79
Graduate eses and Dissertations Iowa State University Capstones, eses and Dissertations 2012 Factors affecting mycorrhizal colonization in Schizachyrium scoparium Paul N. Frater Iowa State University Follow this and additional works at: hps://lib.dr.iastate.edu/etd Part of the Ecology and Evolutionary Biology Commons is esis is brought to you for free and open access by the Iowa State University Capstones, eses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate eses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Recommended Citation Frater, Paul N., "Factors affecting mycorrhizal colonization in Schizachyrium scoparium" (2012). Graduate eses and Dissertations. 12818. hps://lib.dr.iastate.edu/etd/12818

Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

Graduate Theses and Dissertations Iowa State University Capstones, Theses andDissertations

2012

Factors affecting mycorrhizal colonization inSchizachyrium scopariumPaul N. FraterIowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Ecology and Evolutionary Biology Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University DigitalRepository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University DigitalRepository. For more information, please contact [email protected].

Recommended CitationFrater, Paul N., "Factors affecting mycorrhizal colonization in Schizachyrium scoparium" (2012). Graduate Theses and Dissertations.12818.https://lib.dr.iastate.edu/etd/12818

Page 2: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

Factors  affecting  mycorrhizal  colonization  in  Schizachyrium  scoparium  

 

by  

 

Paul  N.  Frater  

 

 

A  thesis  submitted  to  the  graduate  faculty  

in  partial  fulfillment  of  the  requirements  for  the  degree  of  

MASTER  OF  SCIENCE  

 

 

 

Major:  Ecology  and  Evolutionary  Biology  

 

Program  of  Study  Committee:  W.  Stan  Harpole,  Major  Professor  

Brian  Wilsey  Thomas  Loynachan  

 

 

 

 

Iowa  State  University  

Ames,  Iowa  

2012  

Copyright  ©  Paul  N.  Frater,  2012.  All  rights  reserved.

Page 3: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  ii  

DEDICATION  

 

I  would  like  to  dedicate  this  thesis  to  my  wife  Haley  without  whose  loving  support  I  

would  never  have  been  able  to  start  or  complete  this  work.  I  would  also  like  to  thank  

the  graduate  students  of  the  Iowa  State  Department  of  Ecology,  Evolution,  and  

Organismal  Biology  for  much  support  and  friendship  throughout  my  course  of  study.

Page 4: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  iii  

TABLE  OF  CONTENTS  

 

List  of  Tables................................................................................................................................... iv  

 

List  of  Figures .................................................................................................................................. v    

Abstract ...........................................................................................................................................vii    

Chapter  1.  General  Introduction ...............................................................................................1  Introduction ....................................................................................................................................................................1  Thesis  Organization .....................................................................................................................................................5  References........................................................................................................................................................................6  

 

Chapter  2.  Factors  controlling  rates  of  mycorrhizal  colonization  in       Schizachyrium  scoparium  along  a  latitude  gradient..............................................9  Abstract .............................................................................................................................................................................9  Introduction ................................................................................................................................................................. 10  Methods.......................................................................................................................................................................... 13  Results ............................................................................................................................................................................ 18  Discussion ..................................................................................................................................................................... 18  References..................................................................................................................................................................... 37  

 

Chapter  3.  Responses  of  the  percentage  of  mycorrhizal  colonization  in     Schizachyrium  scoparium  to  nutrient  additions  and  nutrient       stoichiometry  across  5  grassland  sites   .................................................................. 44  Abstract .......................................................................................................................................................................... 44  Introduction ................................................................................................................................................................. 45  Methods.......................................................................................................................................................................... 48  Results ............................................................................................................................................................................ 52  Discussion ..................................................................................................................................................................... 53  References..................................................................................................................................................................... 64  

 

Chapter  4.  Conclusion ................................................................................................................ 68      

Page 5: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  iv  

LIST  OF  TABLES  

 

 

Table  1.  Soil  types,  series,  and  orders  at  sampled  sites .................................................................57    

Table  2.  Soil  texture  at  sampled  sites.....................................................................................................58    

Table  3.  Ambient  nutrient  concentrations  and  ratios  at  sites .....................................................59    

Table  4.  Results  from  mixed-­‐effects  ANOVA  on  nutrient  treatments  and  site.....................60    

Page 6: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  v  

LIST  OF  FIGURES  

 

Figure  1.  Prediction  of  mycorrhizal  colonization  against  N  or  P  concentration .................21  

Figure  2.  Prediction  of  mycorrhizal  colonization  against  N:P  ratio..........................................22  

Figure  3.  Prediction  of  mycorrhizal  colonization  against  MAT  and  GSL ................................23  

Figure  4.  Prediction  of  mycorrhizal  colonization  against  soil  pH..............................................24  

Figure  5.  Prediction  of  mycorrhizal  colonization  against  aridity ..............................................25  

Figure  6.  Predictions  of  how  various  factors  will  change  across  latitude..............................26  

Figure  7.  Regression  of  mycorrhizal  colonization  percentage  against  latitude...................27  

Figure  8.  Regression  of  soil  total  N  against  latitude ........................................................................28  

Figure  9.  Regression  of  soil  available  P  against  latitude................................................................29  

Figure  10.  Regression  of  log  N:P  ratio  against  latitude ..................................................................30  

Figure  11.  Regression  of  MAT  against  latitude ..................................................................................31  

