3
16 Rubber & Plastics News * July 29 1996 TECH NICiU. FEA support testing for elastomer modeling TECHNICAL NUTE000K Elfiteil by HaraW Herzlich By Abraham Pannikottu Joe Seller and Jerry J. Leyden Akron flutter Developeienl Laboratory Inc. Second oftwo parts All the major finite element analysis codes like Ansys. Abaqus, MSC/Nas tran, Cosmos/M and Marc need Moon ey-Rivlin constants or Ogden constants is inputs to run a non-linear analysis. Fore rubber-like material, homoge neous deformation modes sufficiently determine the material constants. The FEA codes accept data from the follow ing deformation modes: * Uniaxial tension Fig. 1 * tltiiaxiol cernlpressiorl Fig. 21 * ‘loner tension Fig. :1 Note: The wide plonar s/sear sonspie is physrcally constrained to not pull-in ai t/r, edges by i/se damps, so the sam ple will thin out hot out draw-in during f/i,, -/oogo/uor. ‘l’!,,.x ansi,, of’ it’s/lug toll! p/ru.- tire ,;pr,. tn,,’u ‘0 Cr ml to, s/nor titer/i’ up to 100-percent eloogeiion. * Eqoi-biaxial tension Fig- 5 * Volumetric compression Fig. 6 These modes are shown in Fig. 6. The most commonly performed exporimeerts are uniaxial tension, isnioxial corsiprea sion. planar tension and equi-bisxial tension. Combination of data from these four types of tests will result in good characterization of the behnvior of the elastomer. The superposition of a tensile or com pressive hydrostatic stress on a loaded, folly incompressible olastic body results in different stresses, but does not chauge the deformation. Fig. 7 shows that different loading conditions are equivalent in their deformations, and therefore ore equivalent in tests. * Uniaxial tension = Equi-hiaxinl * compression * Uniaxial compression = Equi-biaxial tension It may be difficult to satisfy this condition becstsse of the experi mental difficulty in perfonning a "true" uniaxiel compression. So it’s important to perform the equi-biaxial test for eval uating elastomer parts in compressioa Fig. 1. lJnisxisl tension. Mats C,s,thMd Ten iPnsftr,n, Lend CiiI Transd,ter Measurements were made in uniaxial tension Fig. I, uniaxial compression Fig. 2, plsrs,nr tension Fig. 3, equi-bi axial Fig. 4 and volumetric compres sion Fig. 5. The uniaxiel tension and planer sheer tests were performed using a Monsanto T-2000 screw type mechine with a Monsanto E5042 laser extensom eter. The use of a laser extensometer to measure strain, rather than crosshead displacement, eliminates measurement The authors Jersy J. Leyden serves as president of Akron Rubber Development Laboratory Abraham Pannikottu serves as ARDL’s manager of predictive testing. .1 ois’ph Seiler uvenrkts is nicijinin Altlljs l’re-slicl,iv,’ ‘l’n’sl.rig De partment. Flg. 4. Equi-blaxlal tension. Inc. * Measursnsst Teapsrsairec Rnerrr Terapetsters Specimen Size: i.e irL 55.0 in. xO.Oiia. ibick - TesiRate:e.llaper}.Onete Fig. 5. Schematic illustrstions of defor mation modes. C-..,, SW ‘k. aostsee,,r’. 5.-.5,. I .t_LLI4 1551 / i,,4__i+ ‘,r.s.. its, * Executive summary Computer.aided engineering refers to the use of computers to perform de sign calculations for determining an optimum shape and size for a variety of engineering applications. This modem concept of engineering management has led to importent advances in the design and production of components usad is’ aerospace, automotive, electronics and other industries throughout the world. * CAE enables an engineer to test design ideas by simulating the finction of * the part on the computer. Finite element analysis is one of these computer simulation techniques which is the most accurate, versatile and comprehen sive