33
Fate of Chemical Warfare Agents and Toxic Industrial Chemicals in Landfills: Supporting Information Shannon L. Bartelt-Hunt, Morton A. Barlaz *, Detlef R.U. Knappe, and Peter Kjeldsen *Corresponding Author. Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908; Tel. (919) 515- 7676, Fax (919) 515-7908, [email protected] Summary: chemical agent classification, environmental fate of chemical agents, physical- chemical property data for additional TICs, CWAs and their hydrolysates, description of MOCLA and derivation of liner diffusion term, rationale for MOCLA input parameter selection, ranges of K H and log K ow for uncertainty analyses, effect of biodegradation and climate on contaminant fate.

Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

  • Upload
    others

  • View
    20

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

Fate of Chemical Warfare Agents and Toxic Industrial Chemicals in

Landfills Supporting Information

Shannon L Bartelt-Hunt Morton A Barlaz Detlef RU Knappe and Peter Kjeldsen

Corresponding Author Department of Civil Construction and Environmental Engineering

Campus Box 7908 North Carolina State University Raleigh NC 27695-7908 Tel (919) 515-

7676 Fax (919) 515-7908 barlazeosncsuedu

Summary chemical agent classification environmental fate of chemical agents physical-

chemical property data for additional TICs CWAs and their hydrolysates description of

MOCLA and derivation of liner diffusion term rationale for MOCLA input parameter selection

ranges of KH and log Kow for uncertainty analyses effect of biodegradation and climate on

contaminant fate

S2

Chemical Agent Classification Blister agents include sulfur mustard (HD) nitrogen mustard

(HN-2) lewisite (L) ethyldichloroarsine (ED) and phosgene oxime (CX) Exposure to these

agents damages the respiratory tract when inhaled and causes vomiting and diarrhea when

absorbed (1) Most blood agents are cyanide-containing compounds They poison the

cytochrome oxidase system resulting in a lack of cell respiration and the normal transfer of

oxygen from the blood to body tissues (2) Nerve agents are highly toxic with a lethal

concentration (LD50) of approximately 01 mgkg (3) The toxicity of nerve agents arises from

their ability to irreversibly inhibit acetylcholinesterase an enzyme involved in the proper

functioning of nerves and muscles (1) Nerve agents include tabun (GA) sarin (GB) soman

(GD) GE cyclohexyl sarin (GF) amiton (VG) VM and VX

Environmental Fate of Chemical Agents In landfills the behavior of organic contaminants is

influenced by the combined effects of biodegradation sorption transport in the gas andor liquid

phases (ie volatilization and leaching) and abiotic transformation such as hydrolysis (4-8)

Many CWAs hydrolyze in aqueous systems with half-lives on the order of minutes to days A

hydrolysis half-life of 85 min has been reported for HD in aqueous systems (9) however the

overall rate of HD disappearance is often limited by the slow rate of HD dissolution from a non-

aqueous phase into water Also hydrolysis products can coat the surface of HD droplets and

retard HD dissolution (10) Both its hydrophobicity and the formation of hydrolysis products

make non-aqueous-phase HD fairly persistent in the environment HD hydrolysis can occur via

two pathways that are dependent on water availability but the dominant products of either

pathway are thiodiglycol (TDG) and hydrochloric acid (10) Like HD the principal

environmental fate pathway of HN-2 is hydrolysis A hydrolysis half-life of 11 h has been

calculated for HN-2 at 25degC in a 667 acetone-water solution (11) The primary hydrolysate is

S3

the hydrochloride form of 2-(2-chloroethyl) methylamino ethanol which is highly toxic by the

oral route in rats and mice (10)

Hydrolysis rates of nerve agents are slower than those of HD or HN-2 with half-lives of 14-

28 h at pH 7 and 25degC 39 h at pH 75 and 25degC and 60 h at pH 6 and 25degC for GA GB and

GD respectively (10 12) The primary product of GA hydrolysis is phosphoric acid and the

primary product of GB and GD hydrolysis is methylphosphonic acid (MPA) (3 13) Hydrolysis

of VX is slower than that of the G-agents with a reported half-life of 17-42 d at 25degC and pH 7

(14) The hydrolysis products are pH-dependent but S-(2-diisopropylaminoethyl) methyl

phosphonothioate (EA2192) and ethanol are formed at pH 7 to 10 (3) EA2192 has

anticholinesterase activity that is similar to that of VX (10)

The rate of CWA hydrolysis is dependent on such factors as temperature pH and water

quality Hydrolysis rates increase with increasing temperature For example the rate of HD

hydrolysis at 70degC was 28 times that at 30degC (15) For GB at pH 7 hydrolysis half-lives of 2650

h and 39-41 h were reported at 0degC and 25degC respectively (14) The effect of pH on CWA

hydrolysis varies eg GD hydrolysis is acid-catalyzed with half-lives of 3 50 and 60 hr at pH 2

76 and 9 respectively (14) while VX hydrolysis is base-catalyzed with half-lives of 2400 17

and 002 d at pH 2-3 11 and 14 respectively (14) The hydrolysis rate of HD does not vary

between pH 5 and 10 (14) which covers the typical pH range for landfill leachate High chloride

ion concentrations can inhibit HD hydrolysis (16) an observation that is likely important in a

landfill environment because of the relatively high chloride concentrations in landfill leachates

(17) GA and GB hydrolysis rates were enhanced by the presence of dissolved oxygen and

cations such as Cu2+ Ca2+ Al3+ Mg2+ and Mn2+ (14)

S4

Sorption to organic waste constituents retards the transport of organic contaminants in

landfills Municipal solid waste (MSW) is ~50 cellulose 10-15 hemicellulose and 15-20

lignin (18 19) In addition MSW contains ~10 plastics In terms of elemental composition

MSW is about 50 organic carbon (18 19) therefore a large fraction of MSW represents a

sorbent for organic compounds For many MSW constituents sorption of neutral organic

contaminants can be described by a partitioning model (48) and the sorption capacity of an

organic MSW constituent increases with increasing sorbent hydrophobicity (8) and sorbate

octanol-water partition coefficient log Kow (4) For ionizable CWAs it was assumed that only

the neutral species sorbs appreciably for octanol-water systems this assumption is valid up to

several pH units above the pKa of organic acids (20)

Although biodegradation of CWAs is theoretically possible biodegradation of many CWAs

has not been observed due to their toxicity (10) Assuming that CWA-exposed building debris

will be decontaminated prior to disposal some anaerobic degradation may occur in landfills if

CWAs are present at low aqueous-phase concentrations It is more likely that biodegradation of

CWA hydrolysates will occur because CWAs hydrolyze rapidly and hydrolysates generally have

reduced toxicity relative to the original agents Only one study was identified that investigated

the anaerobic biodegradability of CWA hydrolysates Skylar et al (21) reported 42

degradation of TDG (HD hydrolysate) by an anaerobic sludge inoculum after 185 d The

addition of co-substrates (volatile fatty acids glucose) reduced the TDG half-life to less than 30

d

Physical-Chemical Data for additional CWAs Evaluation of the transport of a number of

additional CWAs was performed using MOCLA A complete list of all CWAs evaluated is

S5

presented in Table S1 Physical-chemical property data for CWAs and TICs not presented in

Table 2 of the manuscript are given in Table S2

S6

Description of MOCLA model and derivation of liner diffusion term

Box S1 Equations of the original MOCLA model

The total concentration of the chemical CT (g chemical m-3 landfill) at any time t is calculated with

⎟⎟⎠

⎞⎜⎜⎝

⎛sdotminus= t

RkCC

aTT exp0 (S1)

where CT0 is the initial total concentration of the chemical (g chemical m-3 landfill) at t=0

H

w

Ha KHK

Nqk λε++= (S2)

Ra is the retardation factor

aH

wococba K

KfR εερ+

+sdotsdot= (S3)

qa is the specific gas flow (see Box S2) N is the annual net precipitation (m yr-1) H is the depth of waste (m) KH is the dimensionless Henryrsquos Law constant foc is the fraction of organic carbon in the dry waste Koc is the distribution coefficient between solid organic carbon and water (see Box S2) λ is the first order transformation constant (yr-1) ρb is the dry bulk density of the dry waste in the landfill (tonne dry waste m-3 landfill) εw is the volumetric moisture content in the landfill (m3 water m-3 landfill) εa is the volumetric air content in the landfill (m3 air m-3 landfill)

The transport of chemicals via landfill gas (Fa) diffusion through the top cover (Fgd) and leachate (Fw) is calculated with the following equations

)(tCR

VqF Ta

aa sdot=

)()( tCRQtF T

a

Dgd sdot= )()( tC

RKNAtF T

aHw sdot= (S4) (S5) (S6)

where QD = VqD (see Box S2)

S7

Box S2 Additional MOCLA equations

The sum of the specific gas production rate and diffusional lsquoflowrsquo is combined into a specific gas flow qa

rsquo qa

rsquo = qa + qD (S7) where qa is the specific gas production rate (m-3 landfill gas m-3 waste yr-1) and qD the diffusional lsquoflowrsquo is calculated from

LV

ADq

SC

airSCaD 2

310

εε

= (S8)

Dair is the molecular diffusion coefficient of the chemical in air (m2 yr-1) εSC is the total porosity of the soil cover (m3 pore space m-3 soil cover) εaSC is the volumetric content of air in the soil cover (m3 air m-3 soil cover) L is the thickness of the soil cover (m) A is the surface area of the landfill (m2) V is the total volume of waste in the landfill (m3)

For neutral compounds Koc the distribution coefficient between solid organic carbon and water is calculated from

log Koc = 072log Kow+049 (S9) where Kow is the octanol-water distribution coefficient (dimensionless)

For organic bases (tertiary amines) Koc (pH) the pH-dependent distribution coefficient is calculated from (20)

Koc (pH) = (1-α) Koc (S10) where Koc is the distribution coefficient for the neutral compound and α the fraction of the non-dissociated (cationic) species is calculated from

α = 1(1+10(pH-pKa)) (S11)

S8

Box S3 Incorporation of liner diffusion term into MOCLA

In addition to the processes originally modeled by MOCLA a term was incorporated to evaluate diffusion through the composite liner The diffusive flux through the liner can be expressed by

xCDJ Diff partpart

= (S12)

where JDiff is the diffusive flux through the liner (g m-2 yr-1) D is the diffusion coefficient in the soil cover partCpartx is the concentration gradient (g m-4)

