301
Feebly compact space From Wikipedia, the free encyclopedia

Feebly Compact Space

  • Upload
    man

  • View
    241

  • Download
    8

Embed Size (px)

DESCRIPTION

1. From Wikipedia, the free encyclopedia2. Lexicographical order

Citation preview

  • Feebly compact spaceFrom Wikipedia, the free encyclopedia

  • Contents

    1 a-paracompact space 11.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2 Binary relation 22.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2.1.1 Is a relation more than its graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.2 Special types of binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2.1 Difunctional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.3 Relations over a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.4 Operations on binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.4.1 Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4.2 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4.3 Algebras, categories, and rewriting systems . . . . . . . . . . . . . . . . . . . . . . . . . 8

    2.5 Sets versus classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.6 The number of binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.7 Examples of common binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.8 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.11 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3 Closed set 123.1 Equivalent denitions of a closed set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 Properties of closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.3 Examples of closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.4 More about closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    4 Closure (topology) 144.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    4.1.1 Point of closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    i

  • ii CONTENTS

    4.1.2 Limit point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144.1.3 Closure of a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.3 Closure operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.4 Facts about closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.5 Categorical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.9 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    5 Compact operator 185.1 Equivalent formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185.2 Important properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185.3 Origins in integral equation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.4 Compact operator on Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.5 Completely continuous operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    6 Compact space 226.1 Historical development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236.2 Basic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246.3 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    6.3.1 Open cover denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246.3.2 Equivalent denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256.3.3 Compactness of subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    6.4 Properties of compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266.4.1 Functions and compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266.4.2 Compact spaces and set operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266.4.3 Ordered compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276.5.1 Algebraic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    6.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296.9 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    7 Compactly embedded 317.1 Denition (topological spaces) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

  • CONTENTS iii

    7.2 Denition (normed spaces) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    8 Cover (topology) 328.1 Cover in topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328.2 Renement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328.3 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338.4 Covering dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    9 Euclidean space 359.1 Intuitive overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359.2 Euclidean structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    9.2.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379.2.2 Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389.2.3 Rotations and reections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389.2.4 Euclidean group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    9.3 Non-Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409.4 Geometric shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    9.4.1 Lines, planes, and other subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419.4.2 Line segments and triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429.4.3 Polytopes and root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439.4.4 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439.4.5 Balls, spheres, and hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    9.5 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449.7 Alternatives and generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    9.7.1 Curved spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449.7.2 Indenite quadratic form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449.7.3 Other number elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.7.4 Innite dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    9.8 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.9 Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.11 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    10 Exhaustion by compact sets 4610.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4610.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

  • iv CONTENTS

    10.3 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    11 Feebly compact space 47

    12 Functional analysis 4812.1 Normed vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    12.1.1 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4912.1.2 Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    12.2 Major and foundational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4912.2.1 Uniform boundedness principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5012.2.2 Spectral theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5012.2.3 Hahn-Banach theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5012.2.4 Open mapping theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5112.2.5 Closed graph theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5112.2.6 Other topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    12.3 Foundations of mathematics considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5112.4 Points of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5112.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5212.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5212.7 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5212.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    13 Glossary of topology 5413.1 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5513.2 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5613.3 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5613.4 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5813.5 E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5813.6 F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5813.7 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5913.8 H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5913.9 I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6013.10K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6013.11L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6113.12M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6113.13N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6213.14O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6313.15P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6313.16Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6413.17R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6513.18S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6513.19T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

  • CONTENTS v

    13.20U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6713.21W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6813.22Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6813.23References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6813.24External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    14 H-closed space 7014.1 Examples and equivalent formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7014.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7014.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    15 Hasse diagram 7115.1 A good Hasse diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7215.2 Upward planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7215.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7215.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7315.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    16 Hausdor space 7516.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7516.2 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7616.3 Examples and counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7616.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7616.5 Preregularity versus regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7716.6 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7716.7 Algebra of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7816.8 Academic humour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7816.9 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7816.10Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7816.11References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    17 Hemicompact space 7917.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7917.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7917.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7917.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    18 Interior (topology) 8118.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    18.1.1 Interior point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8218.1.2 Interior of a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    18.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8218.3 Interior operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