technique for solving complex design problems. FEA permits the analysis of these complex structures without the necessity of developing and applying complex equations. FEA program for non4inear stress analysis of elastomers is performed by utilizing two material models: * Mooney-Rlvlin model * Ogden modal The Moooey.Rivlin model is the most widely used model for elastomer anal ysis. The basic problem feting the design engineer is how to obtain the mote. rial coefficients needed to use these two models in FEA. At, expected, the effec tiveness of design analysis is directly related to the quality of the material input material coefficients. * Akron Rubber Development Laboratory Inc. has developed a reliable history of standard procedures for determination of these coefficients from experimen’ tal test d,sta. This paper will discuss various testing techniques used for devel oping elnstomer niateri,si conelsente. Also, the Intent of this paper Is to show how aging or service conditions can be incorporated to obtain material coefli dents for elsatomer parts. Finn,,,’ tensi,,n Plonr, ri’onnr,ren’ tHou The tensile end compression cases of the uniaxial ar,d equi-biaxial modes are independent from each other. There Fore, uniexinl tension sod uniaxial cons preasion provide independent data. The following procedure summarizes the steps needed to calculsta the mate rial coefficients: I. Run uninxinl tension, uniaxinl cons pression, planar shear and biaxial ten sion tests for the test materiel. Perform the tests in slow speed to achieve a quasi-static condition. 2. Calculate the stress-strain date. 3. Fur Mooney-Rivlin two-point model, perform a linear regression analysis on the experimental stress’strain data. To determine coefficients for five-point model nod Ogden model, perform a non-linear regression analysis on the experimental stress-strain data. The number of coefficients needed to fit the t,x1soriir,erit-s, I i’rrrvo. stipends on the surioetnt ,,r ,,ccLir,rcy chaired Isy lii,’ riser. Experimental The elastomer materials evaluated were aili i,,:. I I’VMQ. fluoroeltis I FKM and hydrogenated nitrile rubber HN’BR. These rubber formulations were specifically compounded for gasket applications. The formulations are spec ified in Tables 1-3, All three compounds were aged in three different fluids for 168 hours at 150’ C to see the change in stress- strain datn. The three fluids included IRM-903, 5W-In engine oil and automatic transmission fluid. All mes suremente were conducted at room tem pera ture. Table I. Hydrogenated nltrlle rubber HNBR. Fig. 5-Volumetric compressIon. eiiss.,rnnr I Fig. 3. Planar shear. IngredIent phr ZetpoI2OlO’ 100.0 N-774 45M PIaSlHaIl TOIM 5.0 KsdoxOIlCZnO 5.0 Naugard 445 15 Vanes ZMTI 1.0 DynamsrPPA-790 1.0 SarelSR-517 5.0 Vul-Cup4OKE 5.0 * leon chemicals * Ueuurms.at Terapsrsnsra Been Temperature * Spsckuen Size. ASTM Diet’ Darnbbsll * Teeflate: ella perlsOanesa Fig. 2. tlniaxial compression. M,eneneni T,ep..nWC ses’r newts,, sj kJI-..se * 5 ala 5Ca - ns,thenC,,ered,,eh.Jerltdi,eni.,cfriSKli.5s.ll c-Ea,t M5ilJl*; K* 515 M ipd.e,,’i 555 Tess ass pa 555’. Table II. Fluoroelastomer FKM. Ingredient phr FE56400 100.0 MT flack N990 30.0 MgOMaIlteD 3.0 CaOH5 6.0 3M Sped,ily Fleerepetymers Oaparlrssent M,asermieas Terspersturc Boon Tssiprrshirs Specimen She: ASIM Compression See Boom Tia Bass: 0.2 its, per Misut Table Ill, SIlicone PVMQ. * Mmaursnseot Temperature: Room Tenpesarure * Specinse She: 3.00 In. x 0.5 Li. x 0.06 is. dick * Tess Rate 0.2 sr. per sfinuea IngredIents Dow Corning 24092-V5Third generation Silicone Catayzed with STI V ow, Coring STt

