28

Figure 7.UN01 becomes oxidized (loses electron) becomes reduced (gains electron)

Embed Size (px)

Citation preview

Figure 7.UN01

becomes oxidized(loses electron)

becomes reduced(gains electron)

Figure 7.UN03

becomes oxidized

becomes reduced

Figure 7.5

Explosiverelease

(a) Uncontrolled reaction (b) Cellular respiration

H2O

Fre

e en

erg

y, G

Fre

e en

erg

y, G

Electro

n tran

spo

rt

chain

Controlledrelease of

energy

H2O

2 H

2 e−

2 H 2 e−

ATP

ATP

ATP

½

½

½H2 O2 O2

O2

2 H

Figure 7.UN05

Glycolysis (color-coded teal throughout the chapter)

Pyruvate oxidation and the Krebs (citric acid)cycle(color-coded salmon)

1.

Oxidative phosphorylation: electron transport andchemiosmosis (color-coded violet)

2.

3.

Figure 7.6-1

Electronsvia NADH

Glycolysis

Glucose Pyruvate

CYTOSOL

ATP

Substrate-level

MITOCHONDRION

Figure 7.6-2

Electronsvia NADH

Glycolysis

Glucose Pyruvate

Pyruvateoxidation

Acetyl CoA

Krebscycle

Electronsvia NADH and

FADH2

CYTOSOL

ATP

Substrate-level

ATP

Substrate-level

MITOCHONDRION

Figure 7.6-3

Electronsvia NADH

Glycolysis

Glucose Pyruvate

Pyruvateoxidation

Acetyl CoA

Krebscycle

Electronsvia NADH and

FADH2

Oxidativephosphorylation:electron transport

andchemiosmosis

CYTOSOL

ATP

Substrate-level

ATP

Substrate-level

MITOCHONDRION

ATP

Oxidative

Intermembrane space

Matrix

Inner membraneOuter membrane

5 Cristae

Figure 7.UN06

Glycolysis Pyruvateoxidation

Krebscycle

Oxidativephosphorylation

ATP ATP ATP

Figure 7.8

Energy Investment Phase

Energy Payoff Phase

Net

Glucose

Glucose

2 ADP 2 P

4 ADP 4 P

2 NAD 4 e− 4 H

2 NAD 4 e− 4 H

4 ATP formed − 2 ATP used

2 ATP

4 ATP

used

formed

2 NADH 2 H

2 Pyruvate 2 H2O

2 Pyruvate 2 H2O

2 NADH 2 H

2 ATP

Figure 7.UN07

Glycolysis Pyruvateoxidation

Krebscycle

Oxidativephosphorylation

ATP ATP ATP

Figure 7.10a

CYTOSOLPyruvate(from glycolysis,2 molecules per glucose)

CO2

CoANAD

NADH

MITOCHONDRION CoAAcetyl CoA H

Figure 7.10b

CoA

Krebscycle

FADH2

FAD

ADP Pi

ATP

NADH

3 NAD

3

3 H

2 CO2

CoAAcetyl CoA

Figure 7.11-6

NADH

NAD

H

8

Malate

Succinate

FAD

FADH2

Fumarate

H2O7

6

Acetyl CoA

Oxaloacetate

Citrate

H2O

Isocitrate

NADH

NAD

H

CO2

-Ketoglutarate

Krebscycle

CoA-SH

CO2NAD

NADH

H

ATP formation

SuccinylCoA

ADP

GDPGTP

Pi

ATP

5

4

1

CoA-SH

3

CoA-SH

2

Figure 7.UN09

Glycolysis Pyruvateoxidation

Krebscycle

Oxidativephosphorylation:electron transportand chemiosmosis

ATP ATP ATP

Figure 7.14

Proteincomplexof electron carriers

H

HH

H

Q

I

II

III

FADH2 FAD

NADNADH

(carrying electronsfrom food)

Electron transport chain

Oxidative phosphorylation

Chemiosmosis

ATPsynthase

H

ADP ATPPi

H2O2 H ½ O2

IV

Cyt c

1 2

Figure 7.15

Electron shuttlesspan membrane

CYTOSOL2 NADH

2 NADH

2 FADH2

or

2 NADH

Glycolysis

Glucose 2Pyruvate

Pyruvateoxidation

2 Acetyl CoA

Krebscycle

6 NADH 2 FADH2

Oxidativephosphorylation:electron transport

andchemiosmosis

about 26 or 28 ATP 2 ATP 2 ATP

About30 or 32 ATPMaximum per glucose:

MITOCHONDRION

Figure 7.UN11

Inputs

GlucoseGlycolysis

2 Pyruvate 2

Outputs

ATP NADH 2

Figure 7.UN12

Inputs

2 Pyruvate 2 Acetyl CoA

2 OxaloacetateKrebscycle

Outputs

ATP

CO2

2

6 2

8 NADH

FADH2

Bell Work: Draw a flow diagram depicted how reactants and products flow through the 3 steps of cellular respiration

Alcoholic Fermentation• Pyruvate releases CO2

• Resulting compound reduced by NADH to ethanol

• Bacteria

• Pyruvate reduced by NADH to lactate

• Animals, fungi, and bacteria

• Buildup causes muscle fatigue (ATP use outpaces O2 supply)

Lactic Acid Fermentation

Animation: Fermentation OverviewRight click slide / Select play

In respect to evolution, why is glycolysis so important?

Ancient prokaryotes are thought to have used glycolysis long before there was oxygen in the atmosphere

Very little O2 was available in the atmosphere until about 2.7 billion years ago, but bacteria have been dated back 3.5 billion years

Early prokaryotes likely used only glycolysis to generate ATP

Glycolysis is a very ancient process