14
Fiberglass and Glass Technology

Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

Fiberglass and Glass Technology

Page 2: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

Frederick T. Wallenberger · Paul A. BinghamEditors

Fiberglass and GlassTechnology

Energy-Friendly Compositionsand Applications

123

Page 3: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

EditorsFrederick T. WallenbergerConsultant708 Duncan AvenueApartment 1108Pittsburgh, Pennsylvania 15237United [email protected]

Paul A. BinghamDepartment of Engineering MaterialsUniversity of SheffieldSir Robert Hadfield BuildingSheffield S1 3JDUnited [email protected]

ISBN 978-1-4419-0735-6 e-ISBN 978-1-4419-0736-3DOI 10.1007/978-1-4419-0736-3Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009938639

© Springer Science+Business Media, LLC 2010All rights reserved. This work may not be translated or copied in whole or in part without the writtenpermission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use inconnection with any form of information storage and retrieval, electronic adaptation, computer software,or by similar or dissimilar methodology now known or hereafter developed is forbidden.The use in this publication of trade names, trademarks, service marks, and similar terms, even if they arenot identified as such, is not to be taken as an expression of opinion as to whether or not they are subjectto proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 4: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

Preface

This book offers a comprehensive view of fiberglass and glass technology withemphasis on energy-friendly compositions, manufacturing practices, and appli-cations, which have recently emerged and continue to emerge. Energy-friendlycompositions are variants of incumbent fiberglass and glass compositions. Theyare obtained by reformulation of incumbent glass compositions in order to reducethe melt viscosity and increase the melting rate, thereby saving process energyand reducing environmental emissions. As a result, new energy-friendly compo-sitions are expected to become a key factor in the future for the fiberglass and glassindustries. The contributors to the book consist of both academic and industrial sci-entists. This book is therefore dedicated to those in the academic and industrialcommunity who seek an understanding of the past in order to make progress in thefuture.

This book consists of three interrelated sections. Part I reviews a wide range ofcontinuous glass fibers, their compositions, and properties. Dr. F. T. Wallenbergerauthored Chapter 1, which reviews important glass fibers ranging from commercial100% SiO2 glass fibers and commercial multi-oxide glass fibers to experimen-tal glass fibers containing 81% Al2O3. Dr. Wallenberger also authored Chapter 2.This chapter offers a new method (trend line design) for designing environmentallyand energy-friendly E-, ECR-, A-, and C-glass compositions to reduce the processenergy by compositional reformulation. Few fiberglass applications are based onyarns; most are based on composites. Dr. J. H. A van der Woude and Dr. E. L.Lawton authored Chapter 3, which reviews fiberglass composite engineering withan important sub-chapter on windmill blade construction. Dr. A. V. Longobardowrote Chapter 4. It reviews the glass fibers which became available as reinforce-ment for printed circuit boards and analyzes their compositions as well as theneeds of the market. Finally Dr. R. L. Hausrath and Dr. A. Longobardo authoredChapter 5, which reviews high-strength glass fibers and analyzes existing andemerging markets for these products.

Part II of the book deals with soda–lime–silica glass technology. The first twochapters (Chapters 6 and 7) parallel the first two chapters in Part I (Chapters 1 and2). Dr. Ing. A. Smrcek wrote Chapter 6. It is devoted to a wide range of industrialflat, container, and technical glass compositions and to an in-depth review of theirproperties. Dr. P. A. Bingham authored Chapter 7. It deals with the design of new

v

Page 5: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

vi Preface

energy-friendly flat, container, and technical glass melts through reformulation ofexisting compositional variants to reduce the process energy.

Part III of the book deals with emerging glass melting science and technology,and is conceptually applicable to both glass and fiberglass melts. Prof. Dr. H.-J.Hoffmann authored Chapter 8, which offers new insights into the basics of melt-ing and glass formation at the most fundamental level. Prof. Dr. R. Conradt wroteChapter 9, which deals with the thermodynamics of glass melting, offers a model topredict the thermodynamic properties of industrial multi-component glasses fromtheir chemical compositions, addresses the role of individual raw materials in themelting process of E-glass, and facilitates the calculation of the heat of the batch-to-melt conversion. Prof. Dr. H. A. Schaeffer and Priv. Doz. Dr.-Ing. H. Müller-Simonauthored Chapter 10, which reviews the use of in situ sensors for monitoring glassmelt properties and monitoring species in the combustion space and also reviewsredox control of glass melting with high levels of recycled glass to enhance theenvironmentally friendly value of the resulting glass. Dr. R. Gonterman and Dr. M.A. Weinstein authored Chapter 11, which deals with the recently emerging plasmamelt technology and its potential applications.