FEA support testing for elastomer modeling - ardl.com · 16 Rubber & Plastics News * July 29 1996 TECH NICiU. FEA support testing for elastomer modeling TECHNICAL NUTE000K Elfiteil

  • Upload
    vonga

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

Page 1: FEA support testing for elastomer modeling - ardl.com · 16 Rubber & Plastics News * July 29 1996 TECH NICiU. FEA support testing for elastomer modeling TECHNICAL NUTE000K Elfiteil

16 Rubber & Plastics News * July 29 1996

TECH NICiU.

FEA support testing for elastomermodeling

TECHNICAL NUTE000KElfiteil by HaraW Herzlich

By Abraham PannikottuJoe Seller

and Jerry J. LeydenAkron flutter DevelopeienlLaboratory Inc.

Secondoftwo partsAll the major finite element analysis

codes like Ansys. Abaqus, MSC/Nastran, Cosmos/Mand Marc need Mooney-Rivlin constantsor Ogdenconstantsis inputs to run a non-linearanalysis.

Forerubber-like material, homogeneousdeformation modessufficientlydetermine the material constants.TheFEA codesaccept data from the following deformationmodes:

* Uniaxial tension Fig. 1* tltiiaxiol cernlpressiorl Fig. 21* ‘loner tension Fig. :1Note: The wide plonar s/sear sonspie

is physrcally constrained to not pull-inai t/r, edgesby i/se damps, so the sample will thin out hot out draw-in duringf/i,, -/oogo/uor. ‘l’!,,.x ansi,, of’ it’s/lug toll!p/ru.- tire ,;pr,. tn,,’u ‘0 Cr ml to, s/nor titer/i’

up to 100-percent eloogeiion.* Eqoi-biaxial tensionFig- 5* VolumetriccompressionFig. 6Thesemodesare shownin Fig. 6. The

most commonly performed exporimeertsare uniaxial tension,isnioxial corsipreasion. planartension and equi-bisxialtension. Combination of data fromthese four types of tests will result ingood characterizationof the behnviorofthe elastomer.

The superpositionof a tensileor compressivehydrostatic stresson a loaded,folly incompressibleolastic body resultsin different stresses,but doesnotchaugethe deformation. Fig. 7 showsthat different loading conditions areequivalent in their deformations,andthereforeoreequivalent in tests.

* Uniaxial tension = Equi-hiaxinl* compression

* Uniaxial compression= Equi-biaxialtensionIt may be difficult to satisfythis condition becstsseof the experimental difficulty in perfonninga "true"uniaxiel compression.So it’s importantto performthe equi-biaxial testfor evaluating elastomerparts in compressioa

Fig. 1. lJnisxisl tension.

Mats C,s,thMd

Ten iPnsftr,n,

LendCiiI

Transd,ter

Measurementsweremadein uniaxialtension Fig. I, uniaxial compressionFig. 2, plsrs,nr tension Fig. 3, equi-biaxial Fig. 4 and volumetric compression Fig. 5.

The uniaxiel tension and planersheer tests were performed using aMonsanto T-2000 screw type mechinewith a MonsantoE5042 laserextensometer.Theuse of a laser extensometertomeasurestrain, rather than crossheaddisplacement,eliminates measurement

The authors

JersyJ. LeydenservesaspresidentofAkron Rubber Development Laboratory

Abraham Pannikottu serves asARDL’s managerof predictivetesting.

.1 ois’ph Seiler uvenrkts isnicijinin Altlljs l’re-slicl,iv,’ ‘l’n’sl.rig Department.

Flg. 4. Equi-blaxlaltension.

Inc.

* Measursnsst TeapsrsairecRnerrr TerapetstersSpecimenSize: i.e irL 55.0 in. xO.Oiia. ibick

-

TesiRate:e.llaper}.Onete

Fig. 5. Schematicillustrstionsof deformation modes.

C-..,, SW

‘k.

aostsee,,r’.

5.-.5,.

I .t_LLI4

1551/

i,,4__i+ ‘,r.s.. its,

* Executive summaryComputer.aidedengineering refers to the useof computersto perform de

sign calculations for determining an optimum shapeand size for a variety ofengineering applications.This modem conceptof engineeringmanagementhas led to importent advancesin the design and productionof componentsusadis’ aerospace,automotive,electronicsandother industriesthroughouttheworld.