Figure  12.  Regression  of  GSL  against  latitude ....................................................................................32  

Figure  13.  Regression  of  pH  against  latitude ......................................................................................33  

Figure  14.  Regression  of  aridity  index  across  latitude ...................................................................34  

Figure  15.  Initial  SEM  model  of  mycorrhizal  colonization  and  factors  across  latitude....35  

Figure  16.  Best  fitting  SEM  of  factors  affecting  mycorrhizal  colonization.............................36  

Figure  17.  Interaction  plot  of  mycorrhizal  colonization  to  N  addition  among  sites..........61  

Figure  18.  Interaction  plot  of  mycorrhizal  colonization  to  P  addition  among  sites ..........62  

Figure  19.  Regression  of  response  of  mycorrhizal  colonization  to  P  addition  across  

ambient  soil  N:P  ratio  among  sites..........................................................................................................63  

 

Page 7: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  vi  

ACKNOWLEDGEMENTS  

 

I  would  like  to  acknowledge  a  number  of  people  for  guidance  and  assistance  in  the  

research  and  writing  of  this  thesis.  

First,  I  would  like  to  thank  Dr.  W.  Stan  Harpole  for  the  guidance  and  wisdom  that  he  

provided  me  throughout  my  education  at  Iowa  State.  He  instilled  in  me  a  sense  of  

empowerment  and  taught  me  how  to  think,  which  is  the  greatest  gift  anyone  can  

receive.  

I  would  also  like  to  thank  the  members  of  my  committee  for  their  helpful  comments  and  

efforts  in  this  work:  Dr.  Brian  Wilsey  and  Dr.  Tom  Loynachan.  

I  would  additionally  like  to  thank  Dr.  Kirsten  Hofmockel  for  helpful  advice  and  support  

throughout  my  project  as  well  as  Dr.  Brent  Danielson  and  Dr.  Karen  Abbott  for  

empowering  my  mind  and  assisting  in  the  development  of  my  education.  

Thank  you  to  current  and  former  graduate  students  at  Iowa  State  University  in  the  

Ecology,  Evolution,  and  Organismal  Biology  Department  for  much  needed  help  and  

support.    

Last,  but  certainly  not  least,  I  would  like  to  give  a  huge  thanks  to  my  wife  Haley  Frater.  

Without  her  I  would  have  nothing.  

Page 8: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  vii  

ABSTRACT  

Various  factors  have  been  known  to  influence  the  percentage  of  mycorrhizal  

colonization  in  plants.  However,  it  is  unknown  whether  certain  factors  matter  at  

different  scales  or  if  one  or  several  factors  have  an  overarching  effect  on  controlling  

rates  of  mycorrhizal  colonization  in  plants.  In  this  thesis  I  assessed  the  percentage  of  

mycorrhizal  colonization  in  Schizhachyrium  scoparium  at  5  different  sites  that  occur  

along  a  latitude  gradient  to  determine  which  factors  had  an  overarching  effect  and  if  

there  were  site-­‐specific  differences  in  responses  to  nutrient  addition.  In  the  first  

chapter  I  present  what  factors  affected  the  percentage  of  mycorrhizal  colonization  

along  a  latitude  gradient.  I  found  that  aridity  was  the  only  factor  to  contribute  to  

changes  in  the  percentage  of  mycorrhizal  colonization.  In  my  second  chapter  I  used  this  

information  to  account  for  differences  between  sites  and  assess  responses  in  the  

percentage  of  mycorrhizal  colonization  among  sites  to  see  if  there  was  a  difference  

among  sites.  I  found  that  the  addition  of  nitrogen  (N)  decreased  the  percentage  of  

mycorrhizal  colonization  in  Schizachyrium  scoparium  across  sites,  but  that  the  addition  

of  phosphorus  (P)  had  different  effects  among  sites.  Responses  to  the  addition  of  P  

exhibited  a  U-­‐shaped  pattern  in  relation  to  ambient  N:P  ratio  in  soil  at  the  sites.  The  

results  found  in  the  first  chapter  of  this  thesis  are  novel  and  important  to  

understanding  plant-­‐mycorrhizae  relationships  in  plants  while  the  results  found  in  the  

second  chapter  agree  with  the  current  theory  that  exists  to  explain  how  resource  

stoichiometry  affects  the  percentage  of  mycorrhizal  colonization  in  plants.  

 

Page 9: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  1  

Chapter  1.  General  Introduction    

 Introduction  

Mycorrhizae  are  largely  important  for  plant  nutrient  and  water  acquisition  (Smith  and  

Read  2008).  While  the  existence  of  these  organisms  has  been  known  for  over  150  years  

(Nageli  1842)  research  into  their  importance  has  only  been  appreciated  recently  (Koide  

and  Mosse  2004).  Mycorrhizae  assist  plants  in  obtaining  nitrogen  (N),  phosphorus  (P),  

zinc  (Zn),  copper  (Cu),  and  many  other  essential  nutrients  as  well  as  water  from  the  soil  

(Clark  and  Zeto  2000).  In  turn,  plants  provide  the  fungus  with  fixed  carbon  (C),  which  

they  obtain  via  photosynthesis  (Bago  et  al.  2000).  This  symbiosis  is  dependent  on  a  

reciprocal  transfer  of  plant  C  for  nutrients  from  mycorrhizae  (Fitter  1991,  sensu  