Dr. Wallenberger wishes to acknowledge his years at PPG Industries from 1995to 2008, especially the invitation he received from the late John Horgan, VicePresident, Fiberglass, to join PPG, and the support of Dr. Jaap van der Woude,who as Director of Research, encouraged him in 1997 to pursue innovative com-positional fiberglass research. Dr. Wallenberger gratefully acknowledges the help ofDr. Bingham, co-editor of the book, and the valuable contributions of the chapterauthors. Finally, Dr. Wallenberger wishes to acknowledge the thoughtful support ofJennifer Mirski who, as assistant editor, Springer Publisher, helped in editing theentire book.

Dr. Bingham wishes to thank the following people for their help, insight, com-ments, and encouragement: Dr. Fred Wallenberger, co-editor of the book; Prof.Michael Cable for many interesting discussions; all of our contributing authors;colleagues present and past at the Society of Glass Technology, the University ofSheffield, and the British Glass Manufacturer’s Confederation; and the many otherindividuals with whom he has held discussions over the years on the fascinatingsubject of glass. Finally and most importantly, he thanks his family for their endlesspatience, love, support, and encouragement.

F. T. Wallenberger Pittsburgh, PA, USAP. A. Bingham Sheffield, UK

Page 6: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

About the Editors

Dr. Frederick T. Wallenberger was an instructor in Chemistry at FordhamUniversity (1957–1958), a research fellow at Harvard (1958–1959), and a scientistat DuPont Fibers, Pioneering Research Laboratory (1959–1992). He retired in 1992from DuPont and became a research professor (Materials Science) at the Universityof Illinois in Urbana-Champaign (1992) and a visiting professor (Textiles) at theUniversity of California in Davis (1994). He joined PPG as a staff scientist in1995, retired in 2008, and serves as a consultant now. He studied the relationshipsbetween structures, properties, and value-in-use of new materials and contributedto the commercialization of new fibers through “intrapreneurial” research, projectmanagement, and technology transfer. He is an expert in the fields of advanced glassfibers, ceramic fibers, carbon fibers, natural fibers, polymer fibers, single crystalfibers, and composites.

Dr. Wallenberger has over 150 papers in the refereed scientific literature, includ-ing three in the journal science, edited four books (Advanced Inorganic Fibers,1999; Advanced Fibers, 2002; Natural Fibers, 2004; and Fiberglass and GlassTechnology, 2009), wrote two recent review articles (Introduction to ReinforcingFibers and Glass Fibers, ASM Handbook on Composites, 2002), and received 10US Patents. He chaired three major symposiums (“Chemistry and Environment,”American Chemical Society, 1974; “Advanced Fibers, Plastics and Composites,”Materials Research Society, 2001; “Behavior of Glass Melts,” Gordon ResearchConference, 2005), gave three invited Gordon Research Conference lectures(“Aramid Fibers,” 1964; “Foamed Polyester Fibers,” 1975; and “Glass Fibers,”1992) and wrote the first review article that included KevlarTM (“The Chemistryof Heat Resistant Polymer Fibers,” Angewandte Chemie, 1964)

Dr. Wallenberger received the Environmental Respect Award from DuPont(1992). He is a member of the Association of Harvard Chemists (1958–) and waselected a Fellow of the American Ceramic Society (2005). His biography appearsin several standard references including Who’s Who in the World, Who’s Who inAmerica, and Who’s Who in Science and Engineering.

