49
1 Fast Beam Collision Feedbacks for luminosity optimisation at next- generation lepton colliders Philip Burrows John Adams Institute Oxford University P.N. Burrows EPS13 Stockholm 20/7/13

Fast Beam Collision Feedbacks for luminosity optimisation at next-generation lepton colliders

  • Upload
    violet

  • View
    26

  • Download
    0

Embed Size (px)

DESCRIPTION

Fast Beam Collision Feedbacks for luminosity optimisation at next-generation lepton colliders. Philip Burrows John Adams Institute Oxford University. Outline. Introduction and system concept ILC design status CLIC design status FONT prototype systems performance - PowerPoint PPT Presentation

Citation preview

Page 1: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

1

Fast Beam Collision Feedbacks

for luminosity optimisation at next-generation lepton colliders

Philip BurrowsJohn Adams Institute

Oxford University

P.N. Burrows EPS13 Stockholm 20/7/13

Page 2: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

2

Outline

• Introduction and system concept

• ILC design status

• CLIC design status

• FONT prototype systems performance

• Outstanding technical issues• Summary

P.N. Burrows EPS13 Stockholm 20/7/13

Page 3: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

3

Drive Beam Generation Complex

Main Beam Generation Complex

Compact Linear Collider (CLIC)

1.5 TeV / beam

P.N. Burrows EPS13 Stockholm 20/7/13

Page 4: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

International Linear Collider

31 km

c. 250 GeV / beam

4 P.N. Burrows EPS13 Stockholm 20/7/13

Page 5: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

5

Beam parameters

ILC 500 CLIC 3 TeV

P.N. Burrows EPS13 Stockholm 20/7/13

Page 6: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

6

Beam parameters

ILC 500 CLIC 3 TeV

Electrons/bunch 2 0.37 10**10

P.N. Burrows EPS13 Stockholm 20/7/13

Page 7: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

7

Beam parameters

ILC 500 CLIC 3 TeV

Electrons/bunch 2 0.37 10**10

Bunches/train 1312 312

P.N. Burrows EPS13 Stockholm 20/7/13

Page 8: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

8

Beam parameters

ILC 500 CLIC 3 TeV

Electrons/bunch 2 0.37 10**10

Bunches/train 1312 312

Bunch separation 554 0.5ns

P.N. Burrows EPS13 Stockholm 20/7/13

Page 9: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

9

Beam parameters

ILC 500 CLIC 3 TeV

Electrons/bunch 2 0.37 10**10

Bunches/train 1312 312

Bunch separation 554 0.5ns

Train length 727 0.156us

P.N. Burrows EPS13 Stockholm 20/7/13

Page 10: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

10

Beam parameters

ILC 500 CLIC 3 TeV

Electrons/bunch 2 0.37 10**10

Bunches/train 1312 312

Bunch separation 554 0.5ns

Train length 727 0.156us

Train repetition rate 5 50 Hz

P.N. Burrows EPS13 Stockholm 20/7/13

Page 11: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

11

Beam parameters

ILC 500 CLIC 3 TeV

Electrons/bunch 2 0.37 10**10

Bunches/train 1312 312

Bunch separation 554 0.5ns

Train length 727 0.156us

Train repetition rate 5 50 Hz

Horizontal IP beam size 474 40nm

Vertical IP beam size 6 1 nm P.N. Burrows EPS13 Stockholm 20/7/13

Page 12: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

12

Beam parameters

ILC 500 CLIC 3 TeV

Electrons/bunch 2 0.37 10**10

Bunches/train 1312 312

Bunch separation 554 0.5ns

Train length 727 0.156us

Train repetition rate 5 50 Hz

Horizontal IP beam size 474 40nm

Vertical IP beam size 6 1 nm

Longitudinal IP beam size 300 44 um

Luminosity 2 6 10**34

P.N. Burrows EPS13 Stockholm 20/7/13

Page 13: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

13

Beam parameters

ILC 500 1000 CLIC 3 TeV

Electrons/bunch 2 2 0.37 10**10

Bunches/train 1312 2450 312

Bunch separation 554 366 0.5ns

Train length 727 897 0.156us

Train repetition rate 5 4 50 Hz

Horizontal IP beam size 474 335 40nm

Vertical IP beam size 6 3 1 nm

Longitudinal IP beam size 300 224 44 um

Luminosity 2 5 6 10**34

P.N. Burrows EPS13 Stockholm 20/7/13

Page 14: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

14

Beam parameters

ILC 500 1000 CLIC 3 TeV