Johnson  2009).  However,  rates  of  mycorrhizal  colonization  have  been  found  to  differ  in  

plants  growing  in  different  environmental  conditions  (Johnson  1993,  Treseder  and  

Vitousek  2001,  Johnson  et  al.  2003a)  and  the  study  of  these  differences  is  important  to  

understanding  the  plant-­‐mycorrhizae  relationship.  Recently,  meta-­‐analyses  of  these  

studies  and  accompanying  theory  have  attributed  differences  in  rates  of  mycorrhizal  

colonization  in  plants  to  resource  conditions  in  the  environment  of  the  plant-­‐

mycorrhizae  symbiosis  (Treseder  and  Allen  2002,  Johnson  2009).  While  the  plant-­‐

mycorrhizae  relationship  has  often  been  termed  to  lie  somewhere  along  a  gradient  of  

mutualism  to  parasitism  the  idea  of  mycorrhizae  parasitizing  plants  has  not  been  well-­‐

tested  and  is  perhaps  ill-­‐used.  In  contrast,  studies  of  rates  of  mycorrhizal  colonization  

have  resulted  in  these  rates  changing  with  experimental  manipulation  to  resource  

concentrations  (Treseder  2004).  This  signifies  that  plants  are  able  to  alter  rates  of  

Page 10: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  2  

mycorrhizal  colonization  in  their  roots  (Graham  and  Eissenstat  1994)  and  do  so  in  

response  to  resource  conditions.  I  was  interested  in  knowing  what  factors  affect  

mycorrhizal  colonization  in  plants  and  if  these  factors  differ  across  scales.  

Both  soil  nutrients  and  atmospheric  carbon  have  been  shown  to  influence  aspects  of  

mycorrhizal  colonization  in  plants  (Egerton-­‐Warburton  and  Allen  2000,  Rillig  et  al.  

2000,  Corkidi  et  al.  2002,  Johnson  et  al.  2003a,  2003b,  Chen  et  al.  2005).  Nutrients  

tested  for  the  most  part  have  been  N  and  P,  and  effects  on  mycorrhizal  colonization  of  

atmospheric  C  have  been  tested  as  well  (Treseder  2004).  These  three  resources  have  

pretty  clearly  been  shown  to  have  an  effect  on  rates  of  mycorrhizal  colonization  by  

generally  decreasing  percentages  of  mycorrhizal  colonization  with  the  addition  of  N  

and/or  P  and  increasing  these  rates  with  the  addition  of  atmospheric  C.  (Treseder  

2004).  These  results  are  attributed  to  the  trade  balance  and  functional  equilibrium  of  

plants  in  exchanging  C  for  nutrients  with  mycorrhizae  (Treseder  and  Allen  2002,  

Johnson  2009).  Plants  should  optimally  allocate  C  to  mycorrhizae  in  conditions  where  

soil  nutrients  are  low  and  mycorrhizae  can  help  attain  those  resources  or  when  there  is  

an  abundance  of  C  produced  by  the  plant.  According  to  these  principles  increases  in  

photosynthesis  via  increased  temperature  and  growing  season  length  should  lead  to  

increased  C  acquisition  and  in  turn  an  increase  in  the  percentage  of  mycorrhizal  

colonization  in  plants  (Lambers  et  al.  1998,  Johnson  2009).  I  wanted  to  know  if  changes  

in  temperature  and  growing  season  length  across  a  latitude  gradient  influenced  the  

percentage  of  mycorrhizal  colonization  in  Schizachyrium  scoparium.  I  hypothesized  that  

the  percentage  of  mycorrhizal  colonization  would  increase  with  decreasing  latitude  

Page 11: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  3  

because  of  the  accompanying  increase  in  mean  annual  temperature  and  growing  season  

length.  However,  there  are  many  environmental  factors  that  change  with  latitude,  so  the  

quantification  and  inclusion  in  statistical  analyses  of  factors  thought  to  be  important  in  

altering  rates  of  mycorrhizal  colonization,  other  than  nutrients,  temperature,  and  light,  

is  crucial  in  determining  the  importance  of  light  and  temperature  on  rates  of  

mycorrhizal  colonization  in  this  study.    

 

The  first  chapter  of  this  thesis  is  a  study  that  assessed  rates  of  mycorrhizal  colonization  

in  Schizachyrium  scoparium  along  a  latitude  gradient  at  sites  that  are  part  of  a  globally  

replicated  nutrient  alteration  experiment.  I  collected  root  samples  from  five  of  these  

sites  located  in  the  central  United  States  where  Schizachyrium  scoparium  is  most  

abundant  and  assessed  the  percentage  of  mycorrhizal  colonization  in  these  roots  in  

order  to  determine  the  influences  that  nutrients,  light,  and  temperature  had,  if  any,  on  

rates  of  mycorrhizal  colonization  in  these  plants.  In  order  to  account  for  other  factors  

that  may  be  important  to  rates  of  mycorrhizal  colonization  and  that  also  change  with  

latitude  I  have  used  a  structural  equation  modeling  approach  that  includes  nutrient  

concentrations  (soil  N  and  P),  temperature,  growing  season,  pH,  and  aridity.  I  

hypothesized  that  nutrients  will  have  an  effect  on  the  percentage  of  mycorrhizal  

colonization  in  Schizachyrium  scoparium  as  has  been  previously  shown,  but  that  mean  

annual  temperature  and  growing  season  length  at  sites  will  also  positively  correlate  to  

higher  percentages  of  mycorrhizal  colonization.  That  is,  plants  growing  at  sites  with  

warmer  temperatures  and  longer  growing  seasons  will  have  increased  rates  of  

Page 12: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  4  

mycorrhizal  colonization.  

