70 70

can only be carried out with drill‐

cores via the application of

60 6050 50

40 40

30 30

20 20

15 15Perc

ent U

nder

size

application of pre‐treatment tests, such as drop shatter and wet

10 10

8 8

6 6

4 4

2 2

Loss Corrected Wet Tumble Size

I d t L C t d Aft W t T bl and wet‐tumble testing.1 1

0.01 0.1 1 10 100

Size (mm)

Inadequate Loss Corrected After Wet-Tumble

Dry Sizing

7

Page 8: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Lab Scale Flotation Data Challenges

N l i l b l fl i d• Non‐selective lab scale flotation data over states ash.

• Need actual representative sample for CCComps.• Need realistic yield / ash data for plant design• Need realistic yield / ash data for plant design envelopes.

• Lab scale column cells offers reliable pathways to resolve these challenges.

8

resolve these challenges.

Page 9: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Fines Circuit Design and fPerformance Aspects

Page 10: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Some Factors Affecting Fines Circuit PerformancePerformance OptimisationFines Circuit Design Aspects

• Frother recirculation (Use of il bl t t )

Performance Optimisation Influences

• Slimes recirculation (Cl ifi ti ffi i davailable water streams)

• Slimes recirculation (Selection of stream direction and water balance)

(Classification efficiency and water clarity issues)

• Optimum feed presentation (Desliming efficiency andbalance)

• Optimum feed presentation (Desliming and loading)

• Upstream and down stream 

(Desliming efficiency and volume / solids stability)

• Misplacement of coarse particles (Classification Upst ea a d do st ea

unit capacities• Fit for purpose beneficiation and dewatering equipment

efficiency issues)

• Bottom size selection (to maximise yield and quality)

10

Page 11: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

• Correct frother recirculation uses available froth laden water streams 

Recirculating Frother Example

DeslimingCyclone

within the flotation circuit where possible.• Enables maximum ‘effective’ frother dosage rates.

‐0.250mm

‐1.4wwmm

DeslimingScreenUnderflow

g y

HBFd

Jameson Cell

‐1.4ww+0.250mm

Sieve Bend

TailingsThickener

Product

HBF Filtrate

Spirals

Frother Laden StreamFlotation Feed Sump

Tailings

Reject Product

11

Page 12: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

• Limited ability to beneficiate the ‐100m material, slimes component f ll fl h h h l

Recirculating Slimes Product Quality Impact

follows water flows throughout the plant.• Figure illustrates inability of a typical TBS (or Spiral) to successfully 

beneficiate particles <100m in size.CUMULATIVE ASH by PARTICLE SIZE

70

80

Minimal difference in cumulative ash between feed and product

40

50

60

tive

Ash

(%

Teeter Bed Feed

Teeter Bed Product

ash between feed and product streams for particles < 100mm

10

20

30

Cum

ulat Teeter Bed Product

0

10

0.01 0.10 1.00 10.00

GMS Particle Size (mm)

12

Page 13: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Common Device Advantages Disadvantages

Some Fines Dewatering Comparisons

Rotary Vacuum Horizontal Belt Filter 

(HBF)Dewaters all size fractions Moderate capital and operating costs

Higher TM in cakes

Hyperbaric Disc Filter  Dryer cake moistureDe aters all si e fractions Higher capital and operating costsyp Dewaters all size fractions g p p g

Screen ‐bowl Centrifuge (SBC)

Dryer cake moistureLower capital costs

Does not dewater ‐0.030mm materialTreatment of effluent required

New  Dewatering Technologies? TBC… TBC…

Coal thickeners

Maintains thickened feed to  dewatering devices Affected by performance of dewatering devices

High capital costCoal thickeners Can handle significant fluctuation in flotation response

High capital costFlocculant dependant

13

Page 14: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Bottom Size Selection ImpactsProduct CV (nar) vs Estimated Revenue per ROM tonneProduct CV (nar) vs. Estimated Revenue per ROM tonne

800.5mm Bottom Size (DMC & Spirals)

70

75

OM

tonn

e)

0.35mm Bottom Size (DMC & Spirals)

0.25mm Bottom Size (DMC & Spirals)

65

ue (A

UD

$/R

O

0.125mm Bottom Size (DMC & Spirals)

60

Rev

enu

0.063mm Bottom Size (DMC & Spirals)

Deslimed Flotation -0.25+0.038mm(DMC Spirals & Flotation)

5521.5 22.0 22.5 23.0 23.5 24.0 24.5

Product CVnar (MJ/kg)

(DMC, Spirals & Flotation)

