35
スピンクロスオーバー現象とその光・スピン・電荷 による相乗効果

スピンクロスオーバー現象とその光・スピン・電荷 …kuchem.kyoto-u.ac.jp/ossc/pdf/resume/kojima2.pdfY. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 1954, 9, 766. Upper

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • スピンクロスオーバー現象とその光・スピン・電荷

    による相乗効果

  • Outline

    (1) History of spin crossover phenomena

    (2) Light induced excited state trapping (LIESST) and its related

    phenomena

    (3) Spin crossover transition at r.t. toward molecular devices

    (4) Development of spin crossover complex film

    (5) Development of assembled-metal complex exhibiting

    dynamical spin equilibrium

    (6) Development of mixed-valence complex exhibiting charge

    transfer phase transition

  • Molecular structure of Fe(S2CNR2)3(R = n-CnH2n+1, etc.). Temperature dependence of inverse magnetic

    susceptibility for Fe(S2CNR2)3 (R = n-CnH2n+1).

    L. Cambi, L. Szegö, Ber. Deutsch. Chem. Ges. 1933, 66, 656 (1933).

    L. Cambi and A. Cagnasso, Atti Accad. Naz. Lincei. 1931, 13, 809

    First report of spin-crossover phenomenon

    HS(S = 5/2)

    LS(S = 1/2) Fe(III):3d5

    K. Stahl, i. Ymén, Acta Chem. Scand.,

    A 1983, 37, 729

  • Spin configuration of d4 – d7: It is possible that the low-spin (LS) state and the high-spin (HS) state compete with each other in the ground state.

    d6d5 d7d4

    P. Charpin, et al., J. Cryst.

    Spectrosc. Res., 1988, 18, 429.

    [Cr(II)I2(depe)2]

    D.M. Halepoto, et al., J. Chem. Soc.,

    Chem. Commun., 1989, 1322.

    many Fe(III)

    complexes

    many Fe(II)

    complexes

    [Co(II)(H2fsa2en)(py)2]

  • (1)P. L. Franke, et al. Inorganica Chimica Acta, 1982, 59, 5, (2) S. Decurtins et al. Chem. Phys. Lett. 1984, 105, 1.

    S = 0 S = 2

    T, P, hν

    LIESST

    S = 0 :low-spin state

    S = 2 : High-spin state

    [FeII(ptz)6](BF4)2

    Light Induced Excited Spin State Trapping (LIESST)

    N

    NN

    NPr

    Ptz =

    eg

    t2g

    Wave number (cm−1)

  • Near-infrared and visible absorption spectra of [Fe(ptz)6](BF4)2 at 10 K: (―) before

    light irradiation, (– – –) after irradiation with λ = 514.5 nm (300 mJ), (……) after

    subsequent irradiation with λ = 752.7 nm (≈3000 mJ).

    A. Hauser, Chem. Phys. Lett. 1986, 124, 543

    LIESST (Light Induced Excited Spin State Trapping)

    Colorless (HS state)

    Purple (LS state)

    Writing

    Delete

  • Mechanism of LIESST and Reverse-LIESST

    Tanabe-Sugano diagram Mechanism of LIESST and Reverse-LIESST

    A. Hauser, Chem. Phys. Lett. 1986, 124, 543Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn.1954, 9, 766.

  • Upper limit of LIESST

    Figure 1. 7. Spin-crossover transition temperature vs

    LIESST temperature. The lines represent the

    correlation between the spin-crossover transition and

    LIESST temperatures; T(LIESST) = T0-0.3T1/2.

    J. F. Létard et al., Chem. Phys. Lett. 1999, 313, 115. .

    ΔH T(LIESST)T1/2

    ΔE

    ΔE

  • Spin crossover transition of [FeII(R-trz)3]A2·nH2O

    N N

    N

    R

    1,2,4-R-triazole

    R = H, NH2, CnH2n+1,etc

    memory, display device

    cMT vs. T for [Fe(H-trz)2.85(NH2-trz)0.15](ClO4)2

    cooling

    heating

    J. Kröber, E. Codjovi, O. Kahn, F. Grolière, C. Jay: J. Am. Chem. Soc. 1993, 115, 9810.

  • Spin-transition polymers: From molecular materials toward memory devices

    O. Kahn, C. Jay Martinez, Science, 1998, 279, 44.

    Spin crossover transition of

    [FeII(NH2trz)3](NO3)1.7(BF4)0.3

    Principles of a display using a spin-

    transition polymer.

