FEM Chapter 8

Embed Size (px)

Citation preview

  • 8/9/2019 FEM Chapter 8

    1/33

    Finite Element Method 

    Chapter 8

    Development of the Linear-Strain

    Triangle Equations

  • 8/9/2019 FEM Chapter 8

    2/33

    Stiffness Matrix of the Constant-Strain Triangular Element

    Step 1: Discretize and Select Element Type

  • 8/9/2019 FEM Chapter 8

    3/33

    Step 2: Select Displacement Functions

    21211

    210987

    2

    65

    2

    4321

    ),(

    ),(

     ya y xa xa ya xaa y xv

     ya y xa xa ya xaa y xu

    T vuvuvuvuvuvud  665544332211}{  

  • 8/9/2019 FEM Chapter 8

    4/33

    Step 2: Select Displacement Functions

    12

    2

    1

    22

    22

    1000000

    0000001

    }{

    a

    a

    a

     y xy x y x

     y xy x y x

    v

    u

     

    }{][}{   * a M  

  • 8/9/2019 FEM Chapter 8

    5/33

    In Matrix Form

    Solving for the a’ s

    12

    7

    6

    1

    2666

    2666

    2111

    2111

    2666

    2666

    2111

    2111

    6

    1

    6

    1

    1000000

    1000000

    0000001

    0000001

    a

    a

    a

    a

     y y x x y x

     y y x x y x

     y y x x y x

     y y x x y x

    v

    v

    u

    u

     

    6

    1

    6

    1

    1

    2666

    2666

    2111

    2111

    2

    666

    2

    666

    2111

    2111

    12

    7

    6

    1

    1000000

    10000000000001

    0000001

    v

    v

    u

    u

     y y x x y x

     y y x x y x y y x x y x

     y y x x y x

    a

    a

    a

    a

  • 8/9/2019 FEM Chapter 8

    6/33

    }{][}{  1

    d  X a 

    * 1{ } [ ][ ] { }

    [ ]{ }

     X d 

     N d 

       

    1

    1

    1 2 3 4 5 6

    1 2 3 4 5 6

    6

    6

    0 0 0 0 0 0( , ){ } 0

    0 0 0 0 0 0( , )

    u

    v

     N N N N N N u x y

     N N N N N N v x yu

    v

     

     

       

    6

    1

    6

    1

    { }

    i i

    i

    i i

    i

     N u

     N v

      

     

  • 8/9/2019 FEM Chapter 8

    7/33

     x

    v

     y

    u

     y

    v

     xu

     y x

     y

     x

     

     

     

     }{

    Step 3: Define the Strain/Displacement and Stress/Strain Relationships

    1

    2

    12

    0 1 0 2 0 0 0 0 0 0 0

    { } 0 0 0 0 0 0 0 0 1 0 2

    0 0 1 0 2 0 1 0 2 0

    a x y

    a x y

     x y x y a

     

     

     

    12

    2

    1

    22

    22

    1000000

    0000001}{

    a

    a

    a

     y xy x y x

     y xy x y x

    v

    u

     

    Since

    Then

  • 8/9/2019 FEM Chapter 8

    8/33

    665544332211

    654321

    654321

    000000

    000000

    2

    1][

                      

          

                

     A B

      ' 1[ ]{ } B d 

     B M X 

     

    where the b’s and  ’s are now functions of x and y as well as of the nodal coordinates 

    1

    { } '

    { } [ ] { }

    a

    a X d 

     

    The B matrix is illustrated for a specific linear-strain triangle in the next example 

  • 8/9/2019 FEM Chapter 8

    9/33

    Stress Strain Relationship

     y x

     y

     x

     y x

     y

     x

     D

     

     

     

     

     

     

    ][

    }{][][}{   d  B D 

  • 8/9/2019 FEM Chapter 8

    10/33

    2

    100

    01

    01

    1][ 2

     

     

     

     

     E  D

    2

    2100

    01

    01

    )21()1(][

     

      

      

      

     E  D

    For Plane Strain Problems

    For Plane Stress Problems

  • 8/9/2019 FEM Chapter 8

    11/33

    Step 4 :Derive the Element Stiffness Matrix and Equations

    ),,,,,( mm j jii p p   vuvuvu    

     psb

     p

     

    Total potential energy is defined as the sum of the internal

    strain energy U and the potential energy of the external

    forces Ω, that is:

    For linear-elastic material, the internal strain energy is given by

    T  dV U    }{}{21   

    T dV  DU    }{][}{

    2

    1   

  • 8/9/2019 FEM Chapter 8

    12/33

    The potential energy of the body forces:

    V T 

    b   dV  X }{}{ 

    The potential energy of distributed loads or surface traction

    S T s   dS T }{}{ 

    }{}{   Pd   T  p  

    The potential energy of concentrated loads

    Step 4 :Derive the Element Stiffness Matrix and Equations

  • 8/9/2019 FEM Chapter 8

    13/33

    Step 4 :Derive the Element Stiffness Matrix and Equations

    V T 

    V d  B D Bk    ][][][][

  • 8/9/2019 FEM Chapter 8

    14/33

    The last three terms in equation represent the total load system or the

    energy equivalent nodal forces on an element;

    }{}{][}{][}{   PdS T  N dV  X  N  f 

    Concentrated

    nodal forces Body

    forces Surface

    Tractions 

    }{}{}{][][][}{21  f d d V d  B D Bd 

      T 

    T T  p  

     

    Step 4 :Derive the Element Stiffness Matrix and Equations

  • 8/9/2019 FEM Chapter 8

    15/33

    T V d  B D Bk    ][][][][

     A

    T dydx B D Bt k    ][][][][

    For an element with constant thickness t

    Step 4 :Derive the Element Stiffness Matrix and Equations

  • 8/9/2019 FEM Chapter 8

    16/33

    Step 5:  Assemble the Element Equations to Obtain the GlobalEquations and Introduce Boundary Conditions

     N 

    e

    ek K 

    1

    )( ][][

    }{][}{   d K F   

     N 

    e

    e f F 

    1

    )( ][][

    Step 6: Solve for the Nodal Displacements

    Step 7: Solve for the Element Stresses

  • 8/9/2019 FEM Chapter 8

    17/33

    Example: LST Stiffness Determination

    Consider the following example.. The triangle is of base dimension b and

    height h , with midside nodes.