The diffusion coefficient (D) in eqn S12 is the effective diffusion coefficient for the composite geomembraneclay liner It was assumed that the geomembrane layer does not impede the diffusive flux through the composite liner as volatile organic compounds have been shown to penetrate geomembranes at an appreciable rate (22) Therefore the diffusion coefficient for the composite liner was represented by the effective diffusion coefficient for the clay layer Since clay liners are typically compacted at a moisture content less than saturation diffusion will occur through both the air-filled and water-filled pore spaces within the clay In a porous medium the effective diffusion coefficient for each phase (D

air or D

water) is calculated from the molecular diffusivity of the compound in air or water (Dair or Dwater) the total porosity of the clay liner (εL) and the air- or water-filled porosity of the liner (εaL or εwL) One commonly-used expression is the Millington equation which relates the effective diffusion coefficient to the molecular diffusion coefficient by (23)

2

333

L

Laairair DD

ε

ε= (S13)

and

2

333

L

Lwwaterwater DD

ε

ε= (S14)

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 2: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S2

Chemical Agent Classification Blister agents include sulfur mustard (HD) nitrogen mustard

(HN-2) lewisite (L) ethyldichloroarsine (ED) and phosgene oxime (CX) Exposure to these

agents damages the respiratory tract when inhaled and causes vomiting and diarrhea when

absorbed (1) Most blood agents are cyanide-containing compounds They poison the

cytochrome oxidase system resulting in a lack of cell respiration and the normal transfer of

oxygen from the blood to body tissues (2) Nerve agents are highly toxic with a lethal

concentration (LD50) of approximately 01 mgkg (3) The toxicity of nerve agents arises from

their ability to irreversibly inhibit acetylcholinesterase an enzyme involved in the proper

functioning of nerves and muscles (1) Nerve agents include tabun (GA) sarin (GB) soman

(GD) GE cyclohexyl sarin (GF) amiton (VG) VM and VX

Environmental Fate of Chemical Agents In landfills the behavior of organic contaminants is

influenced by the combined effects of biodegradation sorption transport in the gas andor liquid

phases (ie volatilization and leaching) and abiotic transformation such as hydrolysis (4-8)

Many CWAs hydrolyze in aqueous systems with half-lives on the order of minutes to days A

hydrolysis half-life of 85 min has been reported for HD in aqueous systems (9) however the

overall rate of HD disappearance is often limited by the slow rate of HD dissolution from a non-

aqueous phase into water Also hydrolysis products can coat the surface of HD droplets and

retard HD dissolution (10) Both its hydrophobicity and the formation of hydrolysis products

make non-aqueous-phase HD fairly persistent in the environment HD hydrolysis can occur via

two pathways that are dependent on water availability but the dominant products of either

pathway are thiodiglycol (TDG) and hydrochloric acid (10) Like HD the principal

environmental fate pathway of HN-2 is hydrolysis A hydrolysis half-life of 11 h has been

calculated for HN-2 at 25degC in a 667 acetone-water solution (11) The primary hydrolysate is

S3

the hydrochloride form of 2-(2-chloroethyl) methylamino ethanol which is highly toxic by the

oral route in rats and mice (10)

Hydrolysis rates of nerve agents are slower than those of HD or HN-2 with half-lives of 14-

28 h at pH 7 and 25degC 39 h at pH 75 and 25degC and 60 h at pH 6 and 25degC for GA GB and

GD respectively (10 12) The primary product of GA hydrolysis is phosphoric acid and the

primary product of GB and GD hydrolysis is methylphosphonic acid (MPA) (3 13) Hydrolysis

of VX is slower than that of the G-agents with a reported half-life of 17-42 d at 25degC and pH 7

(14) The hydrolysis products are pH-dependent but S-(2-diisopropylaminoethyl) methyl

phosphonothioate (EA2192) and ethanol are formed at pH 7 to 10 (3) EA2192 has

anticholinesterase activity that is similar to that of VX (10)

The rate of CWA hydrolysis is dependent on such factors as temperature pH and water

quality Hydrolysis rates increase with increasing temperature For example the rate of HD

hydrolysis at 70degC was 28 times that at 30degC (15) For GB at pH 7 hydrolysis half-lives of 2650

h and 39-41 h were reported at 0degC and 25degC respectively (14) The effect of pH on CWA

hydrolysis varies eg GD hydrolysis is acid-catalyzed with half-lives of 3 50 and 60 hr at pH 2

76 and 9 respectively (14) while VX hydrolysis is base-catalyzed with half-lives of 2400 17

and 002 d at pH 2-3 11 and 14 respectively (14) The hydrolysis rate of HD does not vary

between pH 5 and 10 (14) which covers the typical pH range for landfill leachate High chloride

ion concentrations can inhibit HD hydrolysis (16) an observation that is likely important in a

landfill environment because of the relatively high chloride concentrations in landfill leachates

(17) GA and GB hydrolysis rates were enhanced by the presence of dissolved oxygen and

cations such as Cu2+ Ca2+ Al3+ Mg2+ and Mn2+ (14)

S4

Sorption to organic waste constituents retards the transport of organic contaminants in

landfills Municipal solid waste (MSW) is ~50 cellulose 10-15 hemicellulose and 15-20

lignin (18 19) In addition MSW contains ~10 plastics In terms of elemental composition

MSW is about 50 organic carbon (18 19) therefore a large fraction of MSW represents a

sorbent for organic compounds For many MSW constituents sorption of neutral organic

contaminants can be described by a partitioning model (48) and the sorption capacity of an

organic MSW constituent increases with increasing sorbent hydrophobicity (8) and sorbate

octanol-water partition coefficient log Kow (4) For ionizable CWAs it was assumed that only

the neutral species sorbs appreciably for octanol-water systems this assumption is valid up to

several pH units above the pKa of organic acids (20)

Although biodegradation of CWAs is theoretically possible biodegradation of many CWAs

has not been observed due to their toxicity (10) Assuming that CWA-exposed building debris

will be decontaminated prior to disposal some anaerobic degradation may occur in landfills if

CWAs are present at low aqueous-phase concentrations It is more likely that biodegradation of

CWA hydrolysates will occur because CWAs hydrolyze rapidly and hydrolysates generally have

reduced toxicity relative to the original agents Only one study was identified that investigated

the anaerobic biodegradability of CWA hydrolysates Skylar et al (21) reported 42

degradation of TDG (HD hydrolysate) by an anaerobic sludge inoculum after 185 d The

addition of co-substrates (volatile fatty acids glucose) reduced the TDG half-life to less than 30

d

Physical-Chemical Data for additional CWAs Evaluation of the transport of a number of

additional CWAs was performed using MOCLA A complete list of all CWAs evaluated is

S5

presented in Table S1 Physical-chemical property data for CWAs and TICs not presented in

Table 2 of the manuscript are given in Table S2

S6

Description of MOCLA model and derivation of liner diffusion term

Box S1 Equations of the original MOCLA model

The total concentration of the chemical CT (g chemical m-3 landfill) at any time t is calculated with

⎟⎟⎠

⎞⎜⎜⎝

⎛sdotminus= t

RkCC

aTT exp0 (S1)

where CT0 is the initial total concentration of the chemical (g chemical m-3 landfill) at t=0

H

w

Ha KHK

Nqk λε++= (S2)

Ra is the retardation factor

aH

wococba K

KfR εερ+

+sdotsdot= (S3)

qa is the specific gas flow (see Box S2) N is the annual net precipitation (m yr-1) H is the depth of waste (m) KH is the dimensionless Henryrsquos Law constant foc is the fraction of organic carbon in the dry waste Koc is the distribution coefficient between solid organic carbon and water (see Box S2) λ is the first order transformation constant (yr-1) ρb is the dry bulk density of the dry waste in the landfill (tonne dry waste m-3 landfill) εw is the volumetric moisture content in the landfill (m3 water m-3 landfill) εa is the volumetric air content in the landfill (m3 air m-3 landfill)

The transport of chemicals via landfill gas (Fa) diffusion through the top cover (Fgd) and leachate (Fw) is calculated with the following equations

)(tCR

VqF Ta

aa sdot=

)()( tCRQtF T

a

Dgd sdot= )()( tC

RKNAtF T

aHw sdot= (S4) (S5) (S6)

where QD = VqD (see Box S2)

S7

Box S2 Additional MOCLA equations

The sum of the specific gas production rate and diffusional lsquoflowrsquo is combined into a specific gas flow qa

rsquo qa

rsquo = qa + qD (S7) where qa is the specific gas production rate (m-3 landfill gas m-3 waste yr-1) and qD the diffusional lsquoflowrsquo is calculated from

LV

ADq

SC

airSCaD 2

310

εε

= (S8)

Dair is the molecular diffusion coefficient of the chemical in air (m2 yr-1) εSC is the total porosity of the soil cover (m3 pore space m-3 soil cover) εaSC is the volumetric content of air in the soil cover (m3 air m-3 soil cover) L is the thickness of the soil cover (m) A is the surface area of the landfill (m2) V is the total volume of waste in the landfill (m3)

For neutral compounds Koc the distribution coefficient between solid organic carbon and water is calculated from

log Koc = 072log Kow+049 (S9) where Kow is the octanol-water distribution coefficient (dimensionless)

For organic bases (tertiary amines) Koc (pH) the pH-dependent distribution coefficient is calculated from (20)

Koc (pH) = (1-α) Koc (S10) where Koc is the distribution coefficient for the neutral compound and α the fraction of the non-dissociated (cationic) species is calculated from

α = 1(1+10(pH-pKa)) (S11)

S8

Box S3 Incorporation of liner diffusion term into MOCLA

In addition to the processes originally modeled by MOCLA a term was incorporated to evaluate diffusion through the composite liner The diffusive flux through the liner can be expressed by

xCDJ Diff partpart

= (S12)

where JDiff is the diffusive flux through the liner (g m-2 yr-1) D is the diffusion coefficient in the soil cover partCpartx is the concentration gradient (g m-4)

The diffusion coefficient (D) in eqn S12 is the effective diffusion coefficient for the composite geomembraneclay liner It was assumed that the geomembrane layer does not impede the diffusive flux through the composite liner as volatile organic compounds have been shown to penetrate geomembranes at an appreciable rate (22) Therefore the diffusion coefficient for the composite liner was represented by the effective diffusion coefficient for the clay layer Since clay liners are typically compacted at a moisture content less than saturation diffusion will occur through both the air-filled and water-filled pore spaces within the clay In a porous medium the effective diffusion coefficient for each phase (D

air or D

water) is calculated from the molecular diffusivity of the compound in air or water (Dair or Dwater) the total porosity of the clay liner (εL) and the air- or water-filled porosity of the liner (εaL or εwL) One commonly-used expression is the Millington equation which relates the effective diffusion coefficient to the molecular diffusion coefficient by (23)