  • vi CONTENTS

    18.4 Exterior of a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8318.5 Interior-disjoint shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8418.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8418.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8418.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    19 k-cell (mathematics) 8619.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8619.2 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8619.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    20 Lebesgue covering dimension 8820.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8820.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8820.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8820.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8920.5 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    20.5.1 Historical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8920.5.2 Modern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    20.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8920.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    21 Limit point compact 9021.1 Properties and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9021.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9021.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9121.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    22 Lindelf space 9222.1 Properties of Lindelf spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9222.2 Properties of strongly Lindelf spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9222.3 Product of Lindelf spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9222.4 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9322.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9322.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9322.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    23 Locally compact space 9423.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9423.2 Examples and counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    23.2.1 Compact Hausdor spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9523.2.2 Locally compact Hausdor spaces that are not compact . . . . . . . . . . . . . . . . . . . 9523.2.3 Hausdor spaces that are not locally compact . . . . . . . . . . . . . . . . . . . . . . . . 95

  • CONTENTS vii

    23.2.4 Non-Hausdor examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9623.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    23.3.1 The point at innity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9623.3.2 Locally compact groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    23.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9723.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    24 Locally nite 98

    25 Locally nite collection 9925.1 Examples and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    25.1.1 Compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9925.1.2 Second countable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    25.2 Closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10025.3 Countably locally nite collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10025.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    26 Locally nite space 10126.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    27 Manifold 10227.1 Motivational examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    27.1.1 Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10327.1.2 Other curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10627.1.3 Enriched circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    27.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10727.2.1 Early development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10727.2.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10827.2.3 Poincar's denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10827.2.4 Topology of manifolds: highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    27.3 Mathematical denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10927.3.1 Broad denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    27.4 Charts, atlases, and transition maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11027.4.1 Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11027.4.2 Atlases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11027.4.3 Transition maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11027.4.4 Additional structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    27.5 Manifold with boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11127.5.1 Boundary and interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    27.6 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11127.6.1 Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11127.6.2 Patchwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11227.6.3 Identifying points of a manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

  • viii CONTENTS

    27.6.4 Gluing along boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11327.6.5 Cartesian products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    27.7 Manifolds with additional structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11327.7.1 Topological manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11327.7.2 Dierentiable manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11427.7.3 Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11427.7.4 Finsler manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11527.7.5 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11527.7.6 Other types of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    27.8 Classication and invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11527.9 Examples of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    27.9.1 Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11627.9.2 Genus and the Euler characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    27.10Maps of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11727.10.1 Scalar-valued functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    27.11Generalizations of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11827.12See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    27.12.1 By dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11927.13Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11927.14References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12027.15External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    28 Mathematical analysis 12728.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12828.2 Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    28.2.1 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12928.2.2 Sequences and limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    28.3 Main branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13028.3.1 Real analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13028.3.2 Complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13028.3.3 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13028.3.4 Dierential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13028.3.5 Measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13128.3.6 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    28.4 Other topics in mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13128.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    28.5.1 Physical sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13228.5.2 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13228.5.3 Other areas of mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    28.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13228.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13328.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

  • CONTENTS ix

    28.9 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    29 Mesocompact space 13529.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13529.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    30 Metacompact space 13630.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13630.2 Covering dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13630.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13630.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    31 Metric space 13831.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13831.2 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13831.3 Examples of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13931.4 Open and closed sets, topology and convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 14031.5 Types of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    31.5.1 Complete spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14031.5.2 Bounded and totally bounded spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14131.5.3 Compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14231.5.4 Locally compact and proper spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14231.5.5 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14231.5.6 Separable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    31.6 Types of maps between metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14231.6.1 Continuous maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14331.6.2 Uniformly continuous maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14331.6.3 Lipschitz-continuous maps and contractions . . . . . . . . . . . . . . . . . . . . . . . . . 14331.6.4 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14431.6.5 Quasi-isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    31.7 Notions of metric space equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14431.8 Topological properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14431.9 Distance between points and sets; Hausdor distance and Gromov metric . . . . . . . . . . . . . . 14531.10Product metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    31.10.1 Continuity of distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14531.11Quotient metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14631.12Generalizations of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    31.12.1 Metric spaces as enriched categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14631.13See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14731.14Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14731.15References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14831.16External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

  • x CONTENTS

    32 Metrization theorem 14932.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14932.2 Metrization theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14932.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15032.4 Examples of non-metrizable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15032.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15032.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    33 Normal space 15133.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15133.2 Examples of normal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15233.3 Examples of non-normal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15233.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15333.5 Relationships to other separation axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15333.6 Citations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15333.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    34 Open set 15434.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15534.2 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    34.2.1 Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15634.2.2 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15634.2.3 Topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