    bistability

    http://www.sciencemag.org/content/279/5347/44/F7.large.jpghttp://www.sciencemag.org/content/279/5347/44/F7.large.jpghttp://www.sciencemag.org/content/279/5347/44/F6.large.jpghttp://www.sciencemag.org/content/279/5347/44/F6.large.jpg

  • T = 300 K T = 77 K

    [FeII(Htrz)3]-Nafion®

    T1/2 = 260 K

    Nafion®

    SO3-

    [FeII(Htrz)3]

    A. Nakamoto, N. Kojima, et al., Chem.

    Lett. 2003, 32, 336.

    Development of Spin-crossover complex film

    A. Nakamoto, N. Kojima et al.,

    Polyhedron, 2005, 24, 2909.

    7

    6

    5

    4

    3

    2

    1

    0

    吸収強度

    86420距離(Å)

    FeII(NH2-trz)3-Nafionβ

    γI∝cos(γ+β)

    r (Ǻ)

    Inte

    nsity

    Fe-K edge EXAFS

    -[CF2-CF2]x-[CF-CF2]y-

    O-[CF2-CF-O]z-CF2-CF2-SO3H

    CF3Nafion 117

  • 023.0

    )(exp

    stnHS

    2

    25)(

    expst

    nHS

    (a)

    (b)

    X.J. Liu, Y. Moritomo, N. Kojima, et al. Phys. Rev. B, 2013, 67, 012102-1

    Photo-generated HS state of

    Nafion-[Fe(Htrz)3] filmLife time of photo-generated HS state

  • (a) weak excitation (b) strong excitation

    ○:LS ●:HS

    Condensed phase of photo-generated high-spin state

    X.J. Liu, Y. Moritomo, N. Kojima, et al. J. Phys. Soc. Jpn. 2003, 72, 1615.

  • Preparation of pH-sensitive spin-crossover

    complex film, [FeII(diAMsar)]-Nafion

    H. Kamebuchi, N. Kojima et al., Chem. Lett. 2011, 40, 888.

    Nafion 117

    pH 4 pH 7 pH 10

    Volume expansion due to the Coulomb

    repulsion between Fe2+ and NH3+

    Absence of the volume

    expansion

    High-spin state

    (S = 2; 5T2)

    Low-spin state

    (S = 0; 1A1)

  • Manipulating the spin state by applied voltage

    Coulomb repulsion

    Voltage: 20 V

    Current: ca.15 mA (average)

    Time: 60 min

    H. Kamebuchi: XXIV ICCBC, June 6, 17:10-17:20

  • Spin State of FeIIIO3S3

    FeIII(ox)3 FeIII(dto)3

    FeIII(mto)3

    FeIII

    Weak ligand field

    HS (S = 5/2)

    FeIII

    Strong ligand field

    LS (S = 1/2)

    FeIII

    Spin-Crossover?

    O

    O

    O

    O

    S

    O

    O

    O

    S

    S

    O

    O3

    3

    3

    HS (S = 5/2) LS (S = 1/2)

    t2g

    eg

    t2g

    eg

    t2g

    eg

    t2g

    eg

    hn

    P, T

    16

  • Slow spin-equilibrium at FeIIIS3O3(τ> 10−7 s)

    HS

    HSLS

    LS

    Tris(monothio-b-diketonato)iron( III)

    M. Cox, et al, J. Chem. Soc. Dalton trans, 1972, 1192.

    300 K

    80 K

    K. R. Kunze, et al, Inorg. Chem, 1977, 16, 594.

    Rapid spin-equilibrium at FeIIIS3O3(τ< 10−7 s)

    Tris(monothiocarbamato)iron( III)

    NS

    O

    C2H

    5

    C2H

    5 3

    FeIII

    296 K

    93 K

    Mössbauer spectra of Fe(Et2mtc)3

  • K. Kagesawa, N. Kojima, et al., Chem. Lett., 2010, 39, 872.