2

333

L

Laairair DD

ε

ε= (S13)

and

2

333

L

Lwwaterwater DD

ε

ε= (S14)

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 3: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S3

the hydrochloride form of 2-(2-chloroethyl) methylamino ethanol which is highly toxic by the

oral route in rats and mice (10)

Hydrolysis rates of nerve agents are slower than those of HD or HN-2 with half-lives of 14-

28 h at pH 7 and 25degC 39 h at pH 75 and 25degC and 60 h at pH 6 and 25degC for GA GB and

GD respectively (10 12) The primary product of GA hydrolysis is phosphoric acid and the

primary product of GB and GD hydrolysis is methylphosphonic acid (MPA) (3 13) Hydrolysis

of VX is slower than that of the G-agents with a reported half-life of 17-42 d at 25degC and pH 7

(14) The hydrolysis products are pH-dependent but S-(2-diisopropylaminoethyl) methyl

phosphonothioate (EA2192) and ethanol are formed at pH 7 to 10 (3) EA2192 has

anticholinesterase activity that is similar to that of VX (10)

The rate of CWA hydrolysis is dependent on such factors as temperature pH and water

quality Hydrolysis rates increase with increasing temperature For example the rate of HD

hydrolysis at 70degC was 28 times that at 30degC (15) For GB at pH 7 hydrolysis half-lives of 2650

h and 39-41 h were reported at 0degC and 25degC respectively (14) The effect of pH on CWA

hydrolysis varies eg GD hydrolysis is acid-catalyzed with half-lives of 3 50 and 60 hr at pH 2

76 and 9 respectively (14) while VX hydrolysis is base-catalyzed with half-lives of 2400 17

and 002 d at pH 2-3 11 and 14 respectively (14) The hydrolysis rate of HD does not vary

between pH 5 and 10 (14) which covers the typical pH range for landfill leachate High chloride

ion concentrations can inhibit HD hydrolysis (16) an observation that is likely important in a

landfill environment because of the relatively high chloride concentrations in landfill leachates

(17) GA and GB hydrolysis rates were enhanced by the presence of dissolved oxygen and

cations such as Cu2+ Ca2+ Al3+ Mg2+ and Mn2+ (14)

S4

Sorption to organic waste constituents retards the transport of organic contaminants in

landfills Municipal solid waste (MSW) is ~50 cellulose 10-15 hemicellulose and 15-20

lignin (18 19) In addition MSW contains ~10 plastics In terms of elemental composition

MSW is about 50 organic carbon (18 19) therefore a large fraction of MSW represents a

sorbent for organic compounds For many MSW constituents sorption of neutral organic

contaminants can be described by a partitioning model (48) and the sorption capacity of an

organic MSW constituent increases with increasing sorbent hydrophobicity (8) and sorbate

octanol-water partition coefficient log Kow (4) For ionizable CWAs it was assumed that only

the neutral species sorbs appreciably for octanol-water systems this assumption is valid up to

several pH units above the pKa of organic acids (20)

Although biodegradation of CWAs is theoretically possible biodegradation of many CWAs

has not been observed due to their toxicity (10) Assuming that CWA-exposed building debris

will be decontaminated prior to disposal some anaerobic degradation may occur in landfills if

CWAs are present at low aqueous-phase concentrations It is more likely that biodegradation of

CWA hydrolysates will occur because CWAs hydrolyze rapidly and hydrolysates generally have

reduced toxicity relative to the original agents Only one study was identified that investigated

the anaerobic biodegradability of CWA hydrolysates Skylar et al (21) reported 42

degradation of TDG (HD hydrolysate) by an anaerobic sludge inoculum after 185 d The

addition of co-substrates (volatile fatty acids glucose) reduced the TDG half-life to less than 30

d

Physical-Chemical Data for additional CWAs Evaluation of the transport of a number of

additional CWAs was performed using MOCLA A complete list of all CWAs evaluated is

S5

presented in Table S1 Physical-chemical property data for CWAs and TICs not presented in

Table 2 of the manuscript are given in Table S2

S6

Description of MOCLA model and derivation of liner diffusion term

Box S1 Equations of the original MOCLA model

The total concentration of the chemical CT (g chemical m-3 landfill) at any time t is calculated with

⎟⎟⎠

⎞⎜⎜⎝

⎛sdotminus= t

RkCC

aTT exp0 (S1)

where CT0 is the initial total concentration of the chemical (g chemical m-3 landfill) at t=0

H

w

Ha KHK

Nqk λε++= (S2)

Ra is the retardation factor

aH

wococba K

KfR εερ+

+sdotsdot= (S3)

qa is the specific gas flow (see Box S2) N is the annual net precipitation (m yr-1) H is the depth of waste (m) KH is the dimensionless Henryrsquos Law constant foc is the fraction of organic carbon in the dry waste Koc is the distribution coefficient between solid organic carbon and water (see Box S2) λ is the first order transformation constant (yr-1) ρb is the dry bulk density of the dry waste in the landfill (tonne dry waste m-3 landfill) εw is the volumetric moisture content in the landfill (m3 water m-3 landfill) εa is the volumetric air content in the landfill (m3 air m-3 landfill)

The transport of chemicals via landfill gas (Fa) diffusion through the top cover (Fgd) and leachate (Fw) is calculated with the following equations

)(tCR

VqF Ta

aa sdot=

)()( tCRQtF T

a

Dgd sdot= )()( tC

RKNAtF T

aHw sdot= (S4) (S5) (S6)

where QD = VqD (see Box S2)

S7

Box S2 Additional MOCLA equations

The sum of the specific gas production rate and diffusional lsquoflowrsquo is combined into a specific gas flow qa

rsquo qa

rsquo = qa + qD (S7) where qa is the specific gas production rate (m-3 landfill gas m-3 waste yr-1) and qD the diffusional lsquoflowrsquo is calculated from

LV

ADq

SC

airSCaD 2

310

εε

= (S8)

Dair is the molecular diffusion coefficient of the chemical in air (m2 yr-1) εSC is the total porosity of the soil cover (m3 pore space m-3 soil cover) εaSC is the volumetric content of air in the soil cover (m3 air m-3 soil cover) L is the thickness of the soil cover (m) A is the surface area of the landfill (m2) V is the total volume of waste in the landfill (m3)

For neutral compounds Koc the distribution coefficient between solid organic carbon and water is calculated from

log Koc = 072log Kow+049 (S9) where Kow is the octanol-water distribution coefficient (dimensionless)

For organic bases (tertiary amines) Koc (pH) the pH-dependent distribution coefficient is calculated from (20)

Koc (pH) = (1-α) Koc (S10) where Koc is the distribution coefficient for the neutral compound and α the fraction of the non-dissociated (cationic) species is calculated from

α = 1(1+10(pH-pKa)) (S11)

S8

Box S3 Incorporation of liner diffusion term into MOCLA

In addition to the processes originally modeled by MOCLA a term was incorporated to evaluate diffusion through the composite liner The diffusive flux through the liner can be expressed by

xCDJ Diff partpart

= (S12)

where JDiff is the diffusive flux through the liner (g m-2 yr-1) D is the diffusion coefficient in the soil cover partCpartx is the concentration gradient (g m-4)

The diffusion coefficient (D) in eqn S12 is the effective diffusion coefficient for the composite geomembraneclay liner It was assumed that the geomembrane layer does not impede the diffusive flux through the composite liner as volatile organic compounds have been shown to penetrate geomembranes at an appreciable rate (22) Therefore the diffusion coefficient for the composite liner was represented by the effective diffusion coefficient for the clay layer Since clay liners are typically compacted at a moisture content less than saturation diffusion will occur through both the air-filled and water-filled pore spaces within the clay In a porous medium the effective diffusion coefficient for each phase (D

air or D

water) is calculated from the molecular diffusivity of the compound in air or water (Dair or Dwater) the total porosity of the clay liner (εL) and the air- or water-filled porosity of the liner (εaL or εwL) One commonly-used expression is the Millington equation which relates the effective diffusion coefficient to the molecular diffusion coefficient by (23)

2

333

L

Laairair DD

ε

ε= (S13)

and

2

333

L

Lwwaterwater DD

ε

ε= (S14)

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 4: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S4

Sorption to organic waste constituents retards the transport of organic contaminants in

landfills Municipal solid waste (MSW) is ~50 cellulose 10-15 hemicellulose and 15-20

lignin (18 19) In addition MSW contains ~10 plastics In terms of elemental composition

MSW is about 50 organic carbon (18 19) therefore a large fraction of MSW represents a

sorbent for organic compounds For many MSW constituents sorption of neutral organic

contaminants can be described by a partitioning model (48) and the sorption capacity of an

organic MSW constituent increases with increasing sorbent hydrophobicity (8) and sorbate

octanol-water partition coefficient log Kow (4) For ionizable CWAs it was assumed that only

the neutral species sorbs appreciably for octanol-water systems this assumption is valid up to

several pH units above the pKa of organic acids (20)

Although biodegradation of CWAs is theoretically possible biodegradation of many CWAs

has not been observed due to their toxicity (10) Assuming that CWA-exposed building debris

will be decontaminated prior to disposal some anaerobic degradation may occur in landfills if

CWAs are present at low aqueous-phase concentrations It is more likely that biodegradation of

CWA hydrolysates will occur because CWAs hydrolyze rapidly and hydrolysates generally have

reduced toxicity relative to the original agents Only one study was identified that investigated

the anaerobic biodegradability of CWA hydrolysates Skylar et al (21) reported 42

degradation of TDG (HD hydrolysate) by an anaerobic sludge inoculum after 185 d The

addition of co-substrates (volatile fatty acids glucose) reduced the TDG half-life to less than 30

d

Physical-Chemical Data for additional CWAs Evaluation of the transport of a number of

additional CWAs was performed using MOCLA A complete list of all CWAs evaluated is

S5

presented in Table S1 Physical-chemical property data for CWAs and TICs not presented in

Table 2 of the manuscript are given in Table S2

S6

Description of MOCLA model and derivation of liner diffusion term

Box S1 Equations of the original MOCLA model

The total concentration of the chemical CT (g chemical m-3 landfill) at any time t is calculated with

⎟⎟⎠

⎞⎜⎜⎝

⎛sdotminus= t

RkCC

aTT exp0 (S1)

where CT0 is the initial total concentration of the chemical (g chemical m-3 landfill) at t=0

H

w

Ha KHK

Nqk λε++= (S2)