 

Two  major  assumptions  of  this  first  chapter  are  1)  that  the  C  budget  of  plants  actually  

increases  with  increased  temperature  and  growing  season,  and  2)  that  plants  can  

control  the  relationship  with  mycorrhizae.  The  first  assumption  is  stated  with  

knowledge  of  plant  photosynthetic  physiology  that  rates  of  photosynthesis  are  known  

to  increase  with  temperature  (Lambers  et  al.  1998).  It  also  follows  that  if  plants  

photosynthesize  for  a  greater  number  of  days  throughout  the  year  that  this  will  result  

in  greater  per  annum  rates  of  C  acquisition.  The  second  assumption  has  been  shown  to  

exist  in  experimental  microcosms  with  more  and  less  mutualistic  mycorrhizae  and  

plants  being  able  to  reduce  C  flow  to  less  mutualistic  mycorrhizae  (Kiers  et  al.  2011),  

which  would  eventually  decrease  rates  of  these  mycorrhizae.  In  addition,  this  

assumption  is  invoked  because  plants  are  facultative  on  mycorrhizae  whereas  

mycorrhizae  are  obligate  biotrophs  of  plants.    

 

The  second  chapter  of  this  thesis  presents  a  study  that  assessed  responses  in  the  

percentage  of  mycorrhizal  colonization  to  nutrients  across  sites.  A  variety  of  field  

studies  have  looked  at  rates  of  mycorrhizal  colonization  in  response  to  nutrient  

addition  (Treseder  and  Vitousek  2001,  Johnson  et  al.  2003a,  Treseder  2004);  however,  

many  of  these  studies  fail  to  neglect  inter-­‐site  differences  that  may  affect  mycorrhizal  

colonization.  It  is  unknown  if  differences  in  precipitation,  aridity,  pH,  and  ambient  

nutrient  conditions  across  sites  play  a  role  in  determining  percentages  of  mycorrhizal  

Page 13: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  5  

colonization  in  plants.  Mycorrhizae  have  been  attributed  to  influencing  water  uptake  

(Smith  and  Read  2008)  and  water  use  efficiency  (Hobbie  and  Colpaert  2004)  in  plants.  

Similarly,  variable  results  of  the  effects  of  pH  on  mycorrhizal  colonization  have  been  

found  (Richards  1961,  Theodorou  and  Bowen  1969,  Wang  et  al.  1993).  I  was  interested  

in  assessing  changes  in  the  percentage  of  mycorrhizal  colonization  in  Schizachyrium  

scoparium  in  response  to  nutrient  treatment  among  sites  while  accounting  for  the  

environmental  changes  found  in  the  first  chapter  of  this  thesis.  This  will  provide  an  idea  

for  the  role  that  nutrients  actually  play  in  the  plant-­‐mycorrhizal  relationship.  My  

specific  research  question  for  this  chapter  is  to  see  if  differences  in  nutrient  factors  

among  sites  (e.g.  nutrient  concentration  and  stoichiometry)  influence  the  response  of  

the  percentage  of  mycorrhizal  colonization  in  Schizachyrium  scoparium  to  nutrient  

fertilization.  

 

Thesis  Organization  

The  following  thesis  is  organized  into  two  data  chapters  and  a  conclusion.  The  first  

chapter  discusses  my  study  of  assessing  the  environmental  factors  controlling  the  

percentage  of  mycorrhizal  colonization  across  latitude.  The  second  chapter  is  on  my  

work  assessing  responses  of  mycorrhizal  colonization  to  nutrient  treatment  and  how  

these  responses  were  determined  by  soil  nutrient  conditions.  Both  of  these  papers  are  

displayed  in  a  format  such  as  the  manuscripts  I  will  submit  to  peer-­‐reviewed  journals.    

 

 

Page 14: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  6  

References  

Bago,  B.,  P.  Pfeffer,  and  Y.  Shachar-­‐Hill.  2000.  Carbon  metabolism  and  transport  in  

arbuscular  mycorrhizas.  Plant  Physiology  124:949–958.    

Chen,  X.,  J.  Tang,  G.  Zhi,  and  S.  Hu.  2005.  Arbuscular  mycorrhizal  colonization  and  

phosphorus  acquisition  of  plants:  effects  of  coexisting  plant  species.  

Applied  Soil  Ecology  28:259–269.  doi:  10.1016/j.apsoil.2004.07.009.  

Clark,  R.  B.,  and  S.  K.  Zeto.  2000.  Mineral  acquisition  by  arbuscular  mycorrhizal  plants.  

Journal  of  Plant  Nutrition  23:867–902.  doi:  

10.1080/01904160009382068.  

Corkidi,  L.,  D.  Rowland,  and  N.  Johnson.  2002.  Nitrogen  fertilization  alters  the  

functioning  of  arbuscular  mycorrhizas  at  two  semiarid  grasslands.  Plant  

and  Soil  240:299–310.  

