48
Fermions and Bosons From the Pauli principle to Bose-Einstein condensate

Fermions and Bosons From the Pauli principle to Bose-Einstein condensate

Embed Size (px)

Citation preview

Fermions and Bosons

From the Pauli principle to Bose-Einstein

condensate

18.10.2006 Udo Benedikt2

Structure

Basics One particle in a box Two particles in a box Pauli principle Quantum statistics Bose-Einstein condensate

18.10.2006 Udo Benedikt3

Basics

Quantum Mechanics

Observable: property of a system (measurable)

Operator: mathematic operation on function

Wave function: describes a system

Eigenvalue equation: unites operator, wave function and observable

18.10.2006 Udo Benedikt4

Basics

HΨ EΨ

Schrödinger equation

Hamilton operator Wave function Energy (observable)

Example for an eigenvalue equation:

The wave function Ψ itself has no physical importance,but the probability density of the particle is given by |Ψ|².

18.10.2006 Udo Benedikt5

Basics

P

1 2 2 1 1 2PΨ x ,x Ψ x ,x εΨ x ,x

ε 1

Operator : interchanges two particles in wave function

ε = -1 antisymmetric wave function Fermions

ε = 1 symmetric wave function Bosons

Generally: |Ψ(x1,x2)|2 = |Ψ(x2,x1)|2

18.10.2006 Udo Benedikt6

One particle in a box

Postulates:

• Length of the box is 1• Box is limited by infinite potential walls particle cannot be outside the box or on the walls

18.10.2006 Udo Benedikt7

One particle in a box

HΨ x EΨ xSchrödinger equation

clever mathematics

Solution

Ψ x 2 sin n π x

18.10.2006 Udo Benedikt8

One particle in a box

For n = 1: Ψ x 2 sin π x

x

Ψ(x)

x

|Ψ(x)|²

18.10.2006 Udo Benedikt9

One particle in a box

For n = 2: Ψ x 2 sin 2 π x

x

Ψ(x)

x

|Ψ(x)|²

18.10.2006 Udo Benedikt10

Two distinguishable particles in a box

Postulates:

• Distinguishable particles• Box length = 1• Infinite potential walls• Particles do not interact with each other

18.10.2006 Udo Benedikt11

Two distinguishable particles in a box

1 2 1 1 2 2Ψ x ,x x x

Wanted! Dead or alive

Wave function for the system

Suggestion

Hartree product

Product of “one-particle-solutions”

18.10.2006 Udo Benedikt12

Two distinguishable particles in a box

For particle 1: n = 1

1 1 1x 2 sin π xFor particle 2: n = 2

2 2 2x 2 sin 2 π x

18.10.2006 Udo Benedikt13

Two distinguishable particles in a box

1 2 1 2Ψ x ,x =2 sin x π sin 2 π x

x1

x2

1 2 1 1 2 2Ψ x ,x x x

Particles do not influence each other

18.10.2006 Udo Benedikt14

Two distinguishable particles in a box

18.10.2006 Udo Benedikt15

Two distinguishable particles in a box

Probability density |Ψ|²

18.10.2006 Udo Benedikt16

Two fermions in a box

Postulates:

• Indistinguishable fermions• Box length = 1• Infinite potential walls• Antisymmetric wave function

18.10.2006 Udo Benedikt17

Two fermions in a box

1 2 1 1 2 2 1 2 2 1ψ x ,x x x x x

Fermions: Ψ(x1,x2) = - Ψ(x2,x1)

For Fermions: antisymmetric product of “one-particle-solutions”

1 2 2 1 1 2 2 1 1 1 2 2

1 2

PΨ x ,x Ψ x ,x x x x x

Ψ x ,x

18.10.2006 Udo Benedikt18

Two fermions in a box

For fermion 1: n = 1 1 1 1x 2 sin π x

For fermion 2: n = 2

2 2 2x 2 sin 2 π x 1 2 1 1 2 2f x ,x x x

18.10.2006 Udo Benedikt19

Two fermions in a box

1 2 1 2 2 1f x ,x x x

For fermion 1: n = 2

1 2 2x 2 sin π x For fermion 2: n = 1

2 1 1x 2 sin 2 π x

18.10.2006 Udo Benedikt20

Two fermions in a box

1 2 1 1 2 2 1 2 2 1ψ x ,x x x x x

18.10.2006 Udo Benedikt21

Two fermions in a box

“Pauli-repulsion”

0.70.3

nodal plane

18.10.2006 Udo Benedikt22

Two fermions in a box

18.10.2006 Udo Benedikt23

Two fermions in a box

Probability density |Ψ|²

18.10.2006 Udo Benedikt24

Two bosons in a box

Postulates:

• Indistinguishable bosons• Box length = 1• Infinite potential walls• Symmetric wave function

18.10.2006 Udo Benedikt25

Two bosons in a box

1 2 1 1 2 2 1 2 2 1ψ x ,x x x x x

Bosons: Ψ(x1,x2) = Ψ(x2,x1)

For Bosons: symmetric product of “one-particle-solutions”