Ra is the retardation factor

aH

wococba K

KfR εερ+

+sdotsdot= (S3)

qa is the specific gas flow (see Box S2) N is the annual net precipitation (m yr-1) H is the depth of waste (m) KH is the dimensionless Henryrsquos Law constant foc is the fraction of organic carbon in the dry waste Koc is the distribution coefficient between solid organic carbon and water (see Box S2) λ is the first order transformation constant (yr-1) ρb is the dry bulk density of the dry waste in the landfill (tonne dry waste m-3 landfill) εw is the volumetric moisture content in the landfill (m3 water m-3 landfill) εa is the volumetric air content in the landfill (m3 air m-3 landfill)

The transport of chemicals via landfill gas (Fa) diffusion through the top cover (Fgd) and leachate (Fw) is calculated with the following equations

)(tCR

VqF Ta

aa sdot=

)()( tCRQtF T

a

Dgd sdot= )()( tC

RKNAtF T

aHw sdot= (S4) (S5) (S6)

where QD = VqD (see Box S2)

S7

Box S2 Additional MOCLA equations

The sum of the specific gas production rate and diffusional lsquoflowrsquo is combined into a specific gas flow qa

rsquo qa

rsquo = qa + qD (S7) where qa is the specific gas production rate (m-3 landfill gas m-3 waste yr-1) and qD the diffusional lsquoflowrsquo is calculated from

LV

ADq

SC

airSCaD 2

310

εε

= (S8)

Dair is the molecular diffusion coefficient of the chemical in air (m2 yr-1) εSC is the total porosity of the soil cover (m3 pore space m-3 soil cover) εaSC is the volumetric content of air in the soil cover (m3 air m-3 soil cover) L is the thickness of the soil cover (m) A is the surface area of the landfill (m2) V is the total volume of waste in the landfill (m3)

For neutral compounds Koc the distribution coefficient between solid organic carbon and water is calculated from

log Koc = 072log Kow+049 (S9) where Kow is the octanol-water distribution coefficient (dimensionless)

For organic bases (tertiary amines) Koc (pH) the pH-dependent distribution coefficient is calculated from (20)

Koc (pH) = (1-α) Koc (S10) where Koc is the distribution coefficient for the neutral compound and α the fraction of the non-dissociated (cationic) species is calculated from

α = 1(1+10(pH-pKa)) (S11)

S8

Box S3 Incorporation of liner diffusion term into MOCLA

In addition to the processes originally modeled by MOCLA a term was incorporated to evaluate diffusion through the composite liner The diffusive flux through the liner can be expressed by

xCDJ Diff partpart

= (S12)

where JDiff is the diffusive flux through the liner (g m-2 yr-1) D is the diffusion coefficient in the soil cover partCpartx is the concentration gradient (g m-4)

The diffusion coefficient (D) in eqn S12 is the effective diffusion coefficient for the composite geomembraneclay liner It was assumed that the geomembrane layer does not impede the diffusive flux through the composite liner as volatile organic compounds have been shown to penetrate geomembranes at an appreciable rate (22) Therefore the diffusion coefficient for the composite liner was represented by the effective diffusion coefficient for the clay layer Since clay liners are typically compacted at a moisture content less than saturation diffusion will occur through both the air-filled and water-filled pore spaces within the clay In a porous medium the effective diffusion coefficient for each phase (D

air or D

water) is calculated from the molecular diffusivity of the compound in air or water (Dair or Dwater) the total porosity of the clay liner (εL) and the air- or water-filled porosity of the liner (εaL or εwL) One commonly-used expression is the Millington equation which relates the effective diffusion coefficient to the molecular diffusion coefficient by (23)

2

333

L

Laairair DD

ε

ε= (S13)

and

2

333

L

Lwwaterwater DD

ε

ε= (S14)

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 5: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S5

presented in Table S1 Physical-chemical property data for CWAs and TICs not presented in

Table 2 of the manuscript are given in Table S2

S6

Description of MOCLA model and derivation of liner diffusion term

Box S1 Equations of the original MOCLA model

The total concentration of the chemical CT (g chemical m-3 landfill) at any time t is calculated with

⎟⎟⎠

⎞⎜⎜⎝

⎛sdotminus= t

RkCC

aTT exp0 (S1)

where CT0 is the initial total concentration of the chemical (g chemical m-3 landfill) at t=0

H

w

Ha KHK

Nqk λε++= (S2)

Ra is the retardation factor

aH

wococba K

KfR εερ+

+sdotsdot= (S3)

qa is the specific gas flow (see Box S2) N is the annual net precipitation (m yr-1) H is the depth of waste (m) KH is the dimensionless Henryrsquos Law constant foc is the fraction of organic carbon in the dry waste Koc is the distribution coefficient between solid organic carbon and water (see Box S2) λ is the first order transformation constant (yr-1) ρb is the dry bulk density of the dry waste in the landfill (tonne dry waste m-3 landfill) εw is the volumetric moisture content in the landfill (m3 water m-3 landfill) εa is the volumetric air content in the landfill (m3 air m-3 landfill)

The transport of chemicals via landfill gas (Fa) diffusion through the top cover (Fgd) and leachate (Fw) is calculated with the following equations

)(tCR

VqF Ta

aa sdot=

)()( tCRQtF T

a

Dgd sdot= )()( tC

RKNAtF T

aHw sdot= (S4) (S5) (S6)

where QD = VqD (see Box S2)

S7

Box S2 Additional MOCLA equations

The sum of the specific gas production rate and diffusional lsquoflowrsquo is combined into a specific gas flow qa

rsquo qa

rsquo = qa + qD (S7) where qa is the specific gas production rate (m-3 landfill gas m-3 waste yr-1) and qD the diffusional lsquoflowrsquo is calculated from

LV

ADq

SC

airSCaD 2

310

εε

= (S8)

Dair is the molecular diffusion coefficient of the chemical in air (m2 yr-1) εSC is the total porosity of the soil cover (m3 pore space m-3 soil cover) εaSC is the volumetric content of air in the soil cover (m3 air m-3 soil cover) L is the thickness of the soil cover (m) A is the surface area of the landfill (m2) V is the total volume of waste in the landfill (m3)

For neutral compounds Koc the distribution coefficient between solid organic carbon and water is calculated from

log Koc = 072log Kow+049 (S9) where Kow is the octanol-water distribution coefficient (dimensionless)

For organic bases (tertiary amines) Koc (pH) the pH-dependent distribution coefficient is calculated from (20)

Koc (pH) = (1-α) Koc (S10) where Koc is the distribution coefficient for the neutral compound and α the fraction of the non-dissociated (cationic) species is calculated from

α = 1(1+10(pH-pKa)) (S11)

S8

Box S3 Incorporation of liner diffusion term into MOCLA

In addition to the processes originally modeled by MOCLA a term was incorporated to evaluate diffusion through the composite liner The diffusive flux through the liner can be expressed by

xCDJ Diff partpart

= (S12)

where JDiff is the diffusive flux through the liner (g m-2 yr-1) D is the diffusion coefficient in the soil cover partCpartx is the concentration gradient (g m-4)

The diffusion coefficient (D) in eqn S12 is the effective diffusion coefficient for the composite geomembraneclay liner It was assumed that the geomembrane layer does not impede the diffusive flux through the composite liner as volatile organic compounds have been shown to penetrate geomembranes at an appreciable rate (22) Therefore the diffusion coefficient for the composite liner was represented by the effective diffusion coefficient for the clay layer Since clay liners are typically compacted at a moisture content less than saturation diffusion will occur through both the air-filled and water-filled pore spaces within the clay In a porous medium the effective diffusion coefficient for each phase (D

air or D

water) is calculated from the molecular diffusivity of the compound in air or water (Dair or Dwater) the total porosity of the clay liner (εL) and the air- or water-filled porosity of the liner (εaL or εwL) One commonly-used expression is the Millington equation which relates the effective diffusion coefficient to the molecular diffusion coefficient by (23)

2

333

L

Laairair DD

ε

ε= (S13)

and

2

333

L

Lwwaterwater DD

ε

ε= (S14)

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 6: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S6

Description of MOCLA model and derivation of liner diffusion term

Box S1 Equations of the original MOCLA model

The total concentration of the chemical CT (g chemical m-3 landfill) at any time t is calculated with

⎟⎟⎠

⎞⎜⎜⎝

⎛sdotminus= t

RkCC

aTT exp0 (S1)

where CT0 is the initial total concentration of the chemical (g chemical m-3 landfill) at t=0

H

w

Ha KHK

Nqk λε++= (S2)

Ra is the retardation factor

aH

wococba K

KfR εερ+

+sdotsdot= (S3)

qa is the specific gas flow (see Box S2) N is the annual net precipitation (m yr-1) H is the depth of waste (m) KH is the dimensionless Henryrsquos Law constant foc is the fraction of organic carbon in the dry waste Koc is the distribution coefficient between solid organic carbon and water (see Box S2) λ is the first order transformation constant (yr-1) ρb is the dry bulk density of the dry waste in the landfill (tonne dry waste m-3 landfill) εw is the volumetric moisture content in the landfill (m3 water m-3 landfill) εa is the volumetric air content in the landfill (m3 air m-3 landfill)

The transport of chemicals via landfill gas (Fa) diffusion through the top cover (Fgd) and leachate (Fw) is calculated with the following equations

)(tCR

VqF Ta

aa sdot=

)()( tCRQtF T

a

Dgd sdot= )()( tC

RKNAtF T

aHw sdot= (S4) (S5) (S6)

where QD = VqD (see Box S2)

S7

Box S2 Additional MOCLA equations

The sum of the specific gas production rate and diffusional lsquoflowrsquo is combined into a specific gas flow qa

rsquo qa

rsquo = qa + qD (S7) where qa is the specific gas production rate (m-3 landfill gas m-3 waste yr-1) and qD the diffusional lsquoflowrsquo is calculated from

LV

ADq

SC

airSCaD 2

310

εε

= (S8)

Dair is the molecular diffusion coefficient of the chemical in air (m2 yr-1) εSC is the total porosity of the soil cover (m3 pore space m-3 soil cover) εaSC is the volumetric content of air in the soil cover (m3 air m-3 soil cover) L is the thickness of the soil cover (m) A is the surface area of the landfill (m2) V is the total volume of waste in the landfill (m3)

For neutral compounds Koc the distribution coefficient between solid organic carbon and water is calculated from

log Koc = 072log Kow+049 (S9) where Kow is the octanol-water distribution coefficient (dimensionless)

For organic bases (tertiary amines) Koc (pH) the pH-dependent distribution coefficient is calculated from (20)

