44
V. Dangendorf, 25.06.04 1 Fast Neutron Imaging Detectors Fast Neutron Imaging Detectors New Developments New Developments V. Dangendorf / PTB Braunschweig D. Vartsky / NRC Soreq A. Breskin / Weizmann Institute, Rehovot

Fast Neutron Imaging Detectors · BC400 (NE102) • recoil protons are stopped and produce local light spot • optics (mirror and lens) transfer image to photon counting image intensifier

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • V. Dangendorf, 25.06.04 1

    Fast Neutron Imaging DetectorsFast Neutron Imaging DetectorsNew DevelopmentsNew Developments

    V. Dangendorf / PTB Braunschweig

    D. Vartsky / NRC Soreq

    A. Breskin / Weizmann Institute, Rehovot

  • V. Dangendorf, 25.06.04 2

    Task: Detectors for Fast NeutronTask: Detectors for Fast NeutronResonance RadiographyResonance Radiography

    position sensitive-detectors

    FANGAS OTIFANTI

    samples

    Be-targetneutron beam

    deuteron

    beam

  • V. Dangendorf, 25.06.04 3

    2 4 6 8 1 00

    1

    2

    3

    4

    C

    cro

    ss

    se

    cti

    on

    / b

    arn

    s

    N e u t r o n E n e r g y / M e V

    2 4 6 8 1 00

    1

    2

    N - 1 4

    cro

    ss

    se

    cti

    on

    / b

    arn

    s

    N e u t r o n E n e r g y / M e V

    2 4 6 8 1 00

    1

    2

    3

    4O - 1 6

    cro

    ss

    se

    cti

    on

    / b

    arn

    s

    N e u t r o n E n e r g y / M e V

    Measurement of neutron energy is a prerequisite for Resonance Imaging

    Resonance ImagingResonance Imagingexploiting neutron cross-section structures

  • V. Dangendorf, 25.06.04 4

    Detector Requirements forDetector Requirements forFast Neutron Resonance RadiographyFast Neutron Resonance Radiography

    • Large area: > 30x30 cm2

    • Detection efficiency: > 5 %

    • Insensitivity to gamma-rays

    • High counting rate capability: ?

    • Neutron spectroscopy in 2-12 MeV range

    • Energy resolution: ~ 500 keV at 8 MeV

    • Position resolution: 0,5 mm

  • V. Dangendorf, 25.06.04 5

    Imaging Techniques with Imaging Techniques withTime-Of-FlightTime-Of-Flight CapabilityCapability

    Task: Task: Simultaneous acquisition of position params (X,Y) and TOF

    1. Neutron Counting Imaging Techniques:

    • Each Neutron is individually registered

    • relevant parameters (X,Y, TOF) are measured and stored in- 3-dimensional Histogramm- List Mode file

    PRO:

    • Full correlation of all Parameters is available offline

    • Multidimensional Imaging feasible

    CON:

    • Slow (max several MHz speed)

    • For LM storage: excessive diskspace required

    • detector development necessary

  • V. Dangendorf, 25.06.04 6

    Imaging Techniques with Imaging Techniques withTime-Of-Flight CapabilityTime-Of-Flight Capability

    2. Integrating Imaging Techniques:

    • Image is captured in segmented (“pixelized”) detectors⇒ quantum structure is lost, integrated “currents” into image cells are

    measured

    • Requires capture and storage structures of sufficient size and dimension(e.g. X,Y, TOF requires multiple frame CCD camera system

    Task: Task: Simultaneous acquisition of position params (X,Y) and TOF

    PRO:

    • Very high data rate

    • Based on industrially available techniques

    CON:

    • necessity for proper parameter selection at runtime

    • fast high frequency exposure system needs some development

  • V. Dangendorf, 25.06.04 7

    Status

    01/03

  • V. Dangendorf, 25.06.04 8

    FANGASFANGAS Principle of OperationPrinciple of Operation

    • Neutrons interact in thin foilconverter (1mm PE)

    • recoil protons escape from foil

    • ionisation electrons are amplified inParallel Plate Avalanche Chamber(PPAC)