Deslimed Flotation -0.125+0.038mm(DMS, Spirals & Flotation)

14

Product CVnar (MJ/kg)

Page 15: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Value in Use Impacts

• NOTE: Higher quality product doesn’t always deliver the best whole of resource revenue position…o Due to such factors as relative customer location and coal price 

able to be realisedo This assessment is intended to provide insight into VIU impacts p g p

from coal quality variations only and may not be the optimum whole of resource outcome

Page 16: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Coal Quality Improvement – Coking CoalP t ti l C ki C l I t• Potential Coking Coal Improvements– CSN Increase ≈1.0– Vitrinite Increase ≈ 10 %– Ash Reduction ≈ 0.8%

• Coal quality improvements can significantly affect market position 

i t ld t d d ki lagainst world traded coking coals– Position of coal has improved compared to 

world traded coals

• Improving CSN and vitrinite improve• Improving CSN and vitrinite improve coke quality 

• Lower ash product will allow blending with higher ash coals which will benefitwith higher ash coals which will benefit customers

16

Page 17: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Utilisation – Impact on Coke Quality• CSR is an important• CSR is an important 

parameter in the assessment of value of coke

• CSR can increase if coalCSR can increase if coal quality is improved

• Improvement in CSR has allowed the SSCC to be classified as SHCC

• A significantly greater number of coals satisfy SSCC constraints than SHCC (SSCCconstraints than SHCC (SSCC market more competitive)

• However, various grading of coking coals are used butcoking coals are used but there are no universally accepted suite of technical specifications

17

Page 18: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Location of Steelworks

Coking Coal TradeEx 150Mt

• Large number of coals can satisfy SSCC requirements• Consequently more competition in this space• Upgrade to SHCC Potentially larger number of potential

Ex 60MtEx 15‐33MtEx 2‐2.5MtIm 0‐2MtIm 2‐10MtIm 10‐50Mt • Upgrade to SHCC – Potentially larger number of potential 

customers18

Im 50 Mt+

Page 19: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Coking coal pricing• Pricing indices dependent on CSR• Pricing indices dependent on CSR• Platts coking coal indices highly 

dependent on CSR• Increase in CSR may attract 

US$1.5/t increase in price (2015 Platts model)

h l l ‘ l’• Higher value coals can ‘travel’ further and expand market share potentialCS di d• CSR predictor under development by GlobalCoal(Online Trading Company) which may result in stronger linkage tomay result in stronger linkage to product quality and CSR

19

Page 20: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Coal Quality Improvement – Thermal Coal

P i l I• Potential Improvements– Calorific Value Increase ≈ 200kcal/kg– Ash Decrease ≈ 0.8%

• Coal quality improvements can significantly affect market position against world traded thermal coals

– Position of coal has improved for energy and ash as compared to competing coals

• Potential coal price improvement ≈ $2/t (A&B Mylec pricing model)

20

Page 21: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Power Plant SuitabilityP l t h l d i• Power plants have coal design specifications.– E.g. CV, ash, and moisture

Bl di i l– Blending is common place

• Improvement in coal quality may result in satisfying specs for new 

t ti l tpotential customers.• If energy exceeds spec, coals may 

be used as blends.Bl d ith l lit I d i– Blend with lower quality Indonesian or domestic coal

• Decrease in ash will assist plants with expensive ash disposal costswith expensive ash disposal costs.

• Producer can now trade in new identified markets.

21

Page 22: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Power Plant Locations

100+ Mt Import40‐100 Mt Import10‐40 Mt  Import1‐10 Mt Import0‐1 Mt Import0 Mt Import0‐1 Mt Exportp1‐10 Mt Export10‐40 Mt Export40‐100 Mt Export100+ Mt Export

Power Plant

Page 23: FINES CIRCUIT DESIGN AND PERFORMANCE …FINES CIRCUIT DESIGN AND PERFORMANCE ENHANCEMENT ELEMENTS ... within the flotation circuit where possible. • Enables maximum ‘effective’

Value‐in‐Use of Thermal Coal• Typical Indian power plant simulated• Typical Indian power plant simulated• General trend of decreasing 

Generation costs as coal energy increases.increases.

• Other coal quality parameters can have a significant effect on generation costs (Hence observed scatter)

• Shows a decrease of $0.25/MWh in Generation costs. Equates to $1 4million pa for 800MW plant$1.4million pa for 800MW plant.

• Higher coal price can be negotiated as power plant will achieve lower generation costs.generation costs.

• Higher value coals can ‘travel’ further and expand market share potential.