    34.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15634.4 Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15634.5 Notes and cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    34.5.1 Open is dened relative to a particular topology . . . . . . . . . . . . . . . . . . . . . . 15734.5.2 Open and closed are not mutually exclusive . . . . . . . . . . . . . . . . . . . . . . . . . 157

    34.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15734.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15734.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    35 Order theory 15935.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15935.2 Basic denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    35.2.1 Partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16035.2.2 Visualizing a poset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16035.2.3 Special elements within an order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16035.2.4 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16235.2.5 Constructing new orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    35.3 Functions between orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16235.4 Special types of orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

  • CONTENTS xi

    35.5 Subsets of ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16435.6 Related mathematical areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    35.6.1 Universal algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16435.6.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16435.6.3 Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    35.7 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16535.8 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16535.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16535.10References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16535.11External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    36 Orthocompact space 16736.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

    37 Paracompact space 16837.1 Paracompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16837.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16837.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16937.4 Paracompact Hausdor Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    37.4.1 Partitions of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17037.5 Relationship with compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

    37.5.1 Comparison of properties with compactness . . . . . . . . . . . . . . . . . . . . . . . . . 17137.6 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

    37.6.1 Denition of relevant terms for the variations . . . . . . . . . . . . . . . . . . . . . . . . . 17237.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17237.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17237.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17337.10External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    38 Partially ordered set 17438.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17538.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17538.3 Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17538.4 Orders on the Cartesian product of partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . 17638.5 Sums of partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17638.6 Strict and non-strict partial orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17738.7 Inverse and order dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17738.8 Mappings between partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17738.9 Number of partial orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17838.10Linear extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17838.11In category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17938.12Partial orders in topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

  • xii CONTENTS

    38.13Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17938.14See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17938.15Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18038.16References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18038.17External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    39 Partition of unity 18139.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18139.2 Variant denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18239.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18239.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18239.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18239.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    40 Product topology 18340.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18340.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18340.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18440.4 Relation to other topological notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18540.5 Axiom of choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18540.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18540.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18540.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18640.9 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    41 Pseudocompact space 18741.1 Properties related to pseudocompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18741.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18741.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

    42 Realcompact space 18942.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18942.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18942.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    43 Regular space 19143.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19143.2 Relationships to other separation axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19243.3 Examples and nonexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19243.4 Elementary properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19343.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

    44 Relatively compact subspace 19444.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

  • CONTENTS xiii

    44.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    45 Second-countable space 19545.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    45.1.1 Other properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19545.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19645.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    46 Sequence 19746.1 Examples and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

    46.1.1 Important examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19846.1.2 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19946.1.3 Specifying a sequence by recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

    46.2 Formal denition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20046.2.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20046.2.2 Finite and innite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20146.2.3 Increasing and decreasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20146.2.4 Bounded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20146.2.5 Other types of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    46.3 Limits and convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20246.3.1 Denition of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20346.3.2 Applications and important results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20346.3.3 Cauchy sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    46.4 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20446.5 Use in other elds of mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

    46.5.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20546.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20546.5.3 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20646.5.4 Abstract algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20646.5.5 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20746.5.6 Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20746.5.7 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    46.6 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20746.7 Related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20846.8 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20846.9 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20846.10References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20846.11External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    47 Sequentially compact space 21047.1 Examples and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21047.2 Related notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

  • xiv CONTENTS

    47.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21047.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21047.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    48 Set (mathematics) 21248.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21348.2 Describing sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21348.3 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

    48.3.1 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21548.3.2 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

    48.4 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21648.5 Special sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21648.6 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

    48.6.1 Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21748.6.2 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21848.6.3 Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21848.6.4 Cartesian product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

    48.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22148.8 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22148.9 Principle of inclusion and exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22248.10De Morgans Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22248.11See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22348.12Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22348.13References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22348.14External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

    49 Strictly singular operator 22449.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

    50 Subset 22550.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22650.2 and symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22650.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22650.4 Other properties of inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22750.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22750.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22750.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    51 Subspace topology 22951.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22951.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22951.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23051.4 Preservation of topological properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

  • CONTENTS xv

    51.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23151.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

    52 Supercompact space 23252.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23252.2 Some Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23252.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