    • wire chamber (MWPC) for finalamplification and localisation

    • TOF and position are stored inListmode or 3-d matrix

    FAst NeutronGAS-filled

    imaging chamber

  • V. Dangendorf, 25.06.04 9

    OTIFANTIOTIFANTIPrinciple of OperationPrinciple of Operation

    • Neutrons interact in scintillatorBC400 (NE102)

    • recoil protons are stopped andproduce local light spot

    • optics (mirror and lens) transferimage to photon counting imageintensifier or fast framing camera(Hadland ULTRA 8)

    OpTIcal FAst NeuTron Imaging system

    PM

    lens

    Mirror

    BC400(22*22 cm2

    d = 10 mm )

    image intensifieror fast framing

    camera (ULTRA 8)

  • V. Dangendorf, 25.06.04 10

    OTIFANTI with ULTRA8OTIFANTI with ULTRA8Fast Framing TechniqueFast Framing Technique

    • Intensified CCD camera

    • segmented photocathode with 8 indepen-dently gatable frames (a 512*512 px)

    • Short gating time (down to 10 ns per shot)

    • Repetitive exposure (2MHz) triggered withbeam pulse for predefined TOF window

    ⇓⇓

    8 images, each for a differentneutron energy

    ∆E

    1

    ∆E

    2

    ∆E

    3

    ∆E

    4

    ∆E

    5

    2 4 6 8 10

    0

    200

    400

    600

    800

    1000

    1200

    energy / MeV

    YΩ,

    E /

    Q /[

    1012

    /(sr

    C)]

    ∆E

    6

    ∆E1 ∆E2

    ∆E3 ∆E4

    ∆E1

    ∆E5 ∆E6 ∆E6

    ∆E4

  • V. Dangendorf, 25.06.04 11

    Summary :Summary :

    FANGAS: . - Detector worked well but has low detection efficiency: εFA ~ 0,2 % - Data Acquististion slow : ~ 104 s-1 at present

    required : > 105 s-1

    OTIFANTI:

    a) with framing camera: - small optical efficiency due to problem with image splitter - limited pulsing possibility (present frame exposure rate: ~ 2500 s-1, required: 2*106 s-1 )

    b) with present standard intensified camera: - due to integrating system →→ high acquisition speed

    - only single frame possible, i.e. 1 energy range per exposure cycle- optical efficiency needs improvement (at present < 60 % QE per absorbed 5 MeV neutron

  • V. Dangendorf, 25.06.04 12

    New DetectorDevelopment

    FANGAS

  • V. Dangendorf, 25.06.04 13

    larger efficiency by usingdetector cascade⇒ 25 Dets provide 5 %

    Requirements:- simple and industrial production- robust and easy to operate- cheap high rate readout system

    (> 100 kHz / module)

    1 2 3 . . . . . .25

    neutrons

    Enhancing EfficiencyEnhancing Efficiency

  • V. Dangendorf, 25.06.04 14

    GEM-FANGASGEM-FANGAS

    • neutrons scatter with protons in PE/PP-radiator

    • protons produce electrons in conversion gap

    • electrons are amplified in multistage GEM structures

    • final electron avalanche is collected on resistive layer

    • moving electrons induce signal on pickup electrode

    • integrated delayline structures encode position information

    GEMsPP-radiator

    (neutron-converter)

    resistive layeron insulator

    R/O pads,delay lines)

    neutron

    proton

    conversion gap

    ~ 12 mm

  • V. Dangendorf, 25.06.04 15

    DETECTOR SETUPDETECTOR SETUP

  • V. Dangendorf, 25.06.04 16

    1. Efficiency 1. Efficiency OptimsationOptimsation

    Simulation Tool: GEANT 3

    Efficiency vs. foil thickness of a polypropylene converter foil:

    “Efficiency” is identified as charged particle escape (mainly protons)

    Conclusion:

    • Appropriate Foil thickness for neutrons of 2 MeV < En < 10 MeV is 1 mm

    • Efficiency is 0,05 % - 0, 3 % per detector unit

    0.0 0.5 1.0 1.5 2.00.0

    0.1

    0.2

    0.3

    Effi

    cien

    cy /

    %

    Foil Thickness / mm

    En = 2 MeV

    En = 7,5 MeV

    En = 14 MeV

  • V. Dangendorf, 25.06.04 17

    2. Detector Optimisation2. Detector OptimisationSimulation of Point Spread Function (PSF)Simulation of Point Spread Function (PSF)

