20
Fast and Robust Laser Cooling of Trapped Systems Javier Cerrillo-Moreno , Alex Retzker, Martin B. Plenio Obergurgl, 7 th June 2010

Fast and Robust Laser Cooling of Trapped Systems

  • Upload
    nero

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

Fast and Robust Laser Cooling of Trapped Systems. Javier Cerrillo-Moreno , Alex Retzker, Martin B. Plenio. Obergurgl, 7 th June 2010. Motivation. Quantum Information Processing Quantum Simulation Quantum Optics Localized quantum object Precision measurements Spectroscopy. R. Blatt. - PowerPoint PPT Presentation

Citation preview

Page 1: Fast and Robust Laser Cooling of Trapped Systems

Fast and RobustLaser Cooling of

Trapped SystemsJavier Cerrillo-Moreno, Alex Retzker, Martin B.

Plenio

Obergurgl, 7th June 2010

Page 2: Fast and Robust Laser Cooling of Trapped Systems

2

Motivation

Quantum Information ProcessingQuantum SimulationQuantum OpticsLocalized quantum objectPrecision measurementsSpectroscopy

R. Blatt

Page 3: Fast and Robust Laser Cooling of Trapped Systems

3

Overview

Cooling schemes for trapped systems

Building BlocksEIT coolingStark-shift cooling

ProposalConceptMechanismFeatures

Page 4: Fast and Robust Laser Cooling of Trapped Systems

4

One-phonon processesCarrier transitionBlue side-band transitionRed side-band transition

1

2

g

e 1

0

2

0

neng

1 neng

1 neng

g

e

g

e

g

e

1

0€

2

3

4

5

Page 5: Fast and Robust Laser Cooling of Trapped Systems

5

Side-band cooling

1

2

g

e 1

0

2

0g

e

g

e

Carrier TransitionBlue side-band transitionRed side-band transition

Page 6: Fast and Robust Laser Cooling of Trapped Systems

6

Dark-state cooling

1

2

g

e 1

0

2

0g

e

g

e

Carrier TransitionBlue side-band transitionRed side-band transition

Page 7: Fast and Robust Laser Cooling of Trapped Systems

7

Dark-state cooling

1

2

g

e 1

0

2

0g

e

g

e

Page 8: Fast and Robust Laser Cooling of Trapped Systems

8

Double Dark-state cooling ?

1

2

g

e 1

0

2

0g

e

g

e

Page 9: Fast and Robust Laser Cooling of Trapped Systems

9

Overview

Cooling schemes for trapped systems

Building BlocksEIT coolingStark-shift cooling

ProposalConceptMechanismFeatures

Page 10: Fast and Robust Laser Cooling of Trapped Systems

10

Electromagnetically-Induced Transparency EIT cooling

22

e

}

Ω, -ηΩ, η

Morigi, Eschner and Keitel PRL, 85 (2004)

Page 11: Fast and Robust Laser Cooling of Trapped Systems

11

Stark Shift cooling

2

c

e

}

ΩΩ

Ωc, η

1 nn

1n n 1n

ν

Stark Shift gate

A. Retzker, M. Plenio, New J. of Phys. 9 (2007) 279

− =↑ −↓

+ =↑ + ↓

Page 12: Fast and Robust Laser Cooling of Trapped Systems

Cooling schemes for trapped systems

Building BlocksEIT coolingStark-shift cooling

ProposalConceptMechanismFeatures

12

Overview

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104,

043003 (2010)

Page 13: Fast and Robust Laser Cooling of Trapped Systems

13

Robust cooling – Concept

e

}

ΩaΩa

Ωb, ηb

e

}

Ωa, -ηaΩa, ηa

Ωb, ηb

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104, 043003 (2010)

Page 14: Fast and Robust Laser Cooling of Trapped Systems

14

Robust cooling – Steady state

Stark Shift OREIT cooling

Stark Shift ANDEIT cooling €

ρss = ↓ −↑ ↓ −↑ ⊗ an

n

∑ n n ⎛

⎝ ⎜

⎠ ⎟+ o(η 2)

Ψss

= ↓ −↑ 0 + o(η ) )(00 2ρ oss

Ψss

= ↓ −↑ 0 − iη ↓ +↑ 1 + o(η 2)

η b

η a

=ν + 2Ωb

Ωb

e

}

Ωa, -ηaΩa, ηa

Ωb, ηb

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104, 043003 (2010)

∂∂t

ρ = Lρ = −i H,ρ[ ] +Γ

2˜ L ρ = 0

Page 15: Fast and Robust Laser Cooling of Trapped Systems

15

Robust cooling – Mechanism

e

e

e

e

e

1 2 3 40

HEIT

Hint = HEIT + HSS = 0 + a

ssΨ

ssΨ

ssΨ

ssΨHEIT

= 0ss

Ψ

HEIT

HEITHEIT

HSS ≠ a

ssΨ

ssΨ

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104, 043003 (2010)

Page 16: Fast and Robust Laser Cooling of Trapped Systems

16

Robust cooling – Features

)(0 2on

2

2

W

e

}

Ωa, -ηaΩa, ηa

Ωb, ηb

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104, 043003 (2010)

Final Temperature

Cooling rate

b

η a

=ν + 2Ωb

ΩbImplementation

Page 17: Fast and Robust Laser Cooling of Trapped Systems

Robust cooling - Implementation

17

e

}

Ωa, -ηaΩa, ηa

Ωb, ηb

b

η a

=ν + 2Ωb

Ωb

=2η p

η 'A cosθ=

2

cosθ

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104, 043003 (2010)

Page 18: Fast and Robust Laser Cooling of Trapped Systems

18

Robust cooling – Features

)(0 2on

n ∝ ΔΩb( )4

ΔΩa( )4

2

2

W

e

}

Ωa, -ηaΩa, ηa

Ωb, ηb

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104, 043003 (2010)

Final Temperature

Cooling rate

Robustness

b

η a

=ν + 2Ωb

ΩbImplementation

Page 19: Fast and Robust Laser Cooling of Trapped Systems

19

Robust cooling – Robustness

e

}

Ωa, -ηaΩa, ηa

Ωb, ηb

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104, 043003 (2010)

Page 20: Fast and Robust Laser Cooling of Trapped Systems

20

Summary

Interference of 2 cooling schemes

Steady state is a pure state

Best final T and cooling rate

Easy implementation

Experimentally robust

Ψss

= − 0 − iη + 1 + o(η 2)

)(0 2on

e

e

10

2

2

W

e

}

Ωa, -ηaΩa, ηa

Ωb, ηb

J. Cerrillo, A. Retzker, M. Plenio, Phys. Rev. Lett. 104, 043003 (2010)