* CAE enablesan engineerto test designideas by simulatingthe finction of* the part on the computer. Finite element analysisis one of these computer

simulation techniqueswhich is the most accurate,versatileand comprehensive techniquefor solving complex design problems.FEA permits the analysisof these complexstructureswithout the necessityof developingand applyingcomplexequations.

FEA programfor non4inearstressanalysisof elastomersis performed byutilizing two materialmodels:

* Mooney-Rlvlin model* OgdenmodalThe Moooey.Rivlinmodel is the most widely usedmodel for elastomeranal

ysis. The basicproblem feting the design engineeris how to obtainthe mote.rial coefficientsneededto use thesetwo modelsin FEA. At, expected,the effectivenessof design analysis is directly related to the quality of the materialinput materialcoefficients.* Akron RubberDevelopmentLaboratoryInc. hasdevelopeda reliablehistoryof standardproceduresfor determinationof thesecoefficientsfrom experimen’tal test d,sta.This paperwill discussvarioustestingtechniquesusedfor developing elnstomerniateri,si conelsente.Also, the Intent of this paper Is to showhow aging or serviceconditions can be incorporatedto obtain material coeflidentsfor elsatomerparts.

Finn,,,’ tensi,,n Plonr, ri’onnr,ren’tHou

The tensile end compressioncasesofthe uniaxial ar,dequi-biaxial modesareindependentfrom eachother. ThereFore, uniexinl tension sod uniaxial conspreasionprovide independentdata.

The following proceduresummarizesthe steps neededto calculstathe material coefficients:I. Run uninxinl tension, uniaxinl conspression, planar shear and biaxial tension tests for the testmateriel.Performthe testsin slow speedto achieve aquasi-staticcondition.2. Calculatethe stress-straindate.3. Fur Mooney-Rivlin two-point model,perform a linear regressionanalysisonthe experimentalstress’straindata. Todeterminecoefficients for five-pointmodel nod Ogdenmodel, perform anon-linear regressionanalysison theexperimentalstress-straindata. Thenumber of coefficientsneededto fit the

t,x1soriir,erit-s, I i’rrrvo. stipends on thesurioetnt ,,r ,,ccLir,rcy chaired Isy lii,’ riser.

ExperimentalThe elastomermaterials evaluated

were aili i,,:. I I’VMQ. fluoroeltisIFKM and hydrogenatednitrile rubberHN’BR. Theserubber formulationswere specifically compoundedfor gasketapplications.The formulationsarespecified in Tables1-3,

All three compoundswere aged inthree different fluids for 168 hoursat150’ C to seethe changein stress-strain datn. The three fluids includedIRM-903, 5W-In engine oil andautomatictransmissionfluid. All messurementewereconductedat room temperature.

Table I. Hydrogenated nltrlle rubberHNBR.

Fig. 5-Volumetric compressIon.

eiiss.,rnnr I

Fig. 3. Planar shear.IngredIent phr

ZetpoI2OlO’ 100.0N-774 45MPIaSlHaIl TOIM 5.0KsdoxOIlCZnO 5.0Naugard 445 15Vanes ZMTI 1.0DynamsrPPA-790 1.0SarelSR-517 5.0Vul-Cup4OKE 5.0* leonchemicals

* Ueuurms.atTerapsrsnsraBeenTemperature* SpsckuenSize. ASTM Diet’ Darnbbsll* Teeflate:ella perlsOanesa

Fig. 2. tlniaxial compression.

M,eneneniT,ep..nWC ses’rnewts,,sj kJI-..se* 5 ala 5Ca

- ns,thenC,,ered,,eh.Jerltdi,eni.,cfriSKli.5s.ll

c-Ea,t M5ilJl*; K* 515 M ipd.e,,’i 555Tess asspa 555’.

Table II. Fluoroelastomer FKM.