    Conclusion:

    • fwhm is of the order of 0,5 - 1 mm

    • Appropriate readout circuitry should have corresponding resolution

    1 mm PPconverter

    protonsPixel plane

    50x50 micron pixels

    neutrons

    0.5

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.50.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Rel

    ativ

    e N

    umbe

    r of

    Pro

    tons

    Distance from point of interaction / mm

    En = 2 MeV

    En = 7,5 MeV

    En = 14 MeV

    Simulation Tool: GEANT3

  • V. Dangendorf, 25.06.04 18

    Neutron Scatter and ContrastNeutron Scatter and ContrastThe Simulation Configuration

    Polypropylene sheets (1 mm thick)

    . . .

    1Detector

    2 3Det. 25

    Samples

    NeutronSource

    0 300 623 624.8 644.7644.6624 cm

    Carbon

    Fe

    Poly-propylene

    Al

    Simulation Tool: MCNP4

    (by I. Mor)

    En = 7.8 MeV

  • V. Dangendorf, 25.06.04 19

    Neutron Scatter and ContrastNeutron Scatter and ContrastTransmitted vs. Scattered RadiationTransmitted vs. Scattered Radiation

    • Number of scattered neutrons increases initially with detector number until it reaches maximum at around detector 13

    • The T/S ratio drops sharply until detector 13

    • After det. 13 the ratio is fairly stable

  • V. Dangendorf, 25.06.04 20

    Detector OptimisationDetector Optimisation 3. 3. Position ReadoutPosition Readout

    Requirements:• few electronic channels per detector element• dead time < 500 ns• 100 kHz rate capability per element

    Solution:•delayline readout (5 channels / element)• resistive anode technique to obtain

    – sufficient charge spread of signal onR/O pads

    – galvanic decoupling between detectorand readout

    – limiting discharge energy ( to protectpreamps)

    GEM

    charge cloudin

    induction gap

    resistive anode

    insulator

    R/O board

    2 mm

  • V. Dangendorf, 25.06.04 21

    Resistive Anode TransparencyResistive Anode Transparency

    Remarks:

    • C-lacquer is simple, cheapest and best suited for large surfaces but requires R-tuning to achieve better transparency

    • Stability of Ge-layer 5 weeks:

    1st 5 weeks: R increases by 10 - 20 %

    1 year (meas.: Apr. 2004): R increased by factor 2

    R Transp. X/SUM Y/Sum

    (Mohm) (%) (%) (%)Ge-160nm/G10(1) 30 94 59,2 40,8 1,45 1,14Ge-30nm on G10 370 95 58,7 41,3 1,42 1,14

    C-lacquer(1) 3,1 71 59,6 40,4 1,48 1,14C-lacquer(2) 3 65 59,2 40,8 1,45 1,14

    Ge-160nm/G10(2) 30 101 59,6 40,4 1,48 1,14

    Electrode X/Y X/Y(fast)

  • V. Dangendorf, 25.06.04 22

    Readout Electrode and Readout Electrode and DelaylineDelayline

    • Position Encoding via Delay Line Readout

    • Signal induction to pads (“diamonds”) ofpickupelectrode

    • Pads are interconnected in lines (backside) and rows (frontside)

    • non-overlapping pads on front and backside to minimize capacitive cross talk

    • π-delayline with SMD-parts integrated toelectrode

    C2C1

    L

    Z = 100 Ω, τd = 2,7 nstotal length: 135 ns

  • V. Dangendorf, 25.06.04 23

    Optimisation of Pad StructureOptimisation of Pad Structurehorizontal charge distributionhorizontal charge distribution

    Measurement method:

    • irradiating of double GEM detector with 5, 9 keV X-ray beam from 55Fe source

    • width of X-ray beam in conversion gap: 0,47 mm

    • 160 nm Ge-anode on glass → 63 MΩ•

    PA 1

    PA 2

    PA 3

    Ch 2

    Ch 1

    TDS3052

    ExtTrig

    R/O electrode

    R/O electrodeGe on glassdouble GEM

    d

    55Fe5,9keV

    Ar / CO2p=1 bar

    • recording ratio of charge on central strip to total vs source position

    • Variation of d to match lateral width of induced charge with pitch of strips(2 mm)