Koc (pH) = (1-α) Koc (S10) where Koc is the distribution coefficient for the neutral compound and α the fraction of the non-dissociated (cationic) species is calculated from

α = 1(1+10(pH-pKa)) (S11)

S8

Box S3 Incorporation of liner diffusion term into MOCLA

In addition to the processes originally modeled by MOCLA a term was incorporated to evaluate diffusion through the composite liner The diffusive flux through the liner can be expressed by

xCDJ Diff partpart

= (S12)

where JDiff is the diffusive flux through the liner (g m-2 yr-1) D is the diffusion coefficient in the soil cover partCpartx is the concentration gradient (g m-4)

The diffusion coefficient (D) in eqn S12 is the effective diffusion coefficient for the composite geomembraneclay liner It was assumed that the geomembrane layer does not impede the diffusive flux through the composite liner as volatile organic compounds have been shown to penetrate geomembranes at an appreciable rate (22) Therefore the diffusion coefficient for the composite liner was represented by the effective diffusion coefficient for the clay layer Since clay liners are typically compacted at a moisture content less than saturation diffusion will occur through both the air-filled and water-filled pore spaces within the clay In a porous medium the effective diffusion coefficient for each phase (D

air or D

water) is calculated from the molecular diffusivity of the compound in air or water (Dair or Dwater) the total porosity of the clay liner (εL) and the air- or water-filled porosity of the liner (εaL or εwL) One commonly-used expression is the Millington equation which relates the effective diffusion coefficient to the molecular diffusion coefficient by (23)

2

333

L

Laairair DD

ε

ε= (S13)

and

2

333

L

Lwwaterwater DD

ε

ε= (S14)

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 7: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S7

Box S2 Additional MOCLA equations

The sum of the specific gas production rate and diffusional lsquoflowrsquo is combined into a specific gas flow qa

rsquo qa

rsquo = qa + qD (S7) where qa is the specific gas production rate (m-3 landfill gas m-3 waste yr-1) and qD the diffusional lsquoflowrsquo is calculated from

LV

ADq

SC

airSCaD 2

310

εε

= (S8)

Dair is the molecular diffusion coefficient of the chemical in air (m2 yr-1) εSC is the total porosity of the soil cover (m3 pore space m-3 soil cover) εaSC is the volumetric content of air in the soil cover (m3 air m-3 soil cover) L is the thickness of the soil cover (m) A is the surface area of the landfill (m2) V is the total volume of waste in the landfill (m3)

For neutral compounds Koc the distribution coefficient between solid organic carbon and water is calculated from

log Koc = 072log Kow+049 (S9) where Kow is the octanol-water distribution coefficient (dimensionless)

For organic bases (tertiary amines) Koc (pH) the pH-dependent distribution coefficient is calculated from (20)

Koc (pH) = (1-α) Koc (S10) where Koc is the distribution coefficient for the neutral compound and α the fraction of the non-dissociated (cationic) species is calculated from

α = 1(1+10(pH-pKa)) (S11)

S8

Box S3 Incorporation of liner diffusion term into MOCLA

In addition to the processes originally modeled by MOCLA a term was incorporated to evaluate diffusion through the composite liner The diffusive flux through the liner can be expressed by

xCDJ Diff partpart

= (S12)

where JDiff is the diffusive flux through the liner (g m-2 yr-1) D is the diffusion coefficient in the soil cover partCpartx is the concentration gradient (g m-4)

The diffusion coefficient (D) in eqn S12 is the effective diffusion coefficient for the composite geomembraneclay liner It was assumed that the geomembrane layer does not impede the diffusive flux through the composite liner as volatile organic compounds have been shown to penetrate geomembranes at an appreciable rate (22) Therefore the diffusion coefficient for the composite liner was represented by the effective diffusion coefficient for the clay layer Since clay liners are typically compacted at a moisture content less than saturation diffusion will occur through both the air-filled and water-filled pore spaces within the clay In a porous medium the effective diffusion coefficient for each phase (D

air or D

water) is calculated from the molecular diffusivity of the compound in air or water (Dair or Dwater) the total porosity of the clay liner (εL) and the air- or water-filled porosity of the liner (εaL or εwL) One commonly-used expression is the Millington equation which relates the effective diffusion coefficient to the molecular diffusion coefficient by (23)

2

333

L

Laairair DD

ε

ε= (S13)

and

2

333

L

Lwwaterwater DD

ε

ε= (S14)

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 8: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S8

Box S3 Incorporation of liner diffusion term into MOCLA

In addition to the processes originally modeled by MOCLA a term was incorporated to evaluate diffusion through the composite liner The diffusive flux through the liner can be expressed by

xCDJ Diff partpart

= (S12)

where JDiff is the diffusive flux through the liner (g m-2 yr-1) D is the diffusion coefficient in the soil cover partCpartx is the concentration gradient (g m-4)

The diffusion coefficient (D) in eqn S12 is the effective diffusion coefficient for the composite geomembraneclay liner It was assumed that the geomembrane layer does not impede the diffusive flux through the composite liner as volatile organic compounds have been shown to penetrate geomembranes at an appreciable rate (22) Therefore the diffusion coefficient for the composite liner was represented by the effective diffusion coefficient for the clay layer Since clay liners are typically compacted at a moisture content less than saturation diffusion will occur through both the air-filled and water-filled pore spaces within the clay In a porous medium the effective diffusion coefficient for each phase (D

air or D

water) is calculated from the molecular diffusivity of the compound in air or water (Dair or Dwater) the total porosity of the clay liner (εL) and the air- or water-filled porosity of the liner (εaL or εwL) One commonly-used expression is the Millington equation which relates the effective diffusion coefficient to the molecular diffusion coefficient by (23)

2

333

L

Laairair DD

ε

ε= (S13)

and

2

333

L

Lwwaterwater DD

ε

ε= (S14)

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 9: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S9

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Combining expressions S13 and S14 along with Henryrsquos Law results in the following equation for the diffusive flux through the liner (24)

x

CK

DDJ a

L

Lw

H

water

L

LaairDiff part

part⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S15)

where Ca is equal to the gas-phase concentration of the contaminant If it is assumed that the concentration of the contaminant of interest in the aquifer beneath the liner is equal to zero then the sink due to diffusion through the composite liner may be written as

liner

a

L

Lw

H

water

L

LaairDiff L

CA

KD

DS ⎟⎟⎠

⎞⎜⎜⎝

⎛+= 2

333

2

333

ε

ε

ε

ε (S16)

where SDiff is the sink due to diffusion through the liner (g yr-1) Lliner is the thickness of the clay layer of the composite liner (m) SDiff can be simplified to SDiff = QD linerCa (S17) where

liner

effLinerD L

ADQ = (S18)

and

2

333

2

333

L

Lw

H

water

L

Laaireff K

DDD

ε

ε

ε

ε+= (S19)

Because literature values for εaSC and εaL were not available these terms were calculated as

)0max( scscbscSCa MCsdotminus= ρεε (S20) and

)0max( LLbLLa MCsdotminus= ρεε (S21) where εsc and εL are the total porosity of the soil cover and liner (m3 voids m-3 cover or liner) ρbSC and ρbL are the dry bulk density of the soil cover and liner (g soil m-3 cover or liner) MCSC and MCL are the gravimetric moisture content of the soil cover and liner ()

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 10: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S10

Box S3 (continued) Incorporation of liner diffusion term into MOCLA

Including the diffusive flux term into the original MOCLA mass balance equation gives

( )diffwgdaT SSSSS

dtVCd

++++minus= λ)( (S22)

rearranging this expression gives

⎟⎟⎠

⎞⎜⎜⎝

⎛+++minus=

VQ

KHKNq

dtdC linerD

H

w

Ha

T λε (S23)

if qrsquo

D liner = QD liner V then a new expression for k can be written

linerD

H

w

Ha q

KHKNqk +++=

λε (S24)

Integrating each term on the right-hand side of eqn S22 gives the expressions for the fate routes The new expression for fate via liner diffusion is written as

))exp(1( t

RkqF

alinerDdiff minusminus= (S23)

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 11: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S11

Methodology used to determine MOCLA input parameter values (physical parameters)

To evaluate the distribution and fate of chemicals in a landfill data for a number of input

parameters describing the landfill design and operation are required This section describes each

parameter and provides an explanation of how parameter values that could be applicable under

various disposal scenarios were determined

Dry bulk density of the waste ρb (T m-3) It is assumed that the building debris will be contained

for transport and burial and therefore will not be compacted after placement in the landfill

Therefore the wet bulk density of the building debris will likely be lower than the average value

of wet bulk density for compacted waste which is about 076 T m-3 The range of wet bulk

densities to be used in the bounding calculations was 042 to 070 T m-3 with an average value of

055 T m-3

The dry bulk density was determined from the wet bulk density and an estimate of the

gravimetric moisture content of the waste If the gravimetric moisture content (MC) of the waste

is assumed to be 10-20 (wet weight basis) then the dry bulk density can be calculated as

follows

Using a design basis of 1 m3 of refuse the total mass of waste is equal to 042 T which

corresponds to the low end of the range The mass of water in 1 m3 of refuse is equal to 042

times 020 (highest possible value of MC) or 0084 T The total mass of waste minus the mass of

water (042 - 0084) results in the mass of dry refuse which is 034 T Therefore the low value

of the range for dry bulk density is 034 T m-3 Similarly the high end of the range is 063 T m-3

The average value is 049 T m-3

Volumetric moisture content of the waste εw (m3 water m-3 LF) The possible values of

volumetric moisture content of the waste can be calculated from the ranges of the wet bulk

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 12: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S12

density and the gravimetric moisture content assuming 1 m3 of waste The lowest value in the

range of volumetric moisture contents is calculated at 10 gravimetric moisture The mass of

water in 1 m3 of waste is 042 T (total mass) times 010 (mass of watertotal mass) which is 0042

T The density of water is 1 T m-3 so the volumetric moisture content is equal to 0042 m3 water

m-3 LF Similarly the highest value in the range is 014 m3 water m-3 LF which is equivalent to

070 T times 020 The average volumetric moisture content is 0091 m3 water m-3 LF

Volumetric gas content of the waste εa (m3 airm3 LF) A range of 010 to 040 was assumed for

the volumetric gas content of the waste There is very little data on measured values of the

effective porosity of waste Bendz et al (25) reported a measured value of 012 for a waste

sample from an operating MSW landfill Based on the range specified above the average value

for the volumetric gas content of the waste is 025

Fraction of organic carbon foc A range of 040 to 060 was used for the fraction of organic

carbon in the waste A value of 050 was reported for a sample of MSW (26) which will be used

as the average value in the bounding calculations

Height of the waste in the landfill H (m) The height of waste in the landfill is assumed to vary

between 183 and 61 m Based on this range the average height of waste in the landfill was 397

m

The final two terms required to describe the landfill infiltration and the gas production rate

are a function of the climate in which the landfill is located As a result two sets of values for

these parameters were used to represent an arid or a wet climate

Net precipitation N (myear) The net precipitation or infiltration was calculated based on data

reported in Camobreco et al (27) For the arid climate scenario data from sites with less than