Egerton-­‐Warburton,  L.,  and  E.  B.  Allen.  2000.  Shifts  in  arbuscular  mycorrhizal  

communities  along  an  anthropogenic  nitrogen  deposition  gradient.  

Ecological  Applications  10:484–496.  

Fitter,  A.  1991.  Costs  and  benefits  of  mycorrhizas:  Implications  for  functioning  under  

natural  conditions.  Experientia  47:350–355.  doi:  10.1007/BF01972076.  

Graham,  J.,  and  D.  Eissenstat.  1994.  Host  genotype  and  the  formation  and  function  of  VA  

mycorrhizae.  Plant  and  Soil  159:179–185.  

Hobbie,  E.  A.,  and  J.  V.  Colpaert.  2004.  Nitrogen  availability  and  mycorrhizal  colonization  

influence  water  use  efficiency  and  carbon  isotope  patterns  in  Pinus  

sylvestris.  New  Phytologist  164:515–525.  doi:  10.1111/j.1469-­‐

Page 15: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  7  

8137.2004.01187.x.  

Johnson,  N.  1993.  Can  fertilization  of  soil  select  less  mutualistic  mycorrhizae?  Ecological  

Applications  3:749–757.  doi:  10.2307/1942106.  

Johnson,  N.  C.  2009.  Resource  stoichiometry  elucidates  the  structure  and  function  of  

arbuscular  mycorrhizas  across  scales.  New  Phytologist  185:631–647.  doi:  

10.1111/j.1469-­‐8137.2009.03110.x.  

Johnson,  N.,  D.  Rowland,  L.  Corkidi,  L.  Egerton-­‐Warburton,  and  E.  Allen.  2003a.  Nitrogen  

enrichment  alters  mycorrhizal  allocation  at  five  mesic  to  semiarid  

grasslands.  Ecology  84:1895–1908.  

Johnson,  N.,  J.  Wolf,  and  G.  Koch.  2003b.  Interactions  among  mycorrhizae,  atmospheric  

CO2  and  soil  N  impact  plant  community  composition.  Ecology  Letters  

6:532–540.  

Kiers,  E.,  M.  Duhamel,  Y.  Beesetty,  J.  Mensah,  O.  Franken,  E.  Verbruggen,  C.  Fellbaum,  G.  

Kowalchuk,  M.  Hart,  A.  Bago,  T.  Palmer,  S.  West,  P.  Vandenkoornhuyse,  J.  

Jansa,  and  H.  Buecking.  2011.  Reciprocal  rewards  stabilize  cooperation  in  

the  mycorrhizal  symbiosis.  Science  333:880–882.  doi:  

10.1126/science.1208473.  

Koide,  R.,  and  B.  Mosse.  2004.  A  history  of  research  on  arbuscular  mycorrhiza.  

Mycorrhiza  14:145–163.  

Lambers,  H.,  F.  S.  I.  Chapin,  and  T.  L.  Pons.  1998.  Physiological  Plant  Ecology,  2nd  edition.  

Springer,  New  York.  

Nageli,  C.  1842.  Pilze  im  Innern  von  Zellen.  Linnaea  16:278–285.  

Page 16: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  8  

Richards,  B.  1961.  Soil  pH  and  mycorrhiza  development  in  Pinus.  Nature  190:105–106.  

doi:  10.1038/190105a0.  

Rillig,  M.,  G.  Hernandez,  and  P.  Newton.  2000.  Arbuscular  mycorrhizae  respond  to  

elevated  atmospheric  CO2  after  long-­‐term  exposure:  evidence  from  a  CO2  

spring  in  New  Zealand  supports  the  resource  balance  model.  Ecology  

Letters  3:475–478.  

Smith,  S.,  and  D.  J.  Read.  2008.  Mycorrhizal  Symbiosis,  3rd  edition.  Academic  Press.  

Theodorou,  C.,  and  G.  Bowen.  1969.  The  influence  of  pH  and  nitrate  on  mycorrhizal  

associations  of  Pinus  radiata  D.  Don.  Australian  Journal  of  Botany  17:59–

67.  

Treseder,  K.  K.  2004.  A  meta-­‐analysis  of  mycorrhizal  responses  to  nitrogen,  

phosphorus,  and  atmospheric  CO2  in  field  studies.  New  Phytologist  

164:347–355.  doi:  10.1111/j.1469-­‐8137.2004.01159.x.  

Treseder,  K.  K.,  and  M.  F.  Allen.  2002.  Direct  nitrogen  and  phosphorus  limitation  of  

arbuscular  mycorrhizal  fungi:  a  model  and  field  test.  New  Phytologist  

155:507–515.  doi:  10.1046/j.1469-­‐8137.2002.00470.x.  

Treseder,  K.,  and  P.  Vitousek.  2001.  Effects  of  soil  nutrient  availability  on  investment  in  

acquisition  of  N  and  P  in  Hawaiian  rain  forests.  Ecology  82:946–954.    

Wang,  G.,  D.  Stribley,  P.  Tinker,  and  C.  Walker.  1993.  Effects  of  pH  on  arbuscular    

    mycorrhiza  I.  Field  observations  on  the  long-­‐term  liming      

    experiments  at  Rothamsted  and  Woburn.  New  Phytologist  124:465–  

    472.  