    53 Topological space 23453.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

    53.1.1 Neighbourhoods denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23453.1.2 Open sets denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23553.1.3 Closed sets denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23653.1.4 Other denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

    53.2 Comparison of topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23653.3 Continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23653.4 Examples of topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23753.5 Topological constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23853.6 Classication of topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23853.7 Topological spaces with algebraic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23853.8 Topological spaces with order structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23853.9 Specializations and generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23853.10See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23953.11Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23953.12References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23953.13External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    54 Topology 24154.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24254.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24354.3 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

    54.3.1 Topologies on Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24554.3.2 Continuous functions and homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 24654.3.3 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    54.4 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24654.4.1 General topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24654.4.2 Algebraic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24754.4.3 Dierential topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24754.4.4 Geometric topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24754.4.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

    54.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24854.5.1 Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

  • xvi CONTENTS

    54.5.2 Computer science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24854.5.3 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24854.5.4 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

    54.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24854.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24954.8 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25054.9 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

    55 Total order 25155.1 Strict total order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25155.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25255.3 Further concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

    55.3.1 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25255.3.2 Lattice theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25255.3.3 Finite total orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25355.3.4 Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25355.3.5 Order topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25355.3.6 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25355.3.7 Sums of orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

    55.4 Orders on the Cartesian product of totally ordered sets . . . . . . . . . . . . . . . . . . . . . . . . 25455.5 Related structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25455.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25455.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25455.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

    56 Totally bounded space 25656.1 Denition for a metric space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25656.2 Denitions in other contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25656.3 Examples and nonexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25756.4 Relationships with compactness and completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 25756.5 Use of the axiom of choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25856.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25856.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25856.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

    57 Tychono space 25957.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25957.2 Examples and counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25957.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

    57.3.1 Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26057.3.2 Real-valued continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26057.3.3 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

  • CONTENTS xvii

    57.3.4 Compactications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26157.3.5 Uniform structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

    57.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

    58 Tychonos theorem 26258.1 Topological denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26258.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26258.3 Proofs of Tychonos theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26358.4 Tychonos theorem and the axiom of choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26358.5 Proof of the axiom of choice from Tychonos theorem . . . . . . . . . . . . . . . . . . . . . . . 26458.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26458.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

    59 Union (set theory) 26659.1 Union of two sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26659.2 Algebraic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26759.3 Finite unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26859.4 Arbitrary unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    59.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26859.4.2 Union and intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    59.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26959.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26959.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

    60 -compact space 27060.1 Properties and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27060.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27060.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27160.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27160.5 Text and image sources, contributors, and licenses . . . . . . . . . . . . . . . . . . . . . . . . . . 272

    60.5.1 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27260.5.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27960.5.3 Content license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

  • Chapter 1

    a-paracompact space

    In mathematics, in the eld of topology, a topological space is said to be a-paracompact if every open cover of thespace has a locally nite renement. In contrast to the denition of paracompactness, the renement is not requiredto be open.Every paracompact space is a-paracompact, and in regular spaces the two notions coincide.

    1.1 References Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.

    1

  • Chapter 2

    Binary relation

    Relation (mathematics)" redirects here. For a more general notion of relation, see nitary relation. For a morecombinatorial viewpoint, see theory of relations. For other uses, see Relation Mathematics.

    In mathematics, a binary relation on a set A is a collection of ordered pairs of elements of A. In other words, it is asubset of the Cartesian product A2 = A A. More generally, a binary relation between two sets A and B is a subsetof A B. The terms correspondence, dyadic relation and 2-place relation are synonyms for binary relation.An example is the "divides" relation between the set of prime numbers P and the set of integers Z, in which everyprime p is associated with every integer z that is a multiple of p (but with no integer that is not a multiple of p). Inthis relation, for instance, the prime 2 is associated with numbers that include 4, 0, 6, 10, but not 1 or 9; and theprime 3 is associated with numbers that include 0, 6, and 9, but not 4 or 13.Binary relations are used in many branches of mathematics to model concepts like "is greater than", "is equal to", anddivides in arithmetic, "is congruent to" in geometry, is adjacent to in graph theory, is orthogonal to in linearalgebra and many more. The concept of function is dened as a special kind of binary relation. Binary relations arealso heavily used in computer science.A binary relation is the special case n = 2 of an n-ary relation R A1 An, that is, a set of n-tuples where thejth component of each n-tuple is taken from the jth domain Aj of the relation. An example for a ternary relation onZZZ is lies between ... and ..., containing e.g. the triples (5,2,8), (5,8,2), and (4,9,7).In some systems of axiomatic set theory, relations are extended to classes, which are generalizations of sets. Thisextension is needed for, among other things, modeling the concepts of is an element of or is a subset of in settheory, without running into logical inconsistencies such as Russells paradox.