    X-band ESR

    -4 -3 -2 -1 0 1 2 3 4

    0.96

    0.98

    1.00

    Velocity [mm/s]

    0.96

    0.98

    1.00

    Rel

    ativ

    e T

    ransm

    issi

    on

    0.985

    0.990

    0.995

    1.000

    300 K

    200 K

    77 K

    57Fe Mössbauer spectra

    HS + LS

    Rapid spin-equilibrium of FeIII in (C6H5)4P[ZnIIFeIII(mto)3]

    100 200 300 400 500

    Inte

    nsi

    ty [

    a. u

    .]

    H [mT]

    LS state (g ≈ 4.25)

    HS state (g ≈ 2.05)

    ─ 300 K─ 77 K─ 10 K

    Rapid spin equilibrium

    (10-10 s < t < 10-7 s)

    (τ ≈ 10-10 s)(τ ≈ 10-7 s)

    HSLS

    egt2g

  • Spin state of (C6H5)4N[MnIIFeIII(mto)3](mto = C2O3S)

    O

    S

    O

    O S

    O

    S

    O

    O

    O

    S

    O

    O

    O

    O

    O

    O

    O

    O

    S

    FeIII MnII

    Effect of rapid spin

    equilibrium on the

    magnetic interaction

    between FeIII and MnII

    Rapid spin equilibrium

    HSLS

    Concerted phenomenon between the rapid spin

    equilibrium and the succeeding magnetic phase

    transitions for (Ph)4N[MnIIFeIII(mto)3].

  • Theoretical value

    FeIII (HS), MnII (HS)→ cT = 8.75 [emu K mol-1]

    FeIII (LS), MnII (HS)→ cT = 4.75 [emu K mol-1]Experimental value

    cT = 6.90 [emu K mol-1] (@400K)→spin equilibrium at FeIIIO3S3

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 100 200 300 400

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0 100 200 300 400

    FeIII (HS), MnII (HS)

    cT = 8.75 [emu K mol−1]

    FeIII (LS), MnII (HS)

    cT = 4.75 [emu K mol−1]

    cT

    [e

    mu K

    mol-

    1]

    T [K]

    c[e

    mu m

    ol-

    1]

    T [K]

    c[e

    mu m

    ol-

    1]

    T [K]

    0.042

    0.044

    0.046

    0.048

    0.05

    0.052

    0 20 40 60 80

    30 K

    23 K

    Two-dimensional Heisenberg-type

    antiferromagnetic interaction

    23 K

    30 K

    Magnetic properties of (C6H5)4P[MnIIFeIII(mto)3]

    magnetic ordering ?

    20

    Temperature dependence of magnetic susceptibility

    K. Kagesawa, Doctoral Thesis (Univ. Tokyo, 2011)

  • -10 -8 -6 -4 -2 0 2 4 6 8 100.90

    0.95

    1.00

    Velocity [mm s-1

    ]

    0.96

    0.98

    1.00

    0.90

    0.95

    1.00

    Rel

    ativ

    e T

    ran

    smis

    sio

    n 0.85

    0.90

    0.95

    1.00

    0.80

    0.85

    0.90

    0.95

    1.00

    57Fe Mössbauer spectra of (C6H5)4P[MnIIFeIII(mto)3]

    30 K

    24 K

    23 K

    22 K

    4.2 K

    0.95

    0.96

    0.97

    0.98

    0.99

    1

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    0.8

    0.85

    0.9

    0.95

    1

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    300 K

    200 K

    77 K

    HSLS

    Rapid spin equilibrium

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    Velocity (mm/s) Velocity (mm/s)

  • 0.92

    0.94

    0.96

    0.98

    1

    -10 -5 0 5 10

    0.95

    0.96

    0.97

    0.98

    0.99

    1

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    30 K

    22 K

    10 K

    Velocity [mm/s]

    Rel

    ativ

    e tr

    ansm

    issi

    on

    0 5 10 15 20 25 30 35 400

    2

    4

    6

    8

    10

    12

    14

    16

    M

    [cm

    3 m

    ol-1

    G]

    T [K]