  • V. Dangendorf, 25.06.04 24

    Optimisation of Pad StructureOptimisation of Pad Structurehorizontal charge distributionhorizontal charge distribution

    16 18 20 220

    20

    40

    60

    80

    100

    120

    140

    rela

    tive

    char

    ge /

    %

    position / mm

    Experiment 4 (d=1.0 mm)

    Gauss Fit X

    c=18.9 mm

    σ=0.86 mm

    14 16 18 20 22 24 260

    10

    20

    30

    40

    50

    60

    rela

    tive

    char

    ge /

    %

    position / mm

    Experiment 2 (d=2.6 mm)

    Gauss Fit X

    c=20.1 mm / σ=2,19 mm

    fwhm:5,1 mm

    fwhm:2,0 mm

    Result:

    2 mm pitch of readout pads selected

    ⇒⇒Optimum gap between anode and

    RO pads is d = 1 mm

    previous “knowledge” from wire chamberexperiments: w ~ d is not valid !

    d = 2,6 mm

    d = 1,0 mm

  • V. Dangendorf, 25.06.04 25

    Optimisation of Pad StructureOptimisation of Pad Structurevertical charge distributionvertical charge distribution

    Measurement method:• irradiating double-GEM detector

    with 5, 9 keV X-ray beam from 55Fe source

    • recording ratio of charge from front- to back side of R/O pads

    • Variation of pad size (area covered by front and back side structure)

    PA 1

    PA 2

    Ch 1

    TDS3052

    Ch2

    R/O electrode

    from backside

    front side back side

    Goal:• equal charge on front and back side of R/O pad

  • V. Dangendorf, 25.06.04 26

    Optimisation of Pad StructureOptimisation of Pad Structurevertical charge distributionvertical charge distribution

    Result:

    strongly asymmetric size of

    readout pads required

    Optimized values for 0,5 mm boards and

    2 mm pitch:

    front side pads: 0,5 mm

    back side pads: 1,5 mm

    0.0 0.5 1.0 1.5 2.00

    1

    2

    3

    4

    5

    char

    ge r

    atio

    ratio of areas (Af / A

    b )

    Qfront

    /Qback

    linear fit (without 2 last points)

  • V. Dangendorf, 25.06.04 27

    Interface and DAQInterface and DAQ

    DAQ:DAQ:

    CAMDA

    • WIN based ⇒ unreliable,• ca 35 kevt/s

    ATMD/LEA

    • Linux based

    • Frontend: ATMD F. Kaufmann, PTB

    • Backend: SATAN M. Krämer, GSI

    • Rate capability: ca 90 kevt / s

    TDC:TDC: ATMD-board from ACAM ATMD-board from ACAM• F1/ATMD PC-hosted 8 channel TDC

    with 125 ps resolution, 7us full range

    • Q-T converter LeCroy MTQ100

    • FIFO-buffered output ⇒ dt < 1 µs • data-throughput about 1 MWord/s

    (about 100 kEvts/s)

  • V. Dangendorf, 25.06.04 28

    FANGASFANGAS

    ExperimentalExperimentalResultsResults

  • V. Dangendorf, 25.06.04 29

    Energy SpectrumEnergy Spectrum

    2 4 6 8 10 120

    200

    400

    600

    800

    1000

    1200

    YΩ

    , E /

    Q /[

    1012

    /(sr

    C M

    eV)

    Neutron Energy / MeV

    Compare:Neutron yield in forward direction for13 MeV deuterons on thick Be target[Brede et al]

    Measured energy spectrum with FANGASwith and without 8 cm C absorber(not efficiency corrected)

    2 4 6 8 10

    20

    40

    60

    1

    2

    3

    σσ N /

    bndN/d

    E

    EN / MeV

    no object 8 cm carbon carbon n x-section

  • V. Dangendorf, 25.06.04 30

    Position Resolution and ContrastPosition Resolution and Contrast

    7 mm 10 mm 20 mm

    40 mm

    60 mmn beam

    1 2 3 5 10 mm

    Measurements with step wedge

    made of polyvinyltoluene leaves (NE102)