Dr. Paul A. Bingham received his BEng (Hons) degree in Materials Science andEngineering from the University of Sheffield in 1995. He then studied toward aPh.D. (1995 to 1999, thesis title “The Environment of Iron in Silicate Glasses”) at

vii

Page 7: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

viii About the Editors

the same institution, which hosts one of the world’s premier glass science depart-ments. From 1999 to 2003 he was employed as a technologist by Glass TechnologyServices Ltd (GTS) a subsidiary of the British Glass manufacturers confederationwhere he carried out a wide range of glass and ceramic-related R&D, project man-agement, and industrial production problem solving. He was promoted to seniortechnologist in 2001. Projects ranged from laboratory-scale development of soda–lime–silica glass, E-glass, lead crystal glass, sealing glass, and glasses with novelphysical properties to managing industrial-scale glass compositions, melting, recy-cling, energy, and emissions. Environmentally friendly glass compositions that hedeveloped have reached full-scale production. In 2004, Dr. Bingham took up a posi-tion as postdoctoral research associate at the Immobilisation Science Laboratory(ISL), University of Sheffield. Dr. Bingham’s chief research interests lie at theboundary between materials science and environmental disciplines. These includecomposition/structure/property relations in novel glass-forming systems; formula-tion of glasses for the safe immobilization of legacy and problematic nuclear andtoxic wastes; modification of commercial glass and ceramic materials and the re-useof waste materials therein for environmental benefit, energy efficiency, and reducedatmospheric emissions.

Dr. Bingham has published over 30 peer-reviewed scientific papers and he regu-larly reviews manuscripts for several major international journals. He has presentedhis research, chaired sessions, and given invited presentations at a number of inter-national conferences on glass science and waste management. He has a strong trackrecord in obtaining funding and access to scientific facilities from both academicand industrial sources and he has built many lasting national and international col-laborations. He has been an active member of the Society of Glass Technology forover 10 years and was elected onto the Basic Science and Technology Committeein 2000. In 2004 he was elected committee secretary.

Page 8: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

Contents

Part I Continuous Glass Fibers

1 Commercial and Experimental Glass Fibers . . . . . . . . . . . . 3Frederick T. Wallenberger1.1 Overview: Glass Melt and Fiber Formation . . . . . . . . . . . 3

1.1.1 Principles of Glass Melt Formation . . . . . . . . . . 31.1.2 Principles of Glass Fiber Formation . . . . . . . . . . 91.1.3 Structure of Melts and Fibers . . . . . . . . . . . . . 111.1.4 Summary and Conclusions . . . . . . . . . . . . . . 15

1.2 Silica Fibers, Sliver, and Fabrics (95–100% SiO2) . . . . . . . 151.2.1 Ultrapure Silica Fibers (99.99–99.999% SiO2) . . . . 151.2.2 Pure Silica Sliver and Fabrics (95.5–99.5% SiO2) . . 191.2.3 Summary and Conclusions . . . . . . . . . . . . . . 22

1.3 Silicate Glass Fibers (50–70% SiO2, 1–25% Al2O3) . . . . . . 231.3.1 Forming Glass Fibers from Strong Viscous Melts . . . 231.3.2 General-Purpose Silicate Glass Fibers . . . . . . . . . 281.3.3 Special-Purpose Silicate Glass Fibers . . . . . . . . . 341.3.4 Non-round, Bicomponent and Hollow Silicate Fibers . 541.3.5 Summary and Conclusions . . . . . . . . . . . . . . 60

1.4 Aluminate Glass Fibers (≤81% Al2O3, ≤50% SiO2) . . . . . 601.4.1 Glass Fibers from Fragile Melts (25–50%

Al2O3, 10–4% SiO2) . . . . . . . . . . . . . . . . . . 601.4.2 Glass Fibers from Inviscid Melts

(55–81% Al2O3, 4–0% SiO2) . . . . . . . . . . . . . 661.5 Appendix: Single-Crystal Alumina Fibers . . . . . . . . . . . 77

1.5.1 Single-Crystal Fibers from Inviscid Melts . . . . . . . 771.5.2 The Future of Alumina and Aluminate Fibers . . . . . 82

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2 Design of Energy-Friendly Glass Fibers . . . . . . . . . . . . . . . 91Frederick T. Wallenberger2.1 Principles of Designing New Compositions . . . . . . . . . . 91

2.1.1 Compositional, Energy, and Environmental Issues . . 91

ix

Page 9: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

x Contents

2.1.2 Trend Line Design of New Fiberglass Compositions . 942.2 Energy-Friendly Aluminosilicate Glass Fibers . . . . . . . . . 99