    2.1 Formal denition

    A binary relation R is usually dened as an ordered triple (X, Y, G) where X and Y are arbitrary sets (or classes), andG is a subset of the Cartesian product X Y. The sets X and Y are called the domain (or the set of departure) andcodomain (or the set of destination), respectively, of the relation, and G is called its graph.The statement (x,y) G is read "x is R-related to y", and is denoted by xRy or R(x,y). The latter notation correspondsto viewing R as the characteristic function on X Y for the set of pairs of G.The order of the elements in each pair ofG is important: if a b, then aRb and bRa can be true or false, independentlyof each other. Resuming the above example, the prime 3 divides the integer 9, but 9 doesn't divide 3.A relation as dened by the triple (X, Y, G) is sometimes referred to as a correspondence instead.[1] In this case therelation from X to Y is the subset G of X Y, and from X to Y" must always be either specied or implied by thecontext when referring to the relation. In practice correspondence and relation tend to be used interchangeably.

    2

  • 2.2. SPECIAL TYPES OF BINARY RELATIONS 3

    2.1.1 Is a relation more than its graph?According to the denition above, two relations with identical graphs but dierent domains or dierent codomainsare considered dierent. For example, ifG = f(1; 2); (1; 3); (2; 7)g , then (Z;Z; G) , (R;N; G) , and (N;R; G) arethree distinct relations, where Z is the set of integers and R is the set of real numbers.Especially in set theory, binary relations are often dened as sets of ordered pairs, identifying binary relations withtheir graphs. The domain of a binary relation R is then dened as the set of all x such that there exists at least oney such that (x; y) 2 R , the range of R is dened as the set of all y such that there exists at least one x such that(x; y) 2 R , and the eld of R is the union of its domain and its range.[2][3][4]A special case of this dierence in points of view applies to the notion of function. Many authors insist on distin-guishing between a functions codomain and its range. Thus, a single rule, like mapping every real number x tox2, can lead to distinct functions f : R ! R and f : R ! R+ , depending on whether the images under thatrule are understood to be reals or, more restrictively, non-negative reals. But others view functions as simply sets ofordered pairs with unique rst components. This dierence in perspectives does raise some nontrivial issues. As anexample, the former camp considers surjectivityor being ontoas a property of functions, while the latter sees itas a relationship that functions may bear to sets.Either approach is adequate for most uses, provided that one attends to the necessary changes in language, notation,and the denitions of concepts like restrictions, composition, inverse relation, and so on. The choice between the twodenitions usually matters only in very formal contexts, like category theory.

    2.1.2 ExampleExample: Suppose there are four objects {ball, car, doll, gun} and four persons {John, Mary, Ian, Venus}. Supposethat John owns the ball, Mary owns the doll, and Venus owns the car. Nobody owns the gun and Ian owns nothing.Then the binary relation is owned by is given as

    R = ({ball, car, doll, gun}, {John, Mary, Ian, Venus}, {(ball, John), (doll, Mary), (car, Venus)}).

    Thus the rst element of R is the set of objects, the second is the set of persons, and the last element is a set of orderedpairs of the form (object, owner).The pair (ball, John), denoted by RJ means that the ball is owned by John.Two dierent relations could have the same graph. For example: the relation

    ({ball, car, doll, gun}, {John, Mary, Venus}, {(ball, John), (doll, Mary), (car, Venus)})

    is dierent from the previous one as everyone is an owner. But the graphs of the two relations are the same.Nevertheless, R is usually identied or even dened as G(R) and an ordered pair (x, y) G(R)" is usually denoted as"(x, y) R".

    2.2 Special types of binary relationsSome important types of binary relations R between two sets X and Y are listed below. To emphasize that X and Ycan be dierent sets, some authors call such binary relations heterogeneous.[5][6]

    Uniqueness properties:

    injective (also called left-unique[7]): for all x and z in X and y in Y it holds that if xRy and zRy then x = z. Forexample, the green relation in the diagram is injective, but the red relation is not, as it relates e.g. both x = 5and z = +5 to y = 25.

    functional (also called univalent[8] or right-unique[7] or right-denite[9]): for all x in X, and y and z in Yit holds that if xRy and xRz then y = z; such a binary relation is called a partial function. Both relations inthe picture are functional. An example for a non-functional relation can be obtained by rotating the red graphclockwise by 90 degrees, i.e. by considering the relation x=y2 which relates e.g. x=25 to both y=5 and z=+5.