  • V. Dangendorf, 25.06.04 31

    Position Resolution and ContrastPosition Resolution and Contrast

    open field imagefor flat fieldcorrection

    Raw image

    Corrected image

  • V. Dangendorf, 25.06.04 32

    Position Resolution and ContrastPosition Resolution and Contrast

    20 40 60 80 100200

    400

    600

    800

    1000

    dN/d

    x

    x / mm

    60mm 40mm 20mm 10mm 7mm

    ToDo:

    • MTF plot

    • Abltg fwhm

  • V. Dangendorf, 25.06.04 33

    Resonance ImagingResonance Imaging

    Measurements with carbon cylinders and steel wrench

    ∅ 30 L20 ∅ 30 L60

    ∅ 30 L40

    ∅ 20 L20 ∅ 20 L60 ∅ 20 L40

  • V. Dangendorf, 25.06.04 34

    Resonance ImagingResonance Imaging

    neutron energy : broad spectrum (2 - 10 MeV)acquisition time: 5.5 h1200 c/pixel (matrix 300 x 300 pixel)

  • V. Dangendorf, 25.06.04 35

    Resonance ImagingResonance Imaging

    Processed (median filter) ratio

    ON

    OFF

    RATIO

    1700 1750 1800 1850 1900 1950 2000

    4000

    6000

    8000

    dN/N

    TOF / ns

    Full Behind 60 mm C

    OFF ON

  • V. Dangendorf, 25.06.04 36

    New DetectorDevelopment

    OTIFANTI

  • V. Dangendorf, 25.06.04 37

    OTIFANTIOTIFANTI

    lens

    mirror

    separate ICCDcameras

    Scintillatingfiber screen

    Improvements• Thicker scintillating screen (20 mm)• Better lens (F# = 1.0)• Larger diameter intensifier (40 mm)

    ⇒⇒Factor 17 increase in overall detection

    efficiency

    Multiple-Energy Imaging• Large diameter ungated

    optical preamp with fastphosphor (E36)

    • Multiple II CCD cameras,each gated on a differentenergy window

    ιd < 2 ns

    t →

  • V. Dangendorf, 25.06.04 38

    OTIFANTIOTIFANTI

    Presently available:• 1 camera which can be individually

    triggered with 2 MHz repetition rate

    PM

    lens

    BC 400scintillator

    screen

    Couplinglenses

    gatedintensifier

    mirror

    Cooled CCDcamera

  • V. Dangendorf, 25.06.04 39

    OPTICAL PREAMPLIFIEROPTICAL PREAMPLIFIER

    photocathode

    MCPselectron amplifier

    phosphor

    hν’

    e-

    ∅ 75 mm

    ιd < 2 ns

    t →

    Fast light decay in phosphorto preserve time resolution

    I

    -250 V 0 V

    2 kV

    8 kV

    !

  • V. Dangendorf, 25.06.04 40

    New Optical DetectorNew Optical DetectorFast Gated IntensifierFast Gated Intensifier

    ∅ 40 mmhν

    hν’

    e-

    +50 - 250 V

    0 V

    2 kV

    8 kV

    photocathode

    MCPselectron amplifier

    phosphor

    gating electrode

  • V. Dangendorf, 25.06.04 41

    Intensifier Exposure ControlIntensifier Exposure Control High Voltage Gating UnitHigh Voltage Gating Unit

    Requirements:Gating control:• Computer Control

    (GDG via RS232 from Weierganz/Mugai)

    • Phase locked to Cyclotron HF

    High Voltage Pulser:• < 10 ns- pulse width

    • 2 MHz repetition rate

    • 250 Vpp( +50 bis - 200 V)

  • V. Dangendorf, 25.06.04 42

    Properties and ResultsProperties and Results

    TOF (ns)

    • Camera(∆t ~ 10 ns)

    • PM∆t ~ 2.5 ns)

  • V. Dangendorf, 25.06.04 43

    7.7 MeV image10 min 100 c/pixel

    6.8 MeV10 min ~ 100c/pix

    ResultsResultsResonant imaging with OTIFANTI

    Gamma- image Background image All-energies1 min 160 c/pixel

    Carbon phantom

    TOF

    γ n

  • V. Dangendorf, 25.06.04 44

    Resonant imaging with OTIFANTIResonant imaging with OTIFANTI

    Ratio ofimages

    ON-image(7.7 MeV)

    OFF-image(6.8 MeV)

    processed image