Ingredient phrFE56400 100.0MT flackN990 30.0MgOMaIlteD 3.0

CaOH5 6.03M Sped,ily Fleerepetymers Oaparlrssent

M,asermieasTerspersturcBoonTssiprrshirsSpecimenShe:ASIM CompressionSeeBoomTia Bass:0.2 its, perMisut

Table Ill, SIlicone PVMQ.

* MmaursnseotTemperature:Room Tenpesarure* SpecinseShe:3.00 In. x 0.5 Li. x 0.06 is. dick* TessRate0.2 sr. per sfinuea

IngredIentsDow Corning

24092-V5Third generationSiliconeCatayzed with STI V

ow, CoringSTt

Page 2: FEA support testing for elastomer modeling - ardl.com · 16 Rubber & Plastics News * July 29 1996 TECH NICiU. FEA support testing for elastomer modeling TECHNICAL NUTE000K Elfiteil

Rubher & PlasticsNews * July 29, 1996 1 7

TECHNICAL

error from slippageat thegrips.The uniaxial compressionteet was

performedon an MTS 831.20ElastomerTest System.The compressiontest waspertbrmed on cylindrical testspecimens

Fig. 7. SchematIc illustrations of equivalent deformation modes through superposition of hydrostatic stress.

esssesie5.ese.e.51, 5istsisn,çsdsi

ass

ass

I

en

ass

5 I -‘-‘-

a 50 Sd 50

Fig. LPlanar pure shear. Silicone.

xi

is.

Fig. 10. Equi-blaxialtension.Silicone.

as

lubricatedwitts silicone ii I, ‘VIse cqui-hiaxial tension was perfoncied on a Iwemote Biaxial Stretcher.All tests wereperformed at room temperatureat astrain rateof 0.2inchesper minute.

Results and discussionA comparisonof the relativefit of lin

ear model, Mooney-Rivlin models andOgdenmodel for tensilebehaviorof silicone rubber is shownin Fig. SIt isclear that the linear equation followsthe elestomericbehavior up to 1O-per-centstrain level, TheMooney-Rivlinequationsarea good fit up to a 12S-percent strain level. The Ogdenmodelshowedthe best fit with the measuredtensile data over the full exteusioasrange.

The pure shearbehavior of a planarspecimenis comparedin Fig. 9. The linearequation showedgood fit at low

I stniisss.Muonoy-Rivlin end Ogdon models showedbettor lit witis the measuredengineering shearstressvaluesoverthe full strain range.

The compressionbehaviorof aged silicone rubber is compareduaing enequi.biaxisl test shown in Fig. 10. Thelinear equationshowsan aeceptablefitonly for very low strain values. TheMooney-liivlin equation yields a verygood fit up to 40-percentstrain. But theOgden model showed the best fit overthe full strainrange.

The compressionbehavior of imaged

and aged silicone rubber is shown inFig. 1. This plot illustrates the importance of aging studies for modelingelaatomer components used in oil any1-ronnients. Fig. 12 shows the compression behavior of FICM lo 5W-3O engineoil, and Fig: 13 shows the compressiondeflectioa behavior of HNI3R inautomatic transmission fluid.

ConclusionThetestmethodologyfor developing

the material constantsfor Mooney-Thy-SeeFEAt,page 18

Fig. 8. tiniaxial tension. SilIcone.

Fig. ii. Equl-biaxial tension. Silicone. Aged in M 903 for 168 hours.

as -_________ -________

Se

sos

-.-°ssssd: essB --Osd.ssr’*s,uenssdIda

.- Me..ssd;ASM

-Se--Osdes 3 Psi,,; e50

055

ass

to,Me.esrsd

Psi’s

.-*-osses S P5i5

.-M-.isssse-aeus,Psl’e

-a--dssas.as.ik,2P5cc

*essi., a50 iS ‘05

50 4i ee asadie.

eQ

saca

oe

if

as

Se

‘so

II

a ‘5’

55 os 30 45 50

ee*hr.%

es

Page 3: FEA support testing for elastomer modeling - ardl.com · 16 Rubber & Plastics News * July 29 1996 TECH NICiU. FEA support testing for elastomer modeling TECHNICAL NUTE000K Elfiteil

‘18 Rubber&PlaslicsNews* July29, 1996

a TECHNICaL

FEAContinoedIrenepage17un and Ogden material models issheewo from the viewpoint of a design!test engineer. Aisro domonstnek’dis how

Inn uoS ‘gill5 te,cl,oeie1eio,oscss list Ice,, sEe-chilly ,epplie’d licr olstoeie,ing,ie,ste,-i,, I dicta which can be usedfor modelingelasbmerpartsin service.