  • 4 CHAPTER 2. BINARY RELATION

    Example relations between real numbers. Red: y=x2. Green: y=2x+20.

    one-to-one (also written 1-to-1): injective and functional. The green relation is one-to-one, but the red is not.

    Totality properties:

    left-total:[7] for all x in X there exists a y in Y such that xRy. For example R is left-total when it is a functionor a multivalued function. Note that this property, although sometimes also referred to as total, is dierentfrom the denition of total in the next section. Both relations in the picture are left-total. The relation x=y2,obtained from the above rotation, is not left-total, as it doesn't relate, e.g., x = 14 to any real number y.

    surjective (also called right-total[7] or onto): for all y in Y there exists an x in X such that xRy. The greenrelation is surjective, but the red relation is not, as it doesn't relate any real number x to e.g. y = 14.

    Uniqueness and totality properties:

  • 2.3. RELATIONS OVER A SET 5

    A function: a relation that is functional and left-total. Both the green and the red relation are functions. An injective function: a relation that is injective, functional, and left-total. A surjective function or surjection: a relation that is functional, left-total, and right-total. A bijection: a surjective one-to-one or surjective injective function is said to be bijective, also known asone-to-one correspondence.[10] The green relation is bijective, but the red is not.

    2.2.1 DifunctionalLess commonly encountered is the notion of difunctional (or regular) relation, dened as a relation R such thatR=RR1R.[11]

    To understand this notion better, it helps to consider a relation as mapping every element xX to a set xR = { yY| xRy }.[11] This set is sometimes called the successor neighborhood of x in R; one can dene the predecessorneighborhood analogously.[12] Synonymous terms for these notions are afterset and respectively foreset.[5]

    A difunctional relation can then be equivalently characterized as a relation R such that wherever x1R and x2R have anon-empty intersection, then these two sets coincide; formally x1R x2R implies x1R = x2R.[11]

    As examples, any function or any functional (right-unique) relation is difunctional; the converse doesn't hold. If oneconsiders a relation R from set to itself (X = Y), then if R is both transitive and symmetric (i.e. a partial equivalencerelation), then it is also difunctional.[13] The converse of this latter statement also doesn't hold.A characterization of difunctional relations, which also explains their name, is to consider two functions f: A Cand g: B C and then dene the following set which generalizes the kernel of a single function as joint kernel: ker(f,g) = { (a, b) A B | f(a) = g(b) }. Every difunctional relation R A B arises as the joint kernel of two functionsf: A C and g: B C for some set C.[14]

    In automata theory, the term rectangular relation has also been used to denote a difunctional relation. This ter-minology is justied by the fact that when represented as a boolean matrix, the columns and rows of a difunctionalrelation can be arranged in such a way as to present rectangular blocks of true on the (asymmetric) main diagonal.[15]Other authors however use the term rectangular to denote any heterogeneous relation whatsoever.[6]

    2.3 Relations over a setIf X = Y then we simply say that the binary relation is over X, or that it is an endorelation over X.[16] In computerscience, such a relation is also called a homogeneous (binary) relation.[16][17][6] Some types of endorelations arewidely studied in graph theory, where they are known as simple directed graphs permitting loops.The set of all binary relations Rel(X) on a set X is the set 2X X which is a Boolean algebra augmented with theinvolution of mapping of a relation to its inverse relation. For the theoretical explanation see Relation algebra.Some important properties of a binary relation R over a set X are:

    reexive: for all x in X it holds that xRx. For example, greater than or equal to () is a reexive relation butgreater than (>) is not.

    irreexive (or strict): for all x in X it holds that not xRx. For example, > is an irreexive relation, but is not. coreexive: for all x and y in X it holds that if xRy then x = y. An example of a coreexive relation is therelation on integers in which each odd number is related to itself and there are no other relations. The equalityrelation is the only example of a both reexive and coreexive relation.

    The previous 3 alternatives are far from being exhaustive; e.g. the red relation y=x2 from theabove picture is neither irreexive, nor coreexive, nor reexive, since it contains the pair(0,0), and (2,4), but not (2,2), respectively.

    symmetric: for all x and y in X it holds that if xRy then yRx. Is a blood relative of is a symmetric relation,because x is a blood relative of y if and only if y is a blood relative of x.