05 m yr-1 of total precipitation were used while the data from sites with greater than or equal to

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 13: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S13

05 m yr-1 were used for the wet climate scenario For each site the total precipitation was

multiplied by the percentage of precipitation that becomes leachate to determine the net

precipitation or infiltration Using this method infiltration for the arid climate was found to

range from 002 to 005 m yr-1 with an average value of 004 m yr-1 Infiltration for the wet

climate ranged from 004 to 032 m yr-1 with an average of 012 m yr-1 Although the data used

to generate these estimates encompassed a variety of different percentages of final cover it

should be noted that modeling a dry (fully capped) landfill is potentially a more realistic scenario

than a wet landfill since the building debris will likely be encapsulated and the greatest

likelihood for leakage from the containers will occur after the final cover has been placed when

infiltration is minimal

Gas production rate qa (m3 LFG m-3 LF yr-1) The landfill gas (LFG) production rate can be

described by the following equation (28)

qa=2WLoke-kt (S24)

where W is the mass of refuse Lo is a term representing the ultimate volume of methane gas

produced per unit of wet waste and k is a rate constant (yr-1) Equation S24 assumes a methane

concentration of 50 in LFG

The mass of refuse (W) is a function of the bulk density of the waste which as stated above

was assumed to vary from 042 to 070 T m-3 with an average value of 055 T m-3 Assuming 1

m3 of waste W will be equal to 055 T Lo was assumed to vary between 85 and 170 L methane

kg-1 wet waste The value of 170 L methane kg-1 wet waste is the default used in the New

Source Performance Standards of the Clean Air Act amendments (29) For the arid climate

scenario the rate constant (k) was set to 002 yr-1 For the wet climate scenario the rate constant

(k) was set to 005 yr-1 For the arid scenario qa was found to range from 19 to 37 m3 LFG m-3

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 14: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S14

LF yr-1 with an average value of 28 m3 LFG m-3 LF yr-1 For the wet scenario qa was found to

range from 45 to 90 m3 LFG m-3 LF yr-1 with an average value of 675 m3 LFG m-3 LF yr-1

Thickness of cover L (m) The thickness of the landfill cover was set to 045 m which is the

minimum thickness specified by Subtitle D regulation for the thickness of the barrier layer (30)

This value was not varied in the bounding calculations

Total porosity of the soil cover εsc (dimensionless) The total porosity of the soil cover ranged

from 03 to 05 with an average value of 04 A total porosity between 03 and 05 is common for

a wide range of soil types

Gravimetric moisture content of soil cover (MCSC) The gravimetric moisture content of the soil

cover ranged from 103 to 308 (dry weight basis) with an average value of 200 based

published data (31)

Dry bulk density of the cover soil ρbSC (g cm-3) The dry bulk density of the soil cover ranged

from 13 to 20 g cm-3 with an average value of 17 g cm-3 based on published data (31) It

should be noted that the gravimetric moisture content and dry bulk density of the cover soil are

not used directly in MOCLA These parameters are used along with the porosity of the cover

soil to calculate the air-filled porosity of the cover soil which is an input parameter to MOCLA

Liner thickness Lliner (m) The thickness of the landfill liner was set to 06 m which is the

minimum thickness required by EPA Subtitle D regulation (30) The liner thickness was not

varied in the bounding calculations

Total porosity of the liner εL (dimensionless) The total porosity of the liner ranged from 03 to

05 with an average value of 04 A total porosity between 03 and 05 is common for a wide

range of soil types

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 15: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S15

Gravimetric moisture content of the liner (MCL) Based on published data (31) the gravimetric

moisture content of the liner ranged from 103 to 308 with an average value of 200

Dry bulk density of the liner materials ρb L (g cm-3) Based on published data (31) the dry bulk

density of the liner ranged from 13 to 20 g cm-3 with an average value of 17 g cm-3 It should

be noted that the gravimetric moisture content and dry bulk density of the liner are not used

directly in MOCLA These parameters are used along with the porosity of the liner to calculate

the air-filled porosity of the liner which is an input parameter to MOCLA

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 16: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S16

Table S1 List of Studied CWAs and TICs Military

Designation Common Name Chemical Formula CAS number Use

Carbon disulfide CS2 75-15-0 Toxic Industrial Chemical

Furan C4H4O 110-00-9 Toxic Industrial Chemical

HHD Mustard Gas C4H8Cl2S 505-60-2 Blister AgentVesicant

HN-2 Nitrogen Mustard C5H11Cl2N 51-75-2 Blister AgentVesicant

L Lewisite C2H2AsCl3 541-25-3 Blister AgentVesicant

ED Ethyldichloroarsine C2H5AsCl2 598-14-1 Blister AgentVesicant

CX Phosgene Oxime CHCl2NO 1794-86-1 Blister AgentVesicant

GA Tabun C5H11N2O2P 77-81-6 Nerve Agent GB Sarin C4H10FO2P 107-44-8 Nerve Agent GD Soman C7H16FO2P 96-64-0 Nerve Agent GE C5H12FO2P 1189-87-3 Nerve Agent GF Cyclohexyl Sarin C7H14FO2P 329-99-7 Nerve Agent VG Amiton C10H24NO3PS 78-53-5 Nerve Agent VM C9H22NO2PS 21770-86-5 Nerve Agent VX V-gas C11H26NO2PS 50782-69-9 Nerve Agent CS Tear Gas C10H5ClN2 2698-41-1 Tear Agent

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 17: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S17 Table S2 Physical-chemical property data for additional CWAs the riot-control agent CS and carbon disulfidea

Chemical Carbon disulfide

Lewisite (L)

Ethyldichloro- arsine (ED)

Phosgene oxime (CX)

Tabun (GA) GE GF VG VM CS

Chemical Formula CS2 C2H2AsCl3 C2H5AsCl2 CHCl2NO C5H11N2O2P C5H12FO2P C7H14FO2P C10H24NO3PS C9H22NO2PS C10H5ClN2

CAS number 75-15-0 541-25-3 598-14-1 1794-86-1 77-81-6 1189-87-3 329-99-7 78-53-5 21770-86-5 2698-41-1

MW (g mol-1) 7613 20732 17489 11393 16213 15412 18016 26934 23932 18862

bp (degC) 462 196 156 129 248 162b 228 337b 310b 310 fp (degC) -110 -12 -65 39 -50b -524b -12 lt25 542b 95 Vapor

pressure (mm Hg)

359 058 229 243 (50degC) 0057 23b 009 27times10-4(b) 61times10-4(b) 34times10-4

KH (dimensionless) 59times10-1 11times10-2(b) 24times10-2(b) 22times10-5(b) 654times10-7(b) 50times10-4(b) 39times10-4(b) 12times10-8(b) 45times10-8(b) 42times10-7(b)

Log Kow 194 256b 234b 073b 0394 073b 16b 17b 123b 276b

Hydrolysis half-life (min) infin 07c (20degC) 07d 12times105(e)

840-1680 (25degC

neutral pH) 2400f 2400f 42480g 42480g 15

Aqueous solubility (mg L-1)

2860 (25degC) 500h 600b

(25degC) 106times104(b)

(25degC) 72000 (20degC)

17times104(b) (25degC)

37times104

(20degC) 6600b (25degC)

2400b

(25degC) 119b

(25degC)

Diffusion coefficient in air (cm2 sec-1)i

0117 0080 0083 0101 0071 0072 0066 0052 0055 0067

Diffusion coefficient in

water (cm2 sec-1)j

14times10-5 97times10-6 97times10-6 13times10-5 82times10-6 80times10-6 75times10-6 58times10-6 62times10-6 81times10-6

pKa - - - 7k (N-OH) 233l

(tertiary amine)

- - 9m 9m -

a Data compiled from the following sources (10 32-39) b Estimated with EPISuite v312 (40) c Hydrolysis rate estimated to be on the order of 10 min-1 at 20degC (41) d Hydrolysis half-life for ED estimated to be equal to that of L based on structural similarity e Half-life calculated based on 5 disappearance after 6 d (2) f Value estimated by averaging hydrolysis half-lives of GA GB and GD g Hydrolysis half-life estimated to be equal to that of VX based on structural similarity h Temperature not reported i Estimated using Wilke-Lee equation (42) j Estimated using Hayduk-Laudie equation (42) k pKa for CX estimated from a range of calculated pKa values for chloro-substituted oximes (43) l Estimated using Chem-Silico software package (44) m pKa for VG and VM estimated to be equivalent to that of VX MW is molecular weight bp is boiling point fp is freezing point KH is the Henryrsquos Law constant Kow is the octanol-water partition coefficient

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 18: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S18Table S3 Henryrsquos law constant ranges for organic compounds originally modeled in MOCLA

Chemical KH (dimensionless)

low MOCLA (accepted) high difference

(low) difference

(high) Benzene 220E-01 220E-01 299E-01 00 358 Toluene 209E-01 270E-01 333E-01 226 233 Ethylbenzene 270E-01 320E-01 404E-01 156 263 Xylene (o) 176E-01 220E-01 398E-01 200 807 Xylene (mp ) 204E-01 280E-01 450E-01 271 607 1 3 5 Trimethylbenzene 242E-01 340E-01 589E-01 288 732 Phenol 161E-05 110E-05 437E-04 464 38700 Cresol (o) 283E-05 500E-05 115E-04 435 1292 24 ndash Dimethylphenol 279E-05 270E-04 695E-04 897 1574 12 ndash Dichlorobenzene 492E-02 800E-02 151E-01 385 892 14 ndash Dichlorobenzene 646E-02 100E-01 182E-01 354 820 2 ndash Chlorophenol 274E-04 340E-04 430E-04 193 264 24 - Dichlorophenol 444E-05 270E-04 176E-04 836 350 Naphthalene 118E-02 170E-02 500E-02 307 1943 1 ndash Methylnaphthalene 646E-03 160E-02 250E-02 596 564 Flourene 204E-03 400E-03 480E-03 489 201 Anthracene 791E-04 200E-03 295E-02 604 13731 n-Hexane 204E+01 560E+01 767E+01 635 369 n-Heptane 295E+01 810E+01 110E+02 636 362 n-Octane 447E+01 120E+02 202E+02 628 680 n-Nonane 169E+01 200E+02 243E+02 915 213 Cyclohexane 585E-01 800E+00 112E+01 927 403 Chloromethane CM methylchloride 361E-01 360E-01 164E+00 02 3543 Dichloromethane DCM 698E-02 120E-01 182E-01 418 517 Trichloromethane TCM Chloroform 799E-02 150E-01 217E-01 467 445 Tetrachloromethane TeCM 807E-01 120E+00 138E+00 327 148 Chloroethane ethylchloride 347E-01 460E-01 605E+00 246 12156 11 - Dichloroethane DCA 170E-01 230E-01 286E-01 261 244 12 - Dichloroethane DCA 374E-02 400E-02 447E-01 66 10171 111 - Trichloroethane TCA 161E-01 700E-01 146E+00 769 1087 112 - Trichloroethane TCA 327E-02 350E-02 123E-01 65 2517 Chloroethene Vinyl chloride 900E-01 110E+00 152E+02 182 137325 Dichloroethene 11 ndash DCE 613E-01 110E+00 782E+00 442 6111 Dichloroethene cis - 12 ndash DCE 121E-01 170E-01 200E-01 288 179 Dichloroethene trans - 12 ndash DCE 270E-01 380E-01 274E+00 289 6210 Trichloroethene TCE 997E-02 390E-01 503E-01 744 289