2.2.1 New Energy-Friendly E-Glass Variants with< 2% B2O3 . . . . . . . . . . . . . . . . . . . . . . 99

2.2.2 New Energy-Friendly E-Glass Variants with2–10% B2O3 . . . . . . . . . . . . . . . . . . . . . 111

2.2.3 New Energy- and Environmentally FriendlyECR-Glass Variants . . . . . . . . . . . . . . . . . . 114

2.3 Energy-Friendly Soda–Lime–Silica Glass Fibers . . . . . . . . 1162.3.1 New Energy-Friendly A- and C-Glass Compositions . 117

2.4 Summary, Conclusions, and Path Forward . . . . . . . . . . . 119References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3 Composite Design and Engineering . . . . . . . . . . . . . . . . . 125J.H.A. van der Woude and E.L. Lawton3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.1.1 Continuous Fibers for Reinforcement . . . . . . . . . 1253.1.2 E-Glass Fibers . . . . . . . . . . . . . . . . . . . . . 1273.1.3 Fiberglass Manufacturing . . . . . . . . . . . . . . . 1283.1.4 Fiberglass Size . . . . . . . . . . . . . . . . . . . . . 1293.1.5 Composite Mechanical Properties . . . . . . . . . . . 1303.1.6 Products . . . . . . . . . . . . . . . . . . . . . . . . 138

3.2 Thermoset Composite Material . . . . . . . . . . . . . . . . . 1413.2.1 Liquid Resin Processing Techniques . . . . . . . . . 1423.2.2 Thermosetting Matrix Resins . . . . . . . . . . . . . 1483.2.3 Fillers . . . . . . . . . . . . . . . . . . . . . . . . . 1543.2.4 Release Agents . . . . . . . . . . . . . . . . . . . . . 155

3.3 Reinforced Thermoplastic Materials . . . . . . . . . . . . . . 1563.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1563.3.2 Semifinished Materials Based on Thermoplastics . . . 158

3.4 Composites for Wind Turbines . . . . . . . . . . . . . . . . . 1683.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1683.4.2 Raw Materials . . . . . . . . . . . . . . . . . . . . . 1693.4.3 Blade-Manufacturing Techniques . . . . . . . . . . . 1693.4.4 Blade Design Methodologies . . . . . . . . . . . . . 170

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4 Glass Fibers for Printed Circuit Boards . . . . . . . . . . . . . . . 175Anthony V. Longobardo4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.1.1 Printed Circuit Board Requirements and TheirImplications for Fiberglass . . . . . . . . . . . . . . 176

4.1.2 Fiberglass’ Role in PCB Construction . . . . . . . . . 1774.1.3 Electrical Aspects . . . . . . . . . . . . . . . . . . . 1794.1.4 Structural Aspects . . . . . . . . . . . . . . . . . . . 181

Page 10: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

Contents xi

4.2 Glass Compositional Families . . . . . . . . . . . . . . . . . 1844.2.1 Improvements Initially Based on E-Glass . . . . . . . 1844.2.2 D-Glass and Its Compositional Improvements . . . . 188

4.3 Future Needs of the PCB Market . . . . . . . . . . . . . . . . 1914.3.1 The Electronics Manufacturer’s Roadmap . . . . . . . 1914.3.2 What This Means for the Board and Yarn Makers . . 192

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5 High-Strength Glass Fibers and Markets . . . . . . . . . . . . . . 197Robert L. Hausrath and Anthony V. Longobardo5.1 Attributes of High-Strength Glass . . . . . . . . . . . . . . . 197

5.1.1 Strength . . . . . . . . . . . . . . . . . . . . . . . . 1985.1.2 Elastic Modulus . . . . . . . . . . . . . . . . . . . . 2035.1.3 Thermal Stability . . . . . . . . . . . . . . . . . . . 205

5.2 Glass Compositional Families . . . . . . . . . . . . . . . . . 2065.2.1 S-Glass . . . . . . . . . . . . . . . . . . . . . . . . . 2075.2.2 R-Glass . . . . . . . . . . . . . . . . . . . . . . . . . 2085.2.3 Other High-Strength Glasses . . . . . . . . . . . . . 209

5.3 High-Strength Glass Fibers in Perspective . . . . . . . . . . . 2105.3.1 The Competitive Material Landscape . . . . . . . . . 2105.3.2 Inherent Advantages of Continuous Glass Fibers . . . 215