  • 8/9/2019 FEM Chapter 8

    18/33

    Example: LST Stiffness Determination

    2 21 2 3 4 5 6( , )u x y a a x a y a x a x y a y

    Using the first six equations we calculate the coefficients a 1 through a 6  by

    evaluating the displacement u at each of the six known coordinates of each node

    as follows:

  • 8/9/2019 FEM Chapter 8

    19/33

    Example: LST Stiffness Determination

    Solving the previous equations simultaneously for the a i  , w e obtain

    Substituting into the following equation

    2 2

    1 2 3 4 5 6( , )u x y a a x a y a x a x y a y

  • 8/9/2019 FEM Chapter 8

    20/33

    Example: LST Stiffness Determination

    Similarly, solving for a 7  through a 1 2 bye valuating the displacement v at

    each of the six nodes, we obtain

    where the shape functions are obtained by collecting coefficients that

    multiply each u i  term in previous equation.

    For instance, collecting all terms that multiply by u1, we obtain N1.

    We can express the general displacement expressions in terms of the shape

    functions as:

  • 8/9/2019 FEM Chapter 8

    21/33

    Example: LST Stiffness Determination

    These shape functions are then given by:

  • 8/9/2019 FEM Chapter 8

    22/33

    Example: LST Stiffness Determination

    6

    1

    6

    1

    { }

    i i

    i

    i i

    i

     N u

    uv

     N v

       

       

     x

    v

     y

    u

     yv

     x

    u

     y x

     y

     x

     

     

     

     }{

      [ ]{ } B d    

    Since:

    665544332211

    654321

    654321

    000000000000

    2

    1][

                      

                      

     A B

  • 8/9/2019 FEM Chapter 8

    23/33

    Example1

    Performing the differentiations indicated on u and v, we obtain

    2 2

    1   2

    1   2

    1

    2

    1

    3 3 2 4 21

    3 4 4 4

    2 3 4

     x y x x y y N 

    b h b bh h

     N x y h

    as an Exa

     x

     A bh

    mple

    h y x b b bh b  

      

       

    1 2

    3 4

    5 6

    1 2

    3 1

    5 6

    4 43 4

    0 4

    84 4 4

    43 4 0

    44

    84 4 4

    hx hxh y hb b

     y

    hx y h y

    b

    byb x

    h

    byb x

    h

    byb x xh

       

       

       

     

     

     

  • 8/9/2019 FEM Chapter 8

    24/33

    Example: LST Stiffness Determination

    These ’s and ’s are specific to the element in this example,

    using calculus to set up the appropriate integration. The explicit expression forthe 12 x 12 stiffness matrix, being extremely cumbersome to obtain, is not given

    here.

     A

    T dydx B D Bt k    ][][][][

    We can use numerical Integration to evaluate this integration as in Chapter 10

    1 1 2 2 3 3 4 4 5 5 6 6

    1 1 2 2 3 3 4 4 5 5 6 6

    1 1 1 1 6 6 6 6

    1

    2

    1

    2

    1

    2

     x

     y

     x y

    u u u u u u A

    v v v v v v A

    u v u v

     

     

     

  • 8/9/2019 FEM Chapter 8

    25/33

    Comparison of ElementsFor a given number of nodes, a better representation of true stress and

    displacement is Generally obtained using the LST element than is obtained

    with the same number of nodes using a much finer subdivision into simpleCST elements.

    For example, using one LST yields better results than using four CST

    elements with the same number of nodes and hence the same number of

    degrees of freedom

  • 8/9/2019 FEM Chapter 8

    26/33

    Comparison of ElementsConsider the cantilever beam subjected to a parabolic load.

    E=30x10 6  psi and  =0.25 

  • 8/9/2019 FEM Chapter 8

    27/33

    Comparison of Elements

  • 8/9/2019 FEM Chapter 8

    28/33

    Comparison of Elements

  • 8/9/2019 FEM Chapter 8

    29/33

    Comparison of Elements

  • 8/9/2019 FEM Chapter 8

    30/33

  • 8/9/2019 FEM Chapter 8

    31/33

    Summary of equations using LST elements:

    }{][}{   d k  f   

    1) For each element, we find

    1a) Element sti ffness matrix:

     A

    T dydx B D Bt k    ][][][][

    1 b) Element nodal force vector 

    }{}{][}{][}{   PdS T  N dV  X  N  f 

  • 8/9/2019 FEM Chapter 8

    32/33

    Summary of equations using CST elements:

    2) Assemble

     N 

    e

    ek K 

    1

    )( ][][

     N 

    e

    e f F 

    1

    )( ][][

    }{][}{   d K F    3) Solve for global nodal displacements

    4) Find element strains and stresses

    }{][}{   d  B 

    }{][][}{   d  B D 

  • 8/9/2019 FEM Chapter 8

    33/33

    HW:

    8.3, 8.4 and 8.5