20
Fine structure, mass composition, peaks Л.Г.Свешникова

Fine structure, mass composition, peaks Л.Г.Свешникова

Embed Size (px)

Citation preview

Page 1: Fine structure, mass composition, peaks Л.Г.Свешникова

Fine structure, mass composition, peaks

Л.Г.Свешникова

Page 2: Fine structure, mass composition, peaks Л.Г.Свешникова

105 106 107 108 109 1010

-1,0

-0,5

0,0

0,5

Tibet (E-->E*1.26 in theory

F(E

)/A

e3-1

E, GeV

Galstr Tibetst EEr2 MGUstr Er3 ### ### ### ### ### ### ### ### ###

105 106 107 108 109 1010

-1,0

-0,5

0,0

0,5

Tibet, MSU (E-->E*1.26 in theory

F(E

)/A

e3-1

E, GeV

Galstr Tibetst EEr2 MGUstr Er3 ### ### ### ### ### ### ### ### ###

105 106 107 108 109 1010 1011

-1,0

-0,5

0,0

0,5

EAS TOPTunka

F(E

)/A

e3-1

E, GeV

Galstr Grandest B Tun133st C Tun25str B EasTpst Hires1st er2 KaskadeStr ### ### ###

105 106 107 108 109 1010 1011

-1,0x100

-5,0x10-1

0,0

5,0x10-1

Kaskade GrandeEas Top

F(E

)/Ae3

-1

E, GeV

Tibet

Kascade Grande

MSU

EAS TOPTUNKA

GAMMAF(E)/AE-2.9 -1 and TUNKA

STRUCTURE: F(E)/AE-3 -1knees and pronounced peak,

GAMMAF(E)/AE-3.0 -1

Line- our model – one of calculated variants

Page 3: Fine structure, mass composition, peaks Л.Г.Свешникова

Basic MODEL:V. Ptuskin, V. Zirakashvili, and Eun-Suk Seo, Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophysical J. T. 718 p. 31–36.

Several types of SNR:• 1. Type Ia SNRs (Emax~4Z PeV) with

the following parameters: kinetic energy of explosion E = 1051erg, number density of the surrounding interstellar gas n = 0.1 cm−3, and mass of ejecta Mej = 1.4Ms can accelerate particles to the energy of the knee.

• 2. Type Ib/c SNRs (Emax~1Z PeV) with E = 1051 erg exploding into the low density bubble with density n = 0.01 cm−3 formed by a progenitor star as a Wolf-Rayet star. The ejecta mass is Mej = 2Ms and k = 7.

• 3. Type IIP SNRs (Emax~0.1Z PeV) with parameters E=1051erg, n = 0.1 cm−3, Mej = 8M, and k = 12.

• 4. Type IIb SNRs (Emax~600Z PeV) with E = 31051 erg, n = 0.01cm−3, and Mej = 1Ms. Before entering the rarefied bubble, the blast wave goes through the dense wind emitted by the progenitor star during its final RSG stage of evolution. It was assumed that the mass loss rate by the wind is M˙ = 10−4M yr−1 and the outer wind radius is 5 pc.

In this model sources are distributedcontiniously, the random nature of sourcesIs not considered

Page 4: Fine structure, mass composition, peaks Л.Г.Свешникова

Extension of this model takes into account a statistical nature of sources:

Distant and old sources are simulated randomly

Nearby (Rnear~1.-1.5 кпс) and Young Tnear~105 лет) are taken

from gamma astronomy catalogs

The propagation time of 4 PeV protons is around 104 years (less than survival time of shells and PWNs, so we try to identify gamma-atronomy detected source and cosmic ray source.

Page 5: Fine structure, mass composition, peaks Л.Г.Свешникова

Additional suggestings:1) All SNR Ia (thermonuclear explosions accelerate up to

Emax =4 PeV (23%)

2) Collapsing SNR II, SNIbc have distributed Emax from 1 TeV to 1000 TeV:

This results in additional d ~0.17, and observed near Earth

obs= sour + d+ dprop ~2.705

sour=2.2.

3) and 2-5 % SNIIn accelerated up to 6 1017 eV.

3) Chemical composition: 37% of H, 35% of He, 8% CNO, 10% of CNO, 8 % of intermediate nuclei, 10% of Fe.