The Ogdenmodel shows the best experimentaldata strain level up to 100

percent. Broth the linoor end non-linnarequations showedreossonablecnrrelostion at low straiua up to 10 percent.Standardizing test parametersend testspeed is very important for obtainingreproducible data.

Before sloing a cocoa,plete I"lA on theSort, it, 5ens’ lost elste-e’ssoerylao verify the

oiools,s,e.,.sl lessee1,1 iii Se iii 0110 geeoeiOe°teic:eSl001pe’ sooe:l, Sep. Ieee l.e’iesg eel’

thnough tl,e preproceidsssr.lncssrpsorsstiesgfluid-aging studies in the FEA supporttesting is important for obtainingmeaningful material coefficients.

-a-eseess4015505,1

--odee 3 P55t15d

-*-Meesnd;4554-ee--011ea35005 AIled

Fig. 12. Equi-biaxial lension. FKM. Aged in 5W-30 engine ofl for 168 hours.

505

Se

Se

1350

450

ii 500

250

lee

References

L7. A. 0. isaac.A. 2. save.AppI. Pelyoa. Sd. 19,2:119 01975.15. I.. Mullies. .2. AppI. Pelye. Si. 2.217 19501.‘a, op. lieleesni,,. Ralel,erehs-m. ‘leebasel. 48. 24e

115121.250, NIl tiler ‘I’ Slicesli-is. A Nosie_ei, I’os’oossi,, lootMoe-ho,s..i SI,.’ OOooi,ie-e Ilisisissee. A ee,.’e,i,000e e’Ie..ee,n.eSeeLy,Cloieeoe,o. eelSSI. 1 C 15,1cc lace.15 8,,,. l.oo,ool,eo,Pi’ei,’,, A12$. ri,?, 050720.22. 00.8. Itirliro. ‘Forty Veils ,,rN,,e-lAeeoer5,,,,cue Mpchaairo- rn’s. ix iooe.l. Coego’ees en Itiseolsgy, Mexico 11954.23. M. Maaney..1. AppI. Icily,. Is,58259401

24. sw, hole,,. l"ssr. It, Sue, I ,eisose‘eoN ‘‘ci s’s A125, 5117 100iflS,25. S.T.J. l’ceg, °Nen-liecor Mulliaxial Fisite I,,roreesuenlevsetigatios or Soslido lerepellaeto,"APREL TR-S5-Ose 1955.58. ftT.sJ. Peng ned 00. W Leatel. 2. AppI. Phy,. 45.30404 119721.27. 057.1 O’o’e05eio,erl II. 10. 0 a,seoie-i, .0. AIsleS. ‘ito. ‘Ii.1r,110s I 01*750.15. KS’ Vol sos,,, iii. lee. V. 0,,,,,, 1,1.-I A,,5l. lesso,‘‘.5, 0!11571l’.1517

Is,. I’,-,’ lo,oor’l’eseoe 0’’ epistle, S s.,’ .115Ill-i’ll.30. N. flasher "0,1 Ii, Senill,. "Appli,’ol it,’gr,-o,si toeAe,oolyais." Juice Wits2& So,,.. Ni-asYolk Ills.31. Abaquo Ijaer’s Manual. }iiIthitt, Karlasea andSoreeeee,Inc., 5989.

Fig. 13. Equi-biaxiai tension. HNBR. Aged in automatic transmission fluid for 166hours.

as

Ice

as

se

455I

S Se

200

los

20 25 20 25 40 45 C 0 0 05 IS 20 55 25 55 40 45 50a,slo.%sea a