5.4 Markets and Applications . . . . . . . . . . . . . . . . . . . . 2155.4.1 Defense – Hard Composite Armor . . . . . . . . . . 2165.4.2 Aerospace – Rotors and Interiors . . . . . . . . . . . 2185.4.3 Automotive – Belts, Hoses, and Mufflers . . . . . . . 2205.4.4 Industrial Reinforcements – Pressure Vessels . . . . . 221

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 222References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Part II Soda–Lime–Silica Glasses

6 Compositions of Industrial Glasses . . . . . . . . . . . . . . . . . 229Antonín Smrcek6.1 Guidelines for Industrial Glass Composition Selection . . . . . 229

6.1.1 Economics . . . . . . . . . . . . . . . . . . . . . . . 2306.1.2 Demands on the Glass Melt . . . . . . . . . . . . . . 2306.1.3 Meltability . . . . . . . . . . . . . . . . . . . . . . . 2326.1.4 Workability . . . . . . . . . . . . . . . . . . . . . . 2336.1.5 Choice of Raw Materials . . . . . . . . . . . . . . . 2356.1.6 Cullet Effect – Glass Melt Production Heat . . . . . . 2366.1.7 Glass Refining . . . . . . . . . . . . . . . . . . . . . 237

6.2 Industrial Glass Compositions . . . . . . . . . . . . . . . . . 2406.2.1 Historical Development . . . . . . . . . . . . . . . . 2406.2.2 Flat Glass . . . . . . . . . . . . . . . . . . . . . . . 2426.2.3 Container Glass . . . . . . . . . . . . . . . . . . . . 2456.2.4 Lead-Free Utility Glass . . . . . . . . . . . . . . . . 250

Page 11: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

xii Contents

6.2.5 Technical Glass . . . . . . . . . . . . . . . . . . . . 2536.2.6 Lead Crystal . . . . . . . . . . . . . . . . . . . . . . 2596.2.7 Colored Glasses . . . . . . . . . . . . . . . . . . . . 261

6.3 Example Glass Compositions . . . . . . . . . . . . . . . . . . 2616.3.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . 2616.3.2 Practical Examples of Container Glass Batch Charge . 262

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

7 Design of New Energy-Friendly Compositions . . . . . . . . . . . 267Paul A. Bingham7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 2677.2 Design Requirements . . . . . . . . . . . . . . . . . . . . . . 268

7.2.1 Commercial Glass Compositions . . . . . . . . . . . 2697.3 Environmental Issues . . . . . . . . . . . . . . . . . . . . . . 269

7.3.1 Specific Energy Consumption . . . . . . . . . . . . . 2697.3.2 Atmospheric Emission Limits . . . . . . . . . . . . . 2717.3.3 Pollution Prevention and Control . . . . . . . . . . . 271

7.4 Fundamental Glass Properties . . . . . . . . . . . . . . . . . . 2787.4.1 Viscosity–Temperature Relationship . . . . . . . . . 2797.4.2 Devitrification and Crystal Growth . . . . . . . . . . 2817.4.3 Conductivity and Heat Transfer . . . . . . . . . . . . 2867.4.4 Interfaces, Surfaces, and Gases . . . . . . . . . . . . 2917.4.5 Chemical Durability . . . . . . . . . . . . . . . . . . 2977.4.6 Density and Thermo-mechanical Properties . . . . . . 299