Page 6: Fine structure, mass composition, peaks Л.Г.Свешникова

Spectrum without propagation

103 104 105 106 107 108 109 1010 1011109

1010

1011

1012

with bumpbefore Emax

no peak

Protons

Sn_IIn(Emax=600 PeV)

Sn_Ia (Emax=4 PeV)

F=E-2.2 (1 +(E/Ek))c/

F(E

) E

2.2

E, GeV

• Structures can be explained only if the cutoff in source spectrum is strong d>2.5 -3.0

• Fe - peak can be explained only if we suggest “bump” before cutoff energy

Main variant

Page 7: Fine structure, mass composition, peaks Л.Г.Свешникова

104 105 106 107 108 109 1010 1011 1012104

105

106

107

108

3.38E6

Pure Galactic

0.20

E2knee=600

Sum Gal+Metag 025

F(E

) E3.

0

E, GeV

• 1) bump around 4 PeV is produced by proton and helium nuclei with nearly equal abundances

• 2) concavity above 1016 eV denotes the transition to CNO and more heavier nuclei, the amount of Fe nuclei at that should be not less than 1/3 of He nuclei.

• 3) sharp break around the 108 GeV marks the transition to the contribution of rare SNIIb being able to accelerate protons up to 6x1017 eV comprising the several percents among all SNR. The slope of spectrum (-3.24+-0.08 in KG) in the model is connected with the slope of cutoff.

• 4) If we exclude SNIIb we can not describe the flat spectrum above the 1016 eV.

• 5) Two variant of calculation: Main 1 (absence of SNRs in the Earth vicinity with Emax=4 PeV) and Main 2 (where 4 SNRs accelerate to 4 PeV) give more or less similar structures around the knee

Here we need to knowMetaGalactic

PHe

C,O

Fe

Si

Total all particle spectrum in our model ( F(E)*E3) has fine structures

Galactic sources

Page 8: Fine structure, mass composition, peaks Л.Г.Свешникова

Contribution of nearby actual sources

103 104 105 106 107 108 10910-2

10-1

100

101

F(E

) E2

.7

E, GeV

Main 2 all p he cno si fe nearby

Main 1 all nearby

Variant 1: No one SNR <1 kpc can accelerate to 4 PeVTotal contruution:7% in total

Variant 2: all pure shell SNRs < 1 kpc accelerate to 4 PeVTotal contribution30% in total

We did not find the actual single sources that can imitate the fine structure

Page 9: Fine structure, mass composition, peaks Л.Г.Свешникова

Variant without “bump” in source spectrum can not describe Fe-peak, but describe structures

103 104 105 106 107 108 109 1010 1011109

1010

1011

1012

with peak

no peak

Protons

Sn_IIn(Emax=4x150 PeV)

Sn_Ia (Emax=4 PeV)

F=E-2.2 (1 +(E/Ek))c/

F(E

) E

2.2

E, GeV

Page 10: Fine structure, mass composition, peaks Л.Г.Свешникова

Variant with wide (0.5 order) “bump” in source spectrum can describe Fe-peak more or less

103 104 105 106 107 108 109 1010 1011109

1010

1011

1012

with peak

no peak

Protons

Sn_IIn(Emax=4x150 PeV)

Sn_Ia (Emax=4 PeV)

F=E-2.2 (1 +(E/Ek))c/

F(E

) E

2.2

E, GeV

Page 11: Fine structure, mass composition, peaks Л.Г.Свешникова

Variant with narrow (0.25 order) “bump” in source spectrum can describe Fe-peak completely, but there is a some contradiction with the main knee – it becomes too narrow and with 2 ears

103 104 105 106 107 108 109 1010 1011109

1010

1011

1012

with peak

no peak

Protons

Sn_IIn(Emax=4x150 PeV)

Sn_Ia (Emax=4 PeV)

F=E-2.2 (1 +(E/Ek))c/

F(E

) E

2.2

E, GeV

Page 12: Fine structure, mass composition, peaks Л.Г.Свешникова

Mass composition in 3-d variantcoincides with Tunka -133 last data

Page 13: Fine structure, mass composition, peaks Л.Г.Свешникова

Mass composition: 3 dif. variants• 1) Emax (P)In Galaxy ; 4 PeV

• 2) Emax (P)=4 and 600 PeVThis variant predicts a

heavy composition at 1018 eV

•3) SNR Ia + He stars

+MetaGalactic with

mixed composition in

sources

Page 14: Fine structure, mass composition, peaks Л.Г.Свешникова

Implications of the cosmic ray spectrum for themass composition at the highest energies

D. Allard1, N. G. Busca1, G. Decerprit1, A. V. Olinto1;2, E.Parizot1

Figure 3. Propagated spectra obtained assuming a mixed source compositioncompared to HiRes (left) and Auger (right) spectra, the dierent components aredisplayed .