Page 17: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  9  

Chapter  2.  Extent  of  mycorrhizal  colonization  in  Schizachyrium  scoparium  along  a  latitude  gradient  

   

   Abstract    Resource  stoichiometry  has  been  proposed  to  influence  rates  of  mycorrhizal  

colonization  in  plants.  This  work  has  looked  at  environmental  ratios  of  carbon,  

nitrogen,  and  phosphorus  (C:N:P);  however,  most  of  these  studies  have  not  looked  at  

overarching  limitations  or  environmental  controls  on  the  plant-­‐mycorrhizae  

relationship  (e.g.  energetic  influences  such  as  temperature  or  light,  water  limitation,  or  

pH).  I  present  research  that  assesses  rates  of  mycorrhizal  colonization  in  Schizachyrium  

scoparium  along  a  latitude  gradient.  I  hypothesized  that  mycorrhizal  colonization  would  

increase  with  decreasing  latitude  due  to  increased  mean  annual  temperature  (MAT)  

and  growing  season  length  (GSL)  at  lower  latitudes,  which  would  allow  plants  to  

photosynthesize  both  at  higher  rates  and  for  longer  periods  throughout  the  year  

thereby  increasing  carbon  budget.  Mycorrhizal  colonization  did  increase  with  

decreasing  latitude;  however,  using  structural  equation  modeling  (SEM)  I  show  here  

that  aridity  was  the  main  driver  for  this  pattern.  MAT  and  GSL  were  not  able  to  

significantly  explain  any  patterns  in  the  data.  Similarly,  differences  in  nutrients  (i.e.  N  

and  P)  when  accounting  for  other  factors  had  no  significant  effect  on  the  percentage  of  

mycorrhizal  colonization  in  Schizachyrium  scoparium.  

       

Page 18: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  10  

Introduction    The  effect  of  nutrients  and  nutrient  stoichiometry  (specifically  carbon  -­‐  C,  nitrogen  -­‐  N,  

and  phosphorus  -­‐  P)  on  rates  of  mycorrhizal  colonization  has  been  studied  extensively  

for  at  least  the  past  20  years  (Bååth  and  Spokes  1989,  Johnson  1993,  Rillig  et  al.  2000,  

Titus  and  Leps  2000,  Valentine  et  al.  2001,  Treseder  and  Allen  2002,  Johnson  et  al.  

2003,  Treseder  2004,  Johnson  2009).  Stoichiometry  of  resources  has  been  hypothesized  

to  increase  or  decrease  mycorrhizal  colonization  in  plants  due  to  changes  in  supply  and  

demand  in  biological  markets  of  plants  and  mycorrhizal  fungi  (Schwartz  and  Hoeksema  

1998,  Johnson  2009).    However,  research  has  for  the  most  part  only  looked  at  the  

influences  of  soil  nutrients  and  atmospheric  carbon  level  on  rates  of  mycorrhizal  

colonization  in  plants  making  this  research  purely  stoichiometric  in  nature  (Johnson  

2009).  Carbon  clearly  plays  an  important  role  in  the  plant-­‐mycorrhizae  relationship  

(Miller  et  al.  2002,  Cameron  et  al.  2008),  and  much  theoretical  and  recent  empirical  

work  has  been  done  to  establish  how  and  when  plants  should  cooperate  with  

mycorrhizae  and  when  they  should  abjure  the  relationship  (Fitter  1991,  2006,  Kiers  et  

al.  2011).  One  would  expect,  all  else  being  equal,  that  if  the  acquisition  of  carbon  were  

to  increase  in  plants,  then  the  proportion  of  root  system  colonized  by  mycorrhizae  

would  increase  as  well  due  to  increased  carbon  allocation  from  plants.  This  prediction  

has  been  shown  with  experiments  of  increased  atmospheric  carbon  (Rillig  et  al.  1999a,  

1999b,  2000,  Fransson  et  al.  2001,  Lukac  et  al.  2003,  Langley  et  al.  2003).  However,  no  

one  has  looked  at  how  increased  carbon  from  energetic  influences  (i.e.  temperature,  

light)  influences  mycorrhizal  colonization.  Physiological  principles  of  plant  carbon  

Page 19: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  11  

acquisition  predict  that  photosynthetic  rate  increases  with  increased  light  and  

temperature,  and  indeed,  increases  in  temperature  and  light  have  been  shown  to  

increase  carbon  acquisition  in  plants  (Blackman  and  Matthaei  1905,  Matthaei  1905).  

Therefore,  an  increase  in  carbon  acquisition  via  increased  photosynthesis  should  lead  

to  higher  rates  of  mycorrhizal  colonization  in  plants.  In  addition  to  these  factors  

mycorrhizal  colonization  has  been  shown  to  be  important  in  the  acquisition  of  water  

(Hardie  and  Leyton  1981,  Mathur  and  Vyas  2000),  and  pH  has  been  shown  to  have  

variable  results  on  the  percentage  of  mycorrhizal  colonization  in  plants  with  the  

greatest  rates  of  colonization  seeming  to  occur  at  neutral  pH  values  (Richards  1961,  

Theodorou  and  Bowen  1969,  Wang  et  al.  1993,  Bollag  and  Leneowicz  1984).  Therefore,  

both  water  limitation  and  pH  could  also  potentially  play  a  large  role  in  determining  

rates  of  mycorrhizal  colonization  in  plants.  I  was  interested  in  investigating  which  

factors  have  the  greatest  effect  on  the  percentage  of  mycorrhizal  colonization  in  plants  

across  a  range  of  levels  for  these  seemingly  important  factors.    