7.5 Design of New SLS Glasses . . . . . . . . . . . . . . . . . . 3007.5.1 Batch Processing, Preheating, and Melting . . . . . . 3007.5.2 Cullet . . . . . . . . . . . . . . . . . . . . . . . . . . 3027.5.3 Silica, SiO2 . . . . . . . . . . . . . . . . . . . . . . 3047.5.4 Soda, Na2O . . . . . . . . . . . . . . . . . . . . . . 3057.5.5 Calcia, CaO . . . . . . . . . . . . . . . . . . . . . . 3077.5.6 Magnesia, MgO . . . . . . . . . . . . . . . . . . . . 3097.5.7 Alumina, Al2O3 . . . . . . . . . . . . . . . . . . . . 3107.5.8 Potassia, K2O . . . . . . . . . . . . . . . . . . . . . 3137.5.9 Lithia, Li2O . . . . . . . . . . . . . . . . . . . . . . 3157.5.10 Boric Oxide, B2O3 . . . . . . . . . . . . . . . . . . . 3167.5.11 Sulfate, SO3 . . . . . . . . . . . . . . . . . . . . . . 3187.5.12 Water, H2O . . . . . . . . . . . . . . . . . . . . . . . 3217.5.13 Chlorides and Fluorides . . . . . . . . . . . . . . . . 3227.5.14 Baria, BaO . . . . . . . . . . . . . . . . . . . . . . . 3237.5.15 Zinc Oxide, ZnO . . . . . . . . . . . . . . . . . . . . 3237.5.16 Strontia, SrO . . . . . . . . . . . . . . . . . . . . . . 3247.5.17 Multivalent Constituents . . . . . . . . . . . . . . . . 3247.5.18 Other Compounds . . . . . . . . . . . . . . . . . . . 3277.5.19 Recycled Filter Dust . . . . . . . . . . . . . . . . . . 3297.5.20 Nitrates . . . . . . . . . . . . . . . . . . . . . . . . . 329

Page 12: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

Contents xiii

7.6 Glass Reformulation Methodologies . . . . . . . . . . . . . . 3307.6.1 Worked Examples and Implementation . . . . . . . . 3307.6.2 Reformulation Benefits and Pitfalls . . . . . . . . . . 3417.6.3 Research Requirements and Closing Remarks . . . . 343

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Part III Glass Melting Technology

8 Basics of Melting and Glass Formation . . . . . . . . . . . . . . . 355Hans-Jürgen Hoffmann8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3558.2 Former Melting Criteria . . . . . . . . . . . . . . . . . . . . . 3568.3 Analysis of the Enthalpy Functions of One-Component

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3598.3.1 Theoretical Preliminaries . . . . . . . . . . . . . . . 3598.3.2 Pre-melting Range and the Contribution to the

Molar Specific Heat Capacity by Electrons . . . . . . 3618.4 Melting and the Glass Transformation . . . . . . . . . . . . . 3658.5 Effects Occurring in the Glass Transformation Range . . . . . 3688.6 What Makes Solids and Melts Expand? . . . . . . . . . . . . 3698.7 Modulus of Compression of the Chemical Elements . . . . . . 3758.8 Necessary Criteria for Glass Formation . . . . . . . . . . . . . 3758.9 Possible Extension to Multi-Component Systems . . . . . . . 3818.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

9 Thermodynamics of Glass Melting . . . . . . . . . . . . . . . . . . 385Reinhard Conradt9.1 Approach to the Thermodynamics of Glasses

and Glass Melts . . . . . . . . . . . . . . . . . . . . . . . . . 3859.1.1 Description Frame for the Thermodynamic

Properties of Industrial Glass-Forming Systems . . . 3869.1.2 Heat Content of Glass Melts . . . . . . . . . . . . . . 3889.1.3 Chemical Potentials and Vapor Pressures of

Individual Oxides . . . . . . . . . . . . . . . . . . . 3919.1.4 Entropy and Viscosity . . . . . . . . . . . . . . . . . 394

9.2 The Role of Individual Raw Materials . . . . . . . . . . . . . 3959.2.1 Sand . . . . . . . . . . . . . . . . . . . . . . . . . . 3959.2.2 Boron Carriers . . . . . . . . . . . . . . . . . . . . . 3979.2.3 Dolomite and Limestone . . . . . . . . . . . . . . . . 400

9.3 The Batch-to-Melt Conversion . . . . . . . . . . . . . . . . . 4049.3.1 Stages of Batch Melting . . . . . . . . . . . . . . . . 4049.3.2 Heat Demand of the Batch-to-Melt Conversion . . . . 4059.3.3 Modeling of the Batch-to-Melt Conversion

Reaction Path . . . . . . . . . . . . . . . . . . . . . 407References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Page 13: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

xiv Contents

10 Glass Melt Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 413Helmut A. Schaeffer and Hayo Müller-Simon10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41310.2 Target Properties of Glass Melt and Glass Product . . . . . . . 414