Page 15: Fine structure, mass composition, peaks Л.Г.Свешникова

Variant with Meta-galactic with mixed composition and with

He-stars (without heavy nuclei) instead of SNIIn

104 105 106 107 108 109 1010 1011 1012105

106

107

FeHe

P

Metagalactika, mixed composition

Galactica: SN Ia accelerate all nuclei to 4 PeV, SN IIn to 600 PeV, butonly P, He (He stars).

F(E

) E3

.0

E, GeV

Tun133 GrandeKas Hires1 Hires2 EASTOP Tibet KASKADE Tunka25 MGUIE3 AKENO Augergv Hires1M3

Page 16: Fine structure, mass composition, peaks Л.Г.Свешникова

Amplitude and Right ascensionof anisotropy around the knee

102 103 104 105 106 107 108 109 1010

10-4

10-3

10-2

10-1

Ani

sotr

opy

ampl

itude

E, GeV

Compilation [9] Akeno, Yakutsk , KaskadeGrande KASCADEAUGER AGASA

102 103 104 105 106 107 108 109 1010-15

-10

-5

0

5

10

15

Vela Jun 0.3 kpc 700 y

Akeno []

Calculation Vela J un Main1 Main 2

Rig

ht A

scen

sion

, hou

rs

Energy, GeV

Page 17: Fine structure, mass composition, peaks Л.Г.Свешникова

Conclusions about Fe-peak• To get in our calculations Fe-peak we need to introduce some bump

in source spectrum with a width 0.3 or 0.1 of the order. Single nearby source could not help in this problem.

• First a very impressive fact – a very good coincidence of positions of the Fe peak and position of P-He main knee at the suggestion of normal composition.

• In the case of narrow peak (1/10 of order) Fe peak is reproduced perfectly , but the main knee should be visible as two knees. May be if we take into account an accuracy of energy and mass determination, it helps to smooth these peaks.

• The nature of the bump in a source spectrum is not clear fully. But it can reflect the time dependent emissions – most energetic particles are emitted at the beginning of the acceleration process, when the speed of shock wave is maximal. This bump should be seen during 104 ears (time of collecting of PeV signal from the sources due to propagation) and should be variable in the time .

Page 18: Fine structure, mass composition, peaks Л.Г.Свешникова

Propagation Time for different energies

103 104 105 1061E-4

1E-3

0,01

0,1

1

protons R=1 kpcF

E3

Age of SNR (years)

100 GeV 1 TeV 10 TeV 100 TeV 1PeV

We can identified

Page 19: Fine structure, mass composition, peaks Л.Г.Свешникова

Всего 25 с R <1.5 кпс и T <105 лет (всего 73 до 3 кпс)

Чистые SNR 6 (без пульсаров, похожие на сверхновые Ia (25%). В 19 есть либо PWN (11 штук) либо гамма-пульсар (11 штук),

Из 19 HESS зарегистрировал ТэВ-ное излучение только в 30 %,

Из 6 SNR - только в 1 (Только в J1713-3946) Тэвное излучение.

Используемый набор потенциальных источников КЛ.

Page 20: Fine structure, mass composition, peaks Л.Г.Свешникова

HSWFP Lград.

DmnКпс

Tклет

Name

_SW__ 65.3 0.8 20. G65.3+5.7

_SW__ 65.7 1.5 0. DA495

_S___ 74.0 0.44 20. Cygn Loop

_S_F_ 78.2 1.5 7. DR4

_S___ 89.0 0.8 19. HB21

_S__ 93.7 1.5 120. CTB104,DA551

_SWFP 106.3 0.8 10. Boomerang

_S__P 114.3 0.7 7.7 G114.3+0.3

_SWF_ 119.5 1.4 14. CTA

_S___ 127.1 1.2 0. R5

_S___ 160.9 0.8 6.6 HB9

_SW_P 180.0 0.8 4.6 S147

_SW__ 189.1 1.5 20. IC443, 3C157

HSWFP 263.9 0.29 11.0 Vela X

HSWF_ 266.2 1.3 10. Vela Jun.

HWFP 343.1 1.4 18. FermiG343.1

HS___ 347.3 1.0 1.6 J1713-3946

H____ 353.6 0.8 27. HESSG353.6

___P 49.1 1.4 88. PSRB1916

___FP 201.1 0.29 110. Monogem

__W__ 291.0 1.0 0. PWNG291.02-0.11

___FP 201.2 0.75 44. J0631+1036

__WF__ 7.4 1.7 68. J1809-2332

H__F_ 80.2 1.6 120. J2032+4127