 

To  assess  how  these  various  factors  affect  rates  of  mycorrhizal  colonization  I  collected  

root  samples  from  Schizachyrium  scoparium  at  five  sites  ranging  in  latitude  from  

Minnesota  to  Texas.  These  sites  range  in  mean  annual  temperature  (MAT)  from  7.0  -­‐  

18.9°  C  and  in  growing  season  length  (GSL)  from  139  -­‐  235  days.  This  allows  for  a  

natural  gradient  of  temperature  and  light  that  would  be  difficult  to  attain  with  a  

greenhouse  study.  This  geographic  gradient  similarly  contains  a  natural  gradient  of  

nutrient  conditions,  which  allowed  me  to  test  for  the  effects  of  nutrient  level  and  

Page 20: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  12  

stoichiometry  on  rates  of  mycorrhizal  colonization  as  well.  Additionally,  the  sites  that  I  

sampled  are  part  of  a  replicated  study  of  nutrient  addition  in  grasslands,  which  extends  

beyond  the  natural  range  of  nutrient  conditions.  This  presents  a  unique  opportunity  to  

assess  the  status  of  this  symbiosis  with  changes  in  nutrients  as  well  as  energetic  

components  thereby  offering  a  method  in  which  to  test  the  combined  effects  of  the  

theory  of  ecological  stoichiometry  and  energetic  influences  on  rates  of  mycorrhizal  

colonization.  Nutrient  levels  differ  at  these  sites  with  P  increasing  and  N  decreasing  

with  increasing  latitude.  While  mycorrhizae  are  often  considered  more  important  when  

soil  P  concentrations  are  lower  it  has  been  shown  that  nutrient  levels  at  particular  sites  

determine  how  rates  of  mycorrhizal  colonization  respond  to  nutrient  addition  

(Treseder  and  Vitousek  2001).  This  suggests  that  nutrient  levels  at  a  particular  site  are  

important  in  determining  which  nutrient  (i.e.  N  or  P)  drive  rates  of  mycorrhizal  

colonization  at  that  site.  Similarly,  N:P  ratio  could  be  an  explanatory  variable  alternative  

to  strictly  absolute  values  of  N  or  P.  A  series  of  predictions  can  be  made  for  how  N,  P,  

MAT,  GSL,  aridity  (as  a  metric  for  water  limitation),  and  pH  affect  rates  of  mycorrhizal  

colonization  (Figs.  1-­‐5).  I  hypothesized  the  following  for  each  factor.  Both  higher  N  and  

P  concentrations  would  decrease  mycorrhizal  colonization;  however,  I  also  expected  N  

to  be  inversely  correlated  with  latitude,  but  P  to  be  positively  correlated;  I  expected  that  

P  concentration  would  have  a  greater  effect  on  mycorrhizal  colonization  since  the  bulk  

of  literature  has  shown  this  (Treseder  2004),  but  that  N  may  play  a  secondary  role.  N:P  

ratio,  which  I  hypothesized  to  decrease  with  increasing  latitude,  should  have  a  positive  

correlation  with  the  percentage  of  mycorrhizal  colonization.  I  predicted  that  both  MAT  

Page 21: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  13  

and  GSL  would  increase  the  percentage  of  mycorrhizal  colonization  in  plants,  and  

would  be  inversely  correlated  with  latitude.  Aridity,  I  hypothesized,  would  have  a  

positive  correlation  with  both  percentage  of  mycorrhizal  colonization  and  an  inverse  

correlation  with  latitude.  I  predicted  that  the  percentage  of  mycorrhizal  colonization  

would  be  affected  by  pH  with  a  neutral  pH  having  the  greatest  rates  of  mycorrhizal  

colonization;  however,  I  did  not  have  a  good  prediction  at  whether  pH  would  increase  

or  decrease  along  the  latitude  gradient  sampled  as  I  had  not  found  any  theoretical  or  

empirical  work  to  back  up  any  prediction  for  this.  Due  to  differences  in  inter-­‐site  N  and  

P  concentrations  I  expected  both  of  these  nutrients  to  have  an  effect  on  the  percentage  

of  mycorrhizal  colonization  thereby  negating  any  latitudinal  effect  that  the  individual  

nutrients  would  have.  Given  the  stoichiometric  perspective  of  the  relationship  between  

plants  and  mycorrhizal  fungi,  and  the  importance  of  C:N:P  ratios,  I  hypothesized  that  

MAT  and  GSL  would  affect  the  percentage  of  mycorrhizal  colonization  the  most.  This  

prediction  stems  from  theory  that  plants  will  photosynthesize  at  higher  rates  with  

increased  MAT  and  GSL  thereby  increasing  carbon  for  allocation  to  mycorrhizae,  which  

should  increase  percentage  of  colonization.    