10.2.1 Batch-Related Fluctuations . . . . . . . . . . . . . . 41510.2.2 Combustion-Related Fluctuations . . . . . . . . . . . 41610.2.3 Process-Related Fluctuations . . . . . . . . . . . . . 416

10.3 In Situ Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 41710.3.1 Sensors for Monitoring Glass Melt Properties . . . . . 41810.3.2 Sensors for Monitoring Species in the

Combustion Space . . . . . . . . . . . . . . . . . . . 42210.4 Examples of Glass Melt Stability Control . . . . . . . . . . . 423

10.4.1 Redox Control of Glass Melting with HighPortions of Recycled Glass . . . . . . . . . . . . . . 423

10.4.2 Redox Control of Amber Glass Melting . . . . . . . . 42510.5 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . 427References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

11 Plasma Melting Technology and Applications . . . . . . . . . . . 431J. Ronald Gonterman and M.A. Weinstein11.1 Concepts of Modular and Skull Melting . . . . . . . . . . . . 43111.2 The Technology of High-Intensity DC-Arc Plasmas . . . . . . 433

11.2.1 Conductive . . . . . . . . . . . . . . . . . . . . . . . 43411.2.2 Radiant . . . . . . . . . . . . . . . . . . . . . . . . . 43511.2.3 Joule Heating . . . . . . . . . . . . . . . . . . . . . 436

11.3 Brief History of Plasma Melting of Glass . . . . . . . . . . . . 43711.3.1 Johns-Manville . . . . . . . . . . . . . . . . . . . . . 43711.3.2 British Glass Institute . . . . . . . . . . . . . . . . . 43811.3.3 Plasmelt Glass Technologies, LLC . . . . . . . . . . 43811.3.4 Japanese Consortium Project . . . . . . . . . . . . . 439

11.4 DOE Research Project – 2003–2006 . . . . . . . . . . . . . . 44011.4.1 Acknowledgments . . . . . . . . . . . . . . . . . . . 44011.4.2 Experimental Setup of the Plasmelt Melting System . 44011.4.3 Technical Challenges of Plasma Glass Melting . . . . 44211.4.4 Glasses Melted: Results and Broad Implications . . . 44411.4.5 Synthetic Minerals Processing Implications . . . . . . 44711.4.6 Energy Efficiency vs. Throughput . . . . . . . . . . . 448

11.5 Future Applications for Plasma Melting . . . . . . . . . . . . 45011.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . 451References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Page 14: Fiberglass and Glass Technology978-1-4419-0736-3...Part II of the book deals with soda–lime–silica glass technology. The first two chapters (Chapters 6 and 7) parallel the first

Contributors

Paul A. Bingham Department of Engineering Materials, The University ofSheffield, Sheffield S1 3JD, UK, [email protected]

Reinhard Conradt Department of Glass and Ceramic Composites, RWTHAachen University, Institute of Mineral Engineering, 52064 Aachen, Germany,[email protected]

J. Ronald Gonterman Plasmelt Glass Technologies, LLC, Boulder, CO 80301,USA, [email protected]

Robert L. Hausrath AGY World Headquarters, Aiken, SC 29801, USA,[email protected]

Hans-Jürgen Hoffmann Institute of Materials Science and Technology: VitreousMaterials, University of Technology of Berlin, 10587 Berlin, Germany,[email protected]

E. L. Lawton Fiber Polymer Composite Consulting, LLC, 3432 Kilcash Drive,Clemmons, North Carolina 27012, USA, [email protected]

Anthony V. Longobardo AGY World Headquarters, Aiken, SC 29801, USA,[email protected]

Hayo Müller-Simon Research Association of the German Glass Industry (HVG),63071, Offenbach, Germany, [email protected]

Helmut A. Schaeffer Research Association of the German Glass Industry (HVG),63071, Offenbach, Germany, [email protected]

Antonin Smrcek VÚSU, Teplice, Czech Republic, [email protected]

J. H. A. van der Woude Fiber Glass Science and Technology, Europe, PPGIndustries Inc., Hoogezand, The Netherlands 9600AB, [email protected]

Frederick T. Wallenberger Consultant, 708 Duncan Avenue, Apartment 1108,Pittsburgh PA 15237, USA, [email protected]

Michael A. Weinstein Plasmelt Glass Technologies, LLC, Boulder, CO 80301,USA, [email protected]

xv