Tetrachloroethene PCE 106E-01 720E-01 119E+00 853 648 difference

(low) difference

(high) maximum 927 137325 minimum 00 148 median 385 648

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 19: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S19Table S4 Log Kow ranges for organic compounds originally modeled in MOCLA

Chemical Kow (Log Kow)

low MOCLA

(accepted) high

difference (low)

difference (high)

Benzene 156 210 252 257 200 Toluene 183 270 301 322 115 Ethylbenzene 268 310 332 135 71 Xylene (o) 212 310 342 316 103 Xylene (mp ) 304 320 329 50 28 1 3 5 Trimethylbenzene 342 340 402 06 182 Phenol 145 150 160 33 67 Cresol (o) 195 200 224 25 120 24 ndash Dimethylphenol 214 240 280 108 167 12 ndash Dichlorobenzene 297 340 375 126 103 14 ndash Dichlorobenzene 317 340 378 68 112 2 ndash Chlorophenol 083 220 225 623 23 24 - Dichlorophenol 290 310 323 65 42 Naphthalene 301 340 470 115 382 1 ndash Methylnaphthalene 386 390 508 10 303 Flourene 391 420 447 69 64 Anthracene 345 440 467 216 61 n-Hexane 290 410 425 293 37 n-Heptane 342 460 476 257 35 n-Octane 400 520 529 231 17 n-Nonane 442 560 565 211 09 Cyclohexane 240 340 370 294 88 Chloromethane CM methylchloride 091 090 106 11 178 Dichloromethane DCM 107 130 163 177 254 Trichloromethane TCM Chloroform 143 200 213 285 65 Tetrachloromethane TeCM 260 260 299 00 150 Chloroethane ethylchloride 120 140 155 143 107 11 - Dichloroethane DCA 179 180 190 06 56 12 - Dichloroethane DCA 130 150 176 133 173 111 - Trichloroethane TCA 217 250 251 132 04 112 - Trichloroethane TCA 189 240 242 213 08 Chloroethene Vinylchloride 060 100 139 400 390 Dichloroethene 11 ndash DCE 148 210 213 295 14 Dichloroethene cis - 12 ndash DCE 151 190 186 205 21 Dichloroethene trans - 12 ndash DCE 148 190 209 221 100 Trichloroethene TCE 228 250 261 88 44 Tetrachloroethene PCE 260 280 340 71 214

difference

(low)

difference (high)

maximum 623 390 minimum 00 04 median 135 88

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 20: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S20

Table S5 Henryrsquos law constant ranges for CWAs and TICs Henrys law constant (dimensionless) Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 36times10-1 59times10-1(a) 97times10-1

Furan 14times10-1 22times10-1(a) 36times10-1

Chemical Warfare Agents Distilled Mustard (HD) 60times10-4 98times10-4(a) 16times10-3

Nitrogen Mustard (HN-2) 21times10-6 35times10-6 57times10-6 Lewisite (L) 71times10-3 11times10-2(a) 19times10-2

Ethyldichloroarsine (ED) 15times10-2 24times10-2 40times10-2 Phosgene Oxime (CX) 14times10-5 22times10-5 36times10-5

GA (Tabun) 40times10-7 65times10-7(a) 11times10-6 GB (Sarin) 23times10-4 38times10-4 62times10-4

GD (Soman) 12times10-4 19times10-4 31times10-4 GE 30times10-4 50times10-4 82times10-4 GF 24times10-4 39times10-4 64times10-4 VX 88times10-8 14times10-7(a) 24times10-7 VG 71times10-9 12times10-8 19times10-8 VM 28times10-8 45times10-8 74times10-8 CS 26times10-7 42times10-7 69times10-7

a Experimentally-determined value from the literature Accepted values without a superscript are EPISuite estimates

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 21: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S21

Table S6 Log Kow ranges for CWAs and TICs Log Kow Minimum Accepted Maximum

Toxic Industrial Compounds Carbon disulfide 168 194a 211

Furan 116 134a 146

Chemical Warfare Agents Distilled Mustard (HD) 208 241 262

Nitrogen Mustard (HN-2) 052 060b 065 Lewisite (L) 221 256 279

Ethyldichloroarsine (ED) 202 234 255 Phosgene Oxime (CX) 037 042b 047

GA (Tabun) 034 039a 043 GB (Sarin) 026 030a 033

GD (Soman) 154 178a 194 GE 063 073 079 GF 138 160 174 VX 007 008ab 009 VG -026 -030b -033 VM -066 -077b -083 CS 239 276 300

a Experimentally-determined value from the literature Accepted values without this superscript are EPISuite estimates

b Log Kow is equal to Log Kow(pH) as described in eqn S10 Log Kow(pH) values were calculated at pH 7

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 22: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S22

Table S7 Physical-chemical property data for CWA hydrolysatesa

Thiodiglycol (TDG)

2-(2-chloroethyl) methylamino ethanol

S-(2-diisopropylaminoethyl) methyl phosphonothioate

(EA2192) Chemical Formula C4H10O2S C5H12NOCl C9H22NO2PS

CAS number 111-48-8 51822-57-2 73207-98-4 Parent CWA sulfur mustard nitrogen mustard VX

Molecular weight (g mol-1) 12218 13761 23932

Boiling point (degC) 218b 2134b 33945b Freezing point (degC) -102b 35b 582b

Vapor pressure (mm Hg) 32times10-3(b) 0033b 51times10-6(b)

Henrys Law constant (dimensionless)

at 25degC 76times10-6(b) 34times10-8(b) 18times10-10(b)

Log Kow -063 -019b -04c

Hydrolysis half-life (min) unavailable unavailable unavailable

Aqueous solubility (mg L-1) 10times106 10times106(b) 33times105(b)

Molecular diffusion coefficient in air

(cm2 sec-1)d 0081 0076 0055

Molecular diffusion coefficient in water

(cm2 sec-1)e 96times10-6 87times10-6 63times10-6

pKa - 7c (tertiary amine) 09c (P-OH) 95c (tertiary amine)

a Data compiled from the following sources (10 35 37 45) b Estimated with EPI Suite v312 (40) c Estimated using Chem-Silico software (44) the log Kow value for EA2192 is estimated for the zwitterionic form at pH 7 d Estimated using Wilke-Lee equation (42) e Estimated using Hayduk-Laudie equation (42)

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 23: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S23

Table S8 Predicted fate routes for base-case scenario after one year with no biodegradation (λbiotic = infin)

Fate routes (no degradation)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0812 0188 0000 0000 0000 0000 0000

Furan 0811 0188 0000 0000 0000 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0000 1000 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloro-arsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0842 0000 0000 0002 0000 0156 0000 GA (Tabun) 0000 0000 0000 0000 0000 1000 0000 GB (Sarin) 0000 0000 0000 0000 0000 1000 0000

GD (Soman) 0531 0000 0000 0000 0000 0468 0000 GE 0006 0000 0000 0000 0000 0994 0000 GF 0286 0000 0000 0000 0000 0713 0000 VX 0440 0000 0000 0002 0000 0557 0000 VG 0241 0000 0000 0003 0000 0755 0000 VM 0075 0000 0000 0004 0000 0921 0000 CS 0000 0000 0000 0000 0000 1000 0000

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 24: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S24

Table S9 Predicted fate routes for base-case scenario after one year with λbiotic = 1000 days

Fate routes (λbiotic = 1000 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds

Carbon disulfide 0811 0188 0000 0000 0001 0000 0000 Furan 0809 0188 0000 0000 0003 0000 0000

Chemical Warfare Agents

Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0001 0999 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0830 0000 0000 0002 0013 0155 0000 GA (Tabun) 0000 0000 0000 0000 0001 0999 0000 GB (Sarin) 0000 0000 0000 0000 0002 0998 0000

GD (Soman) 0531 0000 0000 0000 0001 0468 0000 GE 0006 0000 0000 0000 0002 0992 0000 GF 0286 0000 0000 0000 0001 0713 0000 VX 0430 0000 0000 0002 0016 0552 0000 VG 0232 0000 0000 0003 0022 0743 0000 VM 0069 0000 0000 0003 0027 0900 0000 CS 0000 0000 0000 0000 0000 1000 0000

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 25: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S25

Table S10 Predicted fate routes for base-case scenario after one year with λbiotic = 100 days

Fate routes (λbiotic = 100 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0802 0187 0000 0000 0011 0000 0000

Furan 0786 0185 0000 0000 0029 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0000 1000 0000 Nitrogen Mustard 0000 0000 0000 0000 0005 0995 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0002 0121 0146 0000 GA (Tabun) 0000 0000 0000 0000 0009 0991 0000 GB (Sarin) 0000 0000 0000 0000 0016 0984 0000

GD (Soman) 0523 0000 0000 0000 0012 0465 0000 GE 0005 0000 0000 0000 0017 0978 0000 GF 0280 0000 0000 0000 0012 0707 0000 VX 0346 0000 0000 0002 0148 0503 0000 VG 0159 0000 0000 0003 0191 0647 0000 VM 0035 0000 0000 0003 0219 0743 0000 CS 0000 0000 0000 0000 0000 1000 0000

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 26: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S26

Table S11 Predicted fate routes for base-case scenario after one year with λbiotic = 10 days