Electrons/bunch 2 2 0.37 10**10

Bunches/train 1312 2450 312

Bunch separation 554 366 0.5ns

Train length 727 897 0.156us

Train repetition rate 5 4 50 Hz

Horizontal IP beam size 474 335 40nm

Vertical IP beam size 6 3 1 nm

Longitudinal IP beam size 300 224 44 um

Luminosity 2 5 6 10**34

P.N. Burrows EPS13 Stockholm 20/7/13

Page 15: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

15

IP beam feedback concept

Last line of defence against relative beam misalignment

Measure vertical position of outgoing beam and hence beam-beam kick angle

Use fast amplifier and kicker to correct vertical position of beam incoming to IR

FONT – Feedback On Nanosecond Timescales

P.N. Burrows EPS13 Stockholm 20/7/13

Page 16: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

16

General considerations

Time structure of bunch train:

ILC (500 GeV): c. 1300 bunches w. c. 500 ns separation

CLIC (3 TeV): c. 300 bunches w. c. 0.5 ns separation

Feedback latency:

ILC: O(100ns) latency budget allows digital approach

CLIC: O(10ns) latency requires analogue approach

Recall speed of light: c = 30 cm / ns:

FB hardware should be close to IP (especially for CLIC!)

Two systems, one on each side of IP, allow for redundancy

P.N. Burrows EPS13 Stockholm 20/7/13

Page 17: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

17

IP FB Design Status: ILC

Engineering design documented in ILC TDR (2013):

1. IP beam position feedback:

beam position correction up to +- 300 nm vertical at IP

2. IP beam angle feedback: hardware located few 100 metres upstream

conceptually very similar to position FB, less critical

3. Bunch-by-bunch luminosity signal (from ‘BEAMCAL’)

‘special’ systems requiring dedicated hardware + data links

P.N. Burrows EPS13 Stockholm 20/7/13

Page 18: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

18

ILC IR: SiD for illustration

Door

SiD

Cavern wall

P.N. Burrows EPS13 Stockholm 20/7/13

Page 19: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

19

ILC IR: SiD for illustration

Door

SiD

Cavern wall

P.N. Burrows EPS13 Stockholm 20/7/13

Page 20: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

20

Final Doublet Region (SiD)

P.N. Burrows EPS13 Stockholm 20/7/13

Page 21: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

21

Final Doublet Region (SiD)

P.N. Burrows EPS13 Stockholm 20/7/13

Page 22: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

22

QD0 – QF1 Region (SiD)

P.N. Burrows EPS13 Stockholm 20/7/13

Page 23: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

23

QD0 – QF1 Region (SiD)

P.N. Burrows EPS13 Stockholm 20/7/13

Page 24: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

24

Final Doublet Region (SiD)

P.N. Burrows EPS13 Stockholm 20/7/13

Page 25: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

IP Region (SiD)

Page 26: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

IP Region (SiD)

Page 27: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

Beamcal – QD0 Region (SiD)

Page 28: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

IP FB BPM Detail (SiD)

Page 29: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

29

Kicker BPM 1

Digital feedback

Analogue BPM processor

Driveamplifier

BPM 2

BPM 3

e-

ILC FB prototype: FONT at KEK/ATF

P.N. Burrows EPS13 Stockholm 20/7/13

Page 30: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

30

Kicker BPM 1

Digital feedback

Analogue BPM processor

Driveamplifier

BPM 2

BPM 3

e-

ILC prototype: FONT4 at KEK/ATF

P.N. Burrows EPS13 Stockholm 20/7/13

Page 31: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

31

Kicker BPM 1

Digital feedback

Analogue BPM processor

Driveamplifier

BPM 2

BPM 3

e-

ILC prototype: FONT4 at KEK/ATF

BPM resolution < 0.5umLatency ~ 130nsDrive power > 300nm

@ ILC P.N. Burrows EPS13 Stockholm

20/7/13

Page 32: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

32

Latency

• Time of flight kicker – BPM: 12ns• Signal return time BPM – kicker: 32ns

Irreducible latency: 44ns

• BPM processor: 10ns• ADC/DAC (4.5 357 MHz cycles) 14ns• Signal processing (8 357 MHz cycles) 22ns• FPGA i/o 3ns• Amplifier 35ns• Kicker fill time 3ns