    57Fe Mössbauer spectra

    ACχ

    FCM

    RM

    ZFCM

    Successive magnetic phase transitions in (C6H5)4P[MnIIFeIII(mto)3]

    K. Kagesawa, Doctoral Thesis (Univ. Tokyo, 2011)

  • Rapid Spin Equilibrium and Magnetic Ordering

    23 K 30 K

    Mn & Fe→ order

    Mn & Fe→ disorder

    Mn → orderFe → disorder

    T

    G

    0

    Multi-step magnetic phase transitions induced by rapid

    spin equilibrium in (C6H5)4P[MnIIFeIII(mto)3]

    MnII FeIII

    30 K 23 K

    Antiferro (inter layer) Antiferro (Mn-Fe)

    K. Kagesawa, Doctoral Thesis (Univ. Tokyo, 2011)

  • Crystal structure of (n-C3H7)4N[FeIIFeIII(dto)3]

    FeII

    FeIII

    S

    O

    (n-C3H7)4N+

    C18H28Fe2NO6S6Hexagonal P63 a = b = 10.0615(8) Å

    c = 16.0424(7) Å

    M. Itoi, M. Enomoto, N. Kojima, et al., Solid State Commn., 2004, 130, 415.

    Honeycomb structure

    a

    b

    0

    c

    Charge transfer phase transition in (n-C3H7)4N[FeIIFeIII(dto)3]

  • 57Fe Mössbauer spectra

    Charge transfer phase transition in(n-C3H7)4N[FeIIFeIII(dto)3]

    S

    FeIII

    S

    S

    S

    S

    S

    O

    FeII

    O

    O

    O

    O

    O

    S

    FeII

    SS

    S

    S

    S

    O

    FeIII

    OO

    O

    O

    O

    FeII (S = 2)FeIII (S = 1/2)

    FeII (S = 0)

    e-

    e-

    FeIII (S = 5/2)

    120 K

    N. Kojima, M. Seto, Yu. Maeda, et al., Solid State Commun. 2001, 120, 165.

    High Temperature Phase (HTP)S = R ln(2×5)

    Low Temperature Phase (LTP)S = R ln(1×6)

  • Mӧssbauer spectra of (n-CnH2n+1)4N[FeIIFeIII(dto)3](n = 3 - 6)

    n = 3,4: charge transfer phase transition (CTPT) n = 5,6: no CTPT

    A: FeIII(S = 1/2)

    B: FeII(S = 2)

    C: FeII(S = 0)

    D: FeIII(S = 5/2)N. Kojima, et al., Hyperfine Interactions, 2004, 156-157, 175.

    LTP HTP

  • FeII (S = 2)

    FeIII (S = 1/2)

    3.8 K

    FeII (S = 0)

    FeIII (S = 5/2)

    4.2 K

    FeII (S = 0) FeIII (S = 5/2) FeIII (S = 1/2) FeII (S = 2)

    57Fe Mӧssbauer spectra in the ferromagnetic phase of

    (n-CnH2n+1)4N[FeIIFeIII(dto)3](n = 3, 5)

    n = 3 n = 5

  • ●:fcm

    ■:rm

    ▲:zfcm

    H = 30 G

    n = 4n = 3

    n = 5 n = 6

    Ferromagnetism of (n-CnH2n+1)4N[FeIIFeIII(dto)3]

  • (SP)[FeIIFeIII(dto)3]

    Photochromic spiropyran (SP)

    Cation

    Iron mixed valence complex with

    [FeIIFeIII(dto)3]−

    ∞ 2D- honeycomb layers

    Anion SOO S

    S

    OO

    S

    S

    OO

    S

    Fe3+

    SO

    O S

    S

    OO

    S

    S

    OO

    S

    Fe3+

    S

    OO

    S

    SO

    O S

    S

    OO

    S

    S

    OO

    S

    Fe3+

    SO

    O S

    S

    OO

    S

    Fe2+

    Fe2+

    Fe2+

    ・Reversible photo-isomerization

    ・Long life time in solids

    (several days in r.t.)