  • 6 CHAPTER 2. BINARY RELATION

    antisymmetric: for all x and y in X, if xRy and yRx then x = y. For example, is anti-symmetric (so is >, butonly because the condition in the denition is always false).[18]

    asymmetric: for all x and y in X, if xRy then not yRx. A relation is asymmetric if and only if it is bothanti-symmetric and irreexive.[19] For example, > is asymmetric, but is not.

    transitive: for all x, y and z in X it holds that if xRy and yRz then xRz. A transitive relation is irreexive if andonly if it is asymmetric.[20] For example, is ancestor of is transitive, while is parent of is not.

    total: for all x and y in X it holds that xRy or yRx (or both). This denition for total is dierent from left totalin the previous section. For example, is a total relation.

    trichotomous: for all x and y in X exactly one of xRy, yRx or x = y holds. For example, > is a trichotomousrelation, while the relation divides on natural numbers is not.[21]

    Euclidean: for all x, y and z in X it holds that if xRy and xRz, then yRz (and zRy). Equality is a Euclideanrelation because if x=y and x=z, then y=z.

    serial: for all x in X, there exists y in X such that xRy. "Is greater than" is a serial relation on the integers. Butit is not a serial relation on the positive integers, because there is no y in the positive integers (i.e. the naturalnumbers) such that 1>y.[22] However, "is less than" is a serial relation on the positive integers, the rationalnumbers and the real numbers. Every reexive relation is serial: for a given x, choose y=x. A serial relation canbe equivalently characterized as every element having a non-empty successor neighborhood (see the previoussection for the denition of this notion). Similarly an inverse serial relation is a relation in which every elementhas non-empty predecessor neighborhood.[12]

    set-like (or local): for every x in X, the class of all y such that yRx is a set. (This makes sense only if relationson proper classes are allowed.) The usual ordering < on the class of ordinal numbers is set-like, while its inverse> is not.

    A relation that is reexive, symmetric, and transitive is called an equivalence relation. A relation that is symmetric,transitive, and serial is also reexive. A relation that is only symmetric and transitive (without necessarily beingreexive) is called a partial equivalence relation.A relation that is reexive, antisymmetric, and transitive is called a partial order. A partial order that is total is calleda total order, simple order, linear order, or a chain.[23] A linear order where every nonempty subset has a least elementis called a well-order.

    2.4 Operations on binary relationsIf R, S are binary relations over X and Y, then each of the following is a binary relation over X and Y :

    Union: R S X Y, dened as R S = { (x, y) | (x, y) R or (x, y) S }. For example, is the union of >and =.

    Intersection: R S X Y, dened as R S = { (x, y) | (x, y) R and (x, y) S }.

    If R is a binary relation over X and Y, and S is a binary relation over Y and Z, then the following is a binary relationover X and Z: (see main article composition of relations)

    Composition: S R, also denoted R ; S (or more ambiguously R S), dened as S R = { (x, z) | there existsy Y, such that (x, y) R and (y, z) S }. The order of R and S in the notation S R, used here agrees withthe standard notational order for composition of functions. For example, the composition is mother of isparent of yields is maternal grandparent of, while the composition is parent of is mother of yields isgrandmother of.

  • 2.4. OPERATIONS ON BINARY RELATIONS 7

    A relation R on sets X and Y is said to be contained in a relation S on X and Y if R is a subset of S, that is, if x R yalways implies x S y. In this case, if R and S disagree, R is also said to be smaller than S. For example, > is containedin .If R is a binary relation over X and Y, then the following is a binary relation over Y and X:

    Inverse or converse: R 1, dened as R 1 = { (y, x) | (x, y) R }. A binary relation over a set is equal to itsinverse if and only if it is symmetric. See also duality (order theory). For example, is less than ().

    If R is a binary relation over X, then each of the following is a binary relation over X:

    Reexive closure: R =, dened as R = = { (x, x) | x X } R or the smallest reexive relation over X containingR. This can be proven to be equal to the intersection of all reexive relations containing R.

    Reexive reduction: R , dened as R = R \ { (x, x) | x X } or the largest irreexive relation over Xcontained in R.

    Transitive closure: R +, dened as the smallest transitive relation over X containing R. This can be seen to beequal to the intersection of all transitive relations containing R.