1 2 2 1 1 2 2 1 1 1 2 2

1 2

PΨ x ,x Ψ x ,x x x x x

Ψ x ,x

18.10.2006 Udo Benedikt26

Two bosons in a box

For boson 1: n = 1 1 1 1x 2 sin π x

For boson 2: n = 2

2 2 2x 2 sin 2 π x 1 2 1 1 2 2f x ,x x x

18.10.2006 Udo Benedikt27

Two bosons in a box

1 2 1 2 2 1f x ,x x x

For boson 1: n = 2

1 2 2x 2 sin π x For boson 2: n = 1

2 1 1x 2 sin 2 π x

18.10.2006 Udo Benedikt28

Two bosons in a box

1 2 1 1 2 2 1 2 2 1ψ x ,x x x x x

18.10.2006 Udo Benedikt29

Two bosons in a box

0.3

nodal plane

bosons “stick together”

18.10.2006 Udo Benedikt30

Two bosons in a box

18.10.2006 Udo Benedikt31

Two bosons in a box

Probability density |Ψ|²

18.10.2006 Udo Benedikt32

Pauli principle

The total wave function must be antisymmetric under the interchange of any pair of identical fermions andsymmetrical under the interchange of any pair of identical bosons.

1 1 1 1 2 1 1 1 2 1ψ x ,x x x x x 0 Fermions:

No two fermions can occupy the same state.

18.10.2006 Udo Benedikt33

Quantum statistics

1

iFDf exp 1

kT

Generally: Describes probabilities of occupation of different quantum states

Fermi-Dirac statistic Bose-Einstein statistic

1

iBEf exp 1

kT

18.10.2006 Udo Benedikt34

Quantum statistics

For T 0 K

Fermi-Dirac statistic

Bose-Einstein statistic

• Even now excited states are occupied

• Highest occupied state Fermi energy εF

• fFD(ε < εF) = 1 and fFD(ε > εF) = 0

Electron gas

• Bose-Einstein condensate

1

1 ε/εF

fFD T = 0 K

T > 0 K

18.10.2006 Udo Benedikt35

Quantum statistics

For high temperatures both statistics merge into Maxwell-Boltzmann statistic

18.10.2006 Udo Benedikt36

Bose-Einstein condensate (BEC)

What is it?

• Extreme aggregate state of a system of indistinguishable particles, that are all in the same state bosons

• Macroscopic quantum objects in which the individual atoms are completely delocalized

• Same probability density everywhere

One wave function for the whole system

18.10.2006 Udo Benedikt37

Bose-Einstein condensate (BEC)

Who discovered it?

• Theoretically predicted by Satyendra Nath Bose and Albert Einstein in 1924

• First practical realizations by Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman in 1995 condensation of a gas of rubidium and sodium atoms

• 2001 these three scientists were awarded with the Nobel price in physics

18.10.2006 Udo Benedikt38

Bose-Einstein condensate (BEC)

How does it work?

• Condensation occurs when a critical density is reached

Trapping and chilling of bosons

Wavelength of the wave packages becomes bigger so that they can overlap condensation starts

18.10.2006 Udo Benedikt39

Bose-Einstein condensate (BEC)

How to get it?

• Laser cooling until T ~ 100 μK particles are slowed down to several cm/s

• Particles caught in magnetic trap

• Further chilling through evaporative cooling until T ~ 50 nK

18.10.2006 Udo Benedikt40

Bose-Einstein condensate (BEC)

What effects can be found?

• Superfluidity

• Superconductivity

• Coherence (interference experiments, atom laser)

Over macroscopic distances

18.10.2006 Udo Benedikt41

Bose-Einstein condensate (BEC)

Atom laser

controlled decoupling of a partof the matter wave from the

condensate in the trap

18.10.2006 Udo Benedikt42

Bose-Einstein condensate (BEC)

Atom laser

controlled decoupling of a partof the matter wave from the

condensate in the trap

18.10.2006 Udo Benedikt43

Bose-Einstein condensate (BEC)

Two trapped condensates and their ballistic expansion after the magnetictrap has been turned off

The two condensates overlap interference

Two expanding condensates

18.10.2006 Udo Benedikt44

Bose-Einstein condensate (BEC)

Superconductivity

Electric conductivitywithout resistance

18.10.2006 Udo Benedikt45

Bose-Einstein condensate (BEC)

Superfluidity

Superfluid Helium runsout of a bottle fountain

18.10.2006 Udo Benedikt46

Literature

[1] Bransden,B.H., Joachain,C.J., Quantum Mechanics, 2nd edition, Prentice-Hall, Harlow,England, 2000

[2] Atkins,P.W., Friedman,R.S., Molecular Quantum Mechanics, 3rd edition, Oxford University Press, Oxford, 1997

[3] Göpel,W., Wiemhöfer,H.D., Statistische Thermodynamik, Spektum Akademischer Verlag, Heidelberg,Berlin, 2000

[4] Bammel,K., Faszination Physik, Spektum Akademischer Verlag, Heidelberg,Berlin, 2004

[5] http://cua.mit.edu/ketterle_group/Projects_1997/Projects97.htm

[6] http://www.colorado.edu/physics/2000/bec/index.html

[7] http://www.mpq.mpg.de/atomlaser/index.html

[8] Udo Benedikt, Vorlesungsmitschrift: Theoretische Chemie, 2005

18.10.2006 Udo Benedikt47

Thanks

Dr. Alexander Auer

Annemarie Magerl

18.10.2006 Udo Benedikt48

Thanks for your attention