    ・Charge tarnsfer phase transition

    ・Ferromagnetic transition

    UVN

    ON+

    I- I

    Nd+

    N

    Od-

    +-

    Vis or D

    N. Kida, N. Kojima, et al., J. Am. Chem. Soc., 2009, 131, 212.

    Organic-inorganic hybrid system with photochromic cation

  • Photo-isomerization of spiropyran in (SP)[FeIIFeIII(dto)3]

    300 KUV (350 nm) irradiation After UV, Vis. (550 nm) irradiation

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0800700600500400300

    UV 60 minvis 10 minvis 30 min

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Ab

    sorb

    ance

    800700600500400300

    UV 60 minUV 30 minUV 20 minUV 10 minUV 0 min

    N. Kida, N. Kojima, et al., J. Am. Chem. Soc., 2009, 131, 212.

    Photoinduced effect on the ferromagnetism

    T (K)T (K)

    N

    ON+

    I-

    I

    Nd+

    N

    Od-

    +-

    UVVis or D

    LTP HTP

    Photo-isomerization of SP

  • 1.00

    0.95

    0.90

    0.85

    0.801050-5-10

    1.00

    0.98

    0.96

    0.94

    0.92

    0.90

    1050-5-10

    6 K 6 K

    HTP

    HTP

    LTPFeIII (S = 5/2)

    FeIII (S = 1/2)

    FeII (S = 0) FeIII (S = 1/2)FeII (S = 2)

    FeII (S = 2)

    UV

    I

    Nd+

    N

    Od-

    +-

    N

    O

    N+

    I-

    Closed form Open form

    Velocity (mm/s)Velocity (mm/s)

    N. Kida, N. Kojima, et al., Polyhedron, 2009, 28, 1694.

    Tra

    nsm

    issi

    on (

    a.u.)

    Tra

    nsm

    issi

    on (

    a.u.)

    Expansion of the unit cell volume

    due to the photo-isomerization of SP

    Before UV irradiationAfter UV irradiation

    UV

    Disappearance of LTP under UV irradiation

  • Schematic diagram of spin states transition by photo-irradiation

    T / K75

    HTP(A)

    HTP(B)

    LTP(A)

    HTP(B)

    B phase

    A phase

    B phase

    hν hν

    A phase Thermal charge transfer occurs

    B phase No thermal charge transfer phase transition

    black

    deep purple

    UVVis.

    or D

    KBr pellet

    5 22

    Ferromagnetic phase

    charge transfer phase transition

    TC shifts from 5 to 22 K by UV irradiation

  • Photoinduced charge transfer phase transition at 70 K

    Me N

    O

    N

    Me N

    O

    N

    Me N

    O

    N

    Me N

    O

    N

    SP type

    Me N

    δ+

    NO

    δ-

    Me N

    δ+

    NO

    δ-

    Me N

    δ+

    NO

    δ-

    Me N

    δ+

    NO

    δ-

    e-

    High TC (22 K) ferromagnetismLow TC (5 K) ferromagnetism

    e- e- e-

    hν1

    hν2

    LTP HTP

    FeIII (S = 5/2)FeII (S = 0)

    FeII (S = 2)

    FeIII (S = 1/2)

    MC type

    N. KIda, et al., J. Am. Chem. Soc., 2009, 131, 212.

  • Structure of rhodopsin

    cis-trans photoisomerization of retinal

    Photo-isomerization of retinal in visual cell

    cone

    rod

    light

    retinal

    http://www.kiriya-chem.co.jp/q&a/q52.html

  • Summary

    (1)Development of transparent spin crossover complex film, [Fe(Htrz)3]-Nafion

    and observation of LIESST

    (2) Development of pH sensitive spin crossover complex film, [FeII(diAMsar)]-

    Nafion and the direct observation of proton flow in Nafion

    (3) Concerted phenomenon between the rapid spin equilibrium and the

    successive magnetic phase transitions for (n-CnH2n+1)4N[MnIIFeIII(mto)3]

    (mto = C2O3S)

    (4) Charge transfer phase transition (CTPT) for iron mixed- valence complex,

    (CnH2n+1)4N[FeIIFeIII(dto)3] (dto = C2O2S2)

    (5) Concerted phenomenon between the photo-isomerization and charge

    transfer phase transition in a photo-reactive organic-inorganic hybrid

    complex, (SP)[FeIIFeIII(dto)3](SP = Spiropyran)