Fate routes (λbiotic = 10 days)

Chemical Agent Fraction

remaining

Fa (gas phase advection)

Fgd (gas phase diffusion)

Fw (aqueous

transport)

Fλ (biotic)

Fλ (abiotic)

Fdiff (liner)

Toxic Industrial Compounds Carbon disulfide 0720 0177 0000 0000 0103 0000 0000

Furan 0587 0162 0000 0000 0250 0000 0000

Chemical Warfare Agents Distilled Mustard 0000 0000 0000 0000 0001 0999 0000 Nitrogen Mustard 0000 0000 0000 0000 0044 0956 0000

Lewisite 0000 0000 0000 0000 0000 1000 0000 Ethyldichloroarsine 0000 0000 0000 0000 0000 1000 0000

Phosgene Oxime 0206 0000 0000 0001 0708 0085 0000 GA (Tabun) 0000 0000 0000 0000 0080 0919 0000 GB (Sarin) 0000 0000 0000 0000 0138 0862 0000

GD (Soman) 0454 0000 0000 0000 0109 0437 0000 GE 0002 0000 0000 0000 0145 0852 0000 GF 0232 0000 0000 0000 0112 0657 0000 VX 0040 0000 0000 0001 0717 0243 0000 VG 0004 0000 0000 0001 0743 0252 0000 VM 0000 0000 0000 0001 0746 0253 0000 CS 0000 0000 0000 0000 0001 0999 0000

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 27: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S27

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S1 Fate routes for carbon disulfide and the remaining CWAs after six months (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S2 Fate routes for carbon disulfide and the remaining CWAs after six months (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 28: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S28

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Lewisi

te

Ethyld

ichlor

oarsi

nePh

osgen

e Oxim

eGA (T

abun

)

GE GF VG VM CS

Fλ abiotic

Fadvection

Fractionremaining

Figure S3 Fate routes for carbon disulfide and the remaining CWAs after one year (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S4 Fate routes for carbon disulfide and the remaining CWAs after one year (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 29: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S29

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S5 Fate routes for the TICs and CWAs after five years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S6 Fate routes for the TICs and CWAs after five years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 30: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S30

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

000

020

040

060

080

100

Carbon

disul

fide

Furan

Distille

d Must

ard (H

D)

Nitroge

n Must

ardLe

wisite

Ethyld

ichlor

oarsi

ne

Phosg

ene O

xime

GA (Tab

un)

GB (Sari

n)GD (S

oman

)GE GF VX VG VM CS

Fλ abiotic

Fadvection

Fraction remaining

Figure S7 Fate routes for the TICs and CWAs after thirty years (arid scenario) The fraction of chemical transported via all other fate pathways was less than 1

Figure S8 Fate routes for the TICs and CWAs after thirty years (wet scenario) The fraction of chemical transported via all other fate pathways was less than 1

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 31: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S31

Literature Cited

(1) Somani S M ed Chemical Warfare Agents Academic Press Inc San Diego CA 1 1992 (2) Department of the Army Potential Military ChemicalBiological Agents and Compounds FM 3-9 NAVFAC P-467 AFR 355-7 Headquarters Department of the Army Navy and Air Force Fort McClellan AL 2005 (3) Kingery A F Allen H E The environmental fate of organophosphorus nerve agents A review Toxicol Environ Chem 1995 47 155-184 (4) Reinhart D R Gould J P Cross W H Pohland F G Sorptive behavior of selected organic pollutants codisposed in a municipal landfill In Emerging Technologies in Hazardous Waste ACS Symposium Series American Chemical Society 1990 422 292-310 (5) Ejlertsson J Johansson E Karlson A Meyerson U Svensson B H Anaerobic

degradation of xenobiotics by organisms from municipal solid waste landfilling conditions Antonie van Leeuwenhoek 1996 69 67-74

(6) Ejlertsson J Meyerson U Svensson B H Anaerobic degradation of phthalic acid esters during digestion of municipal solid waste under landfilling conditions Biodegradation 1996 7 345-352

(7) Sanin F Knappe D R U Barlaz M A Biodegradation and humification of toluene in a simulated landfill Water Res 2000 34 (12) 3063-3074 (8) Wu B Taylor C M Knappe D R U Nanny M A Barlaz M A Factors controlling alkylbenzene sorption to municipal solid waste Environ Sci Technol 2001 35 4569-4576 (9) Franke S Textbook of Military Chemistry Vol 1 USAMIIA-HT-039-82 AD B062913 Defense Technical Information Center Alexandria VA 1982 (10) Munro N B Talmage S S Griffin G D Waters L C Watson A P King J F

Hauschild V The sources fate and toxicity of chemical warfare agent degradation products Environ Health Perspect 1999 107 933-974

(11) Cohen B Chemical Warfare Agents and Related Chemical Problems Parts III-IV Summary Technical Report Division 9 NRDC Office of Science Research and Development 1946 (12) Morrill L G Reed L W Chinn K S K Toxic Chemicals in the Soil Environment Volume 2 Interactions of some toxic chemicalschemical warfare agents and soils TECOM Project 2-CO-210-049 Oklahoma State University Stillwater OK 1985 (13) Rosenblatt D H Miller T A Dacre J C Muul I Cogley D R Problem Definition Studies on Potential Environmental Pollutants II Physical Chemical Toxicological and Biological Properties of 16 Substances Tech Rpt 7509 AD A030428 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1975 (14) Clark D N Review of reactions of chemical agents in water AD-A213 287 Defense Technical Information Center Alexandria VA 1989 (15) Harvey S P Szafraniec L L Beaudry W T Earley J T Irvine R L Neutralization and biodegradation of sulfur mustard ERDEC-TR-388 US Army Munitions Chemical Command Aberdeen Proving Grounds MD 1997

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 32: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S32

(16) Epstein J Rosenblatt D Gallacio A McTeague W Summary Report on a Data Base for Predicting Consequences of Chemical Disposal Operations EASP 1200-12 Department of the Army Headquarters Edgewood Arsenal MD 1973

(17) Christensen TH Kjeldsen P Albrechtsen H-J Heron G Nielsen PH Bjerg PL Holm PE Attenuation of landfill leachate pollutants in aquifers Crit Rev Environ Sci Technol 1994 24 119-202 (18) Hilger HH Barlaz MA Anaerobic decomposition of refuse in landfills and methane

oxidation of cover soils In Manual of Environmental Microbiology 2nd ed 2001 pp 696-718

(19) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380

(20) Escher BI Schwarzenbach RP Partitioning of substituted phenols in liposome-water biomembrane-water and octanol-water systems Environ Sci Technol 1996 30 260- 270 (21) Skylar V I Mosolova T P Kucherenko I A Degtyarova N N Varfolomeyev S D Kalyuzhyi S V Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents Appl Biochem Biotechnol 1999 81 107-117 (22) Park J K Nibras M Mass flux of organic chemicals through polyethylene

geomembranes Water Environ Res 1993 65 227-237 (23) Millington RJ Gas diffusion in porous media Science 1959 130 100-102 (24) Johnson P C Ettinger RA Heuristic model for predicting the intrusion rate of

contaminant vapors into buildings Environ Sci Technol 1991 25 1445-1452 (25) Bendz D Singh VP Rosqvist H Bengtsson L Kinematic wave model for water movement in municipal solid waste Water Resour Res 1998 34 2963-2970 (26) Barlaz MA Carbon storage during biodegradation of municipal solid waste components in laboratory-scale landfills Global Biogeochem Cycles 1998 12 373-380 (27) Camobreco V Repa E Ham R K Barlaz M A Felker M Rousseau C Clark- Balbo M Rathle J Thorneloe S Life Cycle Inventory of a Modern Municipal Solid Waste Landfill Environmental Research and Education Foundation Washington DC 2000 (28) US Environmental Protection Agency Users Manual Landfill Gas Emissions Model (Version 20) EPA600R-98054 US EPA Research Triangle Park NC 1998 (29) US Environmental Protection Agency Standards of performance for new stationary sources and guidelines for control of existing sources municipal solid waste landfills Code of Federal Regulations Title 40 Sections 9 51 52 and 60 Fed Regist 1996 61 (30) Code of Federal Regulations 40 Parts 257 and 258 1991 (31) Benson C H Daniel DE Boutwell GP Field performance of compacted clay liners J Geotech Geoenviron Eng 1999 125 390-402 (32) Daubert T E Danner R P Physical and Thermodynamic Properties of Pure Chemicals Data Compilation Taylor and Francis Washington DC 1989 (33) Elliot S The solubility of carbon disulfide vapor in natural aqueous systems Atmos Environ 1989 23 977-1980 (34) Goldman M Dacre J C Lewisite - Its Chemistry Toxicology and Biological Effects Rev Environ Contam Toxicol 1989 110 75-115 (35) Hansch C Leo A Hoekman D Exploring QSAR Hydrophobic Electronic and Steric Constants American Chemical Society 1995

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984

Page 33: Fate of Chemical Warfare Agents and Toxic Industrial ... · In landfills, the behavior of organic contaminants is influenced by the combined effects of biodegradation, sorption, transport

S33

(36) Valvani S C Yalkowsky S H Roseman T J Solubility and partitioning 4 Aqueous solubility and octanol-water partition coefficients of liquid non-electrolytes J Pharm Sci 1981 70 502-507 (37) Yalkowsky S H He Y Handbook of Aqueous Solubility Data CRC Press 2003 (38) Yaws C L Handbook of Vapor Pressure Gulf Publishing Company Houston Texas 1994 (39) World Health Organization Epidemic and Pandemic Alert and Response (EPR) 2005 httpwwwwhointcsrdelibepidemicsbiochemguideenindexhtml (40) US Environmental Protection Agency Estimation Program Interface (EPI) Suite August 17 2004 httpwwwepagovopptintrexposuredocsepisuitehtm (41) Mitretek Systems Chemistry of Lewisite 2004

httpwwwmitretekorghomensfhomelandsecurityLewisite (42) Lyman W J Reehl W F Rosenblatt D H Handbook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds American Chemical Society Washington DC 1990 (43) Kurtz AP DSilva TDJ Estimation of dissociation constants (pKas) of oximes from

proton chemical shifts in dimethyl sulfoxide solution J Pharm Sci 1987 76 599-610 (44) Chemsilico LLC Chemsilico Product Secure Site 2003

httpssecurechemsilicocomindexphp (45) Small M J Compounds formed from the chemical decontamination of HD GB VX and their environmental fate Technical Report 8304 US Army Medical Bioengineering Research and Development Laboratory Fort Detrick MD 1984