Electronics latency: 87ns

• Total latency budget: 131ns P.N. Burrows EPS13 Stockholm

20/7/13

Page 33: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

33

ILC IP FB performance

Resta Lopez P.N. Burrows EPS13 Stockholm

20/7/13

Page 34: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

34

IP FB Design Status: CLIC

Conceptual design developed and documented in CLIC CDR (2012)

NB primary method for control of beam collision overlap is via vibration isolation of the FF magnets, and dynamic correction of residual component motions

IP position feedback:

beam position correction up to +- 50 nm vertical at IP

More realistic engineering design can be developed in next project phase

P.N. Burrows EPS13 Stockholm 20/7/13

Page 35: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

CLIC Final Doublet Region

35 P.N. Burrows EPS13 Stockholm 20/7/13

Page 36: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

CLIC Final Doublet Region

36 P.N. Burrows EPS13 Stockholm 20/7/13

Page 37: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

CLIC Final Doublet Region

37 P.N. Burrows EPS13 Stockholm 20/7/13

Page 38: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

38

Kicker BPM 1

Analogue BPM processor

BPM 2

BPM 3

e-

CLIC prototype: FONT3 at KEK/ATF

P.N. Burrows EPS13 Stockholm 20/7/13

Page 39: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

39

Kicker BPM 1

Analogue BPM processor

BPM 2

BPM 3

e-

CLIC prototype: FONT3 at KEK/ATF

Electronics latency ~ 13nsDrive power > 50nm

@ CLIC P.N. Burrows EPS13 Stockholm

20/7/13

Page 40: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

40

CLIC IP FB performance

Single random seed of GM C

Resta Lopez P.N. Burrows EPS13 Stockholm

20/7/13

Page 41: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

41

For noisy sites:

CLIC IP FB performance

factor 2 - 3 improvement

P.N. Burrows EPS13 Stockholm 20/7/13

Page 42: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

42

Outstanding Technical Issues

• Component designs need to be optimised for tight spatial environments

• Routing of cables• Operation of (ferrite) devices in large, spatially-

varying B-field

• Further studies of radiation environment

• Electronics location, rad hardness, shielding

• RF interference: beam FB electronics

kicker detector P.N. Burrows EPS13 Stockholm

20/7/13

Page 43: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

43

Summary

• Well developed IP collision FB system designs for both ILC and CLIC

• Simulations demonstrate luminosity recovery capability

• Demonstrated prototypes with required performance parameters

• Progress on designing customised beamline components + optimising layout

• Ideas applicable at XFELs + rings P.N. Burrows EPS13 Stockholm

20/7/13

Page 44: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

44

NEWSFLASH from ATF2

• Beam size ~ 65 nm achieved

• First attempts at stabilisation of small beam at nm level

P.N. Burrows EPS13 Stockholm 20/7/13

Page 45: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

45

ATF2 IP region layout

A B

Page 46: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

46

Layout with new IP kicker

Designed by Oxford

Fabricationarrangedby KEK

Installed May 2012

Page 47: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

47

IP kicker Cavity IPBPM

FONT digital

FB

IPBPMelectronics

FONTamplifier

e-

ATF2 IPFB tests June 2013

Page 48: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

48

ATF2 IP FB results (June 2013)

Bunch 1:Not corrected by FBIncoming position jitter ~ 200nm

Page 49: Fast Beam Collision Feedbacks  for luminosity optimisation at next-generation lepton colliders

49

ATF2 IP FB results (June 2013)

Bunch 1:Not corrected by FBIncoming position jitter ~ 200nm

Bunch 2:FB off jitter ~ 200nm

FB on:beam zeroedjitter reduced ~ 100nm

PRELIMINARY