    Transitive reduction: R , dened as a minimal relation having the same transitive closure as R. Reexive transitive closure: R *, dened as R * = (R +) =, the smallest preorder containing R. Reexive transitive symmetric closure: R , dened as the smallest equivalence relation over X containingR.

    2.4.1 ComplementIf R is a binary relation over X and Y, then the following too:

    The complement S is dened as x S y if not x R y. For example, on real numbers, is the complement of >.

    The complement of the inverse is the inverse of the complement.If X = Y, the complement has the following properties:

    If a relation is symmetric, the complement is too. The complement of a reexive relation is irreexive and vice versa. The complement of a strict weak order is a total preorder and vice versa.

    The complement of the inverse has these same properties.

    2.4.2 RestrictionThe restriction of a binary relation on a set X to a subset S is the set of all pairs (x, y) in the relation for which x andy are in S.If a relation is reexive, irreexive, symmetric, antisymmetric, asymmetric, transitive, total, trichotomous, a partialorder, total order, strict weak order, total preorder (weak order), or an equivalence relation, its restrictions are too.However, the transitive closure of a restriction is a subset of the restriction of the transitive closure, i.e., in generalnot equal. For example, restricting the relation "x is parent of y" to females yields the relation "x is mother ofthe woman y"; its transitive closure doesn't relate a woman with her paternal grandmother. On the other hand, thetransitive closure of is parent of is is ancestor of"; its restriction to females does relate a woman with her paternalgrandmother.

  • 8 CHAPTER 2. BINARY RELATION

    Also, the various concepts of completeness (not to be confused with being total) do not carry over to restrictions.For example, on the set of real numbers a property of the relation "" is that every non-empty subset S of R with anupper bound in R has a least upper bound (also called supremum) in R. However, for a set of rational numbers thissupremum is not necessarily rational, so the same property does not hold on the restriction of the relation "" to theset of rational numbers.The left-restriction (right-restriction, respectively) of a binary relation between X and Y to a subset S of its domain(codomain) is the set of all pairs (x, y) in the relation for which x (y) is an element of S.

    2.4.3 Algebras, categories, and rewriting systemsVarious operations on binary endorelations can be treated as giving rise to an algebraic structure, known as relationalgebra. It should not be confused with relational algebra which deals in nitary relations (and in practice also niteand many-sorted).For heterogenous binary relations, a category of relations arises.[6]

    Despite their simplicity, binary relations are at the core of an abstract computation model known as an abstractrewriting system.

    2.5 Sets versus classesCertain mathematical relations, such as equal to, member of, and subset of, cannot be understood to be binaryrelations as dened above, because their domains and codomains cannot be taken to be sets in the usual systems ofaxiomatic set theory. For example, if we try to model the general concept of equality as a binary relation =, wemust take the domain and codomain to be the class of all sets, which is not a set in the usual set theory.In most mathematical contexts, references to the relations of equality, membership and subset are harmless becausethey can be understood implicitly to be restricted to some set in the context. The usual work-around to this problemis to select a large enough set A, that contains all the objects of interest, and work with the restriction =A instead of=. Similarly, the subset of relation needs to be restricted to have domain and codomain P(A) (the power set ofa specic set A): the resulting set relation can be denoted A. Also, the member of relation needs to be restrictedto have domain A and codomain P(A) to obtain a binary relation A that is a set. Bertrand Russell has shown thatassuming to be dened on all sets leads to a contradiction in naive set theory.Another solution to this problem is to use a set theory with proper classes, such as NBG or MorseKelley set theory,and allow the domain and codomain (and so the graph) to be proper classes: in such a theory, equality, membership,and subset are binary relations without special comment. (A minor modication needs to be made to the concept ofthe ordered triple (X, Y, G), as normally a proper class cannot be a member of an ordered tuple; or of course onecan identify the function with its graph in this context.)[24] With this denition one can for instance dene a functionrelation between every set and its power set.

    2.6 The number of binary relations

    The number of distinct binary relations on an n-element set is 2n2 (sequence A002416 in OEIS):Notes:

    The number of irreexive relations is the same as that of reexive relations. The number of strict partial orders (irreexive transitive relations) is the same as that of partial orders. The number of strict weak orders is the same as that of total preorders. The total orders are the partial orders that are also total preorders. The number of preorders that are neithera partial order nor a total preorder is, therefore, the number of preorders, minus the number of partial orders,minus the number of total preorders, plus the number of total orders: 0, 0, 0, 3, and 85, respectively.

    the number of equiv