 Methods    Field  Sites  

I  collected  root  samples  of  Schizachyrium  scoparium  at  5  replicated  nutrient  addition  

sites  that  are  part  of  The  Nutrient  Network.  The  Nutrient  Network  is  a  global  research  

cooperative  that  investigates  top  down  and  bottom  up  controls  on  grassland  plant  

communities  by  employing  nutrient  and  herbivory  treatments  to  grassland  sites  around  

Page 22: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  14  

the  world  (Stokstad  2011).  Replicate  treatments  of  N,  P,  and  K  with  micronutrients  

were  applied  in  a  factorial  block  design  to  investigate  singular  and  interactive  effects  of  

nutrients  on  various  aspects  of  plant  communities.  All  fertilizers  added  were  pellet  

fertilizers  that  were  added  in  the  following  quantities:  N  was  added  as  time-­‐release  

urea  (N2H4CO)  at  a  rate  of  23  kg  hectare-­‐1  year-­‐1.  P  was  added  as  triple  super  phosphate  

(Ca(H2PO4)2)  at  a  rate  of  51  kg  hectare-­‐1  year-­‐1.  K  and  micronutrients  were  fertilized  

together  as  a  combination  of  potash  (KCl)  at  a  rate  of  22  kg  hectare-­‐1  year-­‐1  as  well  as  

100  kg  hectare-­‐1  year-­‐1  of  Scotts  Micromax,  which  is  a  blend  of  macro-­‐  and  micro-­‐

nutrients  (e.g.  K,  Ca,  Mg,  S,  B,  Cu,  Fe,  Mn,  Mo,  Zn).    The  5  Nutrient  Network  sites  where  I  

collected  roots  from  were:  Cedar  Creek  LTER,  MN;  Chichaqua  Bottoms,  IA  (CBGB);  Barta  

Brothers  Ranch,  NE;  Konza  LTER,  KS;  and  Temple,  TX  (which  is  located  at  the  USDA-­‐

ARS  Grassland  Soil  and  Water  Research  Laboratory,  Temple,  TX).  I  chose  these  sites  

based  on  their  involvement  in  the  Nutrient  Network  and  having  replicate  N,  P,  and  K  

additions.  All  treatments  were  applied  to  5  x  5  meter  plots  set  up  in  a  randomized  block  

design.  All  sites  had  at  least  3  replicate  blocks  with  Cedar  Creek  LTER  having  5  blocks  

and  CBGB  having  6  blocks.  Sites  were  also  chosen  based  on  the  prevalence  of  

Schizachyrium  scoparium  at  each  site  as  well  a  location  within  the  central  regions  of  the  

species’  range.  I  chose  this  species  because  it  is  a  dominant  grass  across  much  of  the  

central  United  States,  which  makes  findings  widely  applicable  as  well  as  allows  me  to  

test  questions  about  ecological  stoichiometry  across  a  wide  geographical  range.    Sites  

also  contained  additional  herbivore  exclosure  treatments  with  one  of  these  being  un-­‐

fertilized  and  another  fully  fertilized  (i.e.  with  N,  P,  and  K  +  micronutrients);  however,  

Page 23: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  15  

the  exclusion  of  herbivores  did  not  have  a  significant  effect  on  the  percentage  of  

mycorrhizal  colonization  and  was  not  included  in  analyses.  

 Field  and  Lab  Methods  

I  collected  root  samples  from  Schizachyrium  scoparium  plants  using  a  1.75  cm  diameter  

soil  core  to  a  depth  of  30  cm.  Samples  were  collected  during  the  month  of  August,  2010.  

I  collected  samples  by  taking  the  root  core  just  off  the  center  of  the  bunchgrass  to  avoid  

destroying  the  meristem  and  harming  the  plant.    Roots  and  soil  samples  were  placed  in  

sealable  plastic  bags  and  stored  in  a  cooler  with  ice  while  in  transport  to  the  lab.  They  

were  then  stored  in  a  freezer  at  -­‐20°C  until  processed.  I  retrieved  roots  from  soil  

samples  by  sieving  the  samples  through  a  2mm  soil  sieve.  I  obtained  fresh  mass  of  

roots,  took  a  subsample  between  0.05  g  and  0.25  g  for  quantifying  mycorrhizal  

colonization,  and  dried  the  rest  of  the  root  sample  at  60°C  for  48  hours  in  order  to  

obtain  a  dry  mass.  The  ratio  between  dry  mass  and  fresh  mass  was  used  to  calculate  

dried  mass  of  the  subsample  used  for  assessing  mycorrhizal  colonization.  Roots  were  

stained  in  order  to  detect  mycorrhizae  using  the  trypan  blue  staining  procedure  

modified  from  (Robertson  et  al.  1999).  Modifications  consisted  of  tailoring  clearing  and  

staining  times  to  suit  the  roots  of  our  study  specimen  as  well  as  using  filtered  trypan  

blue  solution  instead  of  trypan  blue  powder.  I  then  assessed  the  percentage  of  root  

sample  colonized  by  mycorrhizal  fungi  using  the  grid-­‐line  intercept  technique  

(Giovannetti  and  Mosse  1980).  

 

Soil  Analysis  

Page 24: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  16  

I  collected  the  following  soil  variables  for  each  soil  sample  collected  from  the  field:  total  

C,  total  N,  plant  available  P,  pH,  and  texture.  I  was  specifically  interested  in  obtaining  C,  

N,  and  P  in  order  to  calculate  stoichiometric  ratios  of  these.  Total  N  was  obtained  

instead  of  plant  available  N  because  of  the  time  lag  associated  with  transporting  root  

and  soil  samples  from  the  field  sites  to  the  lab.  I  was  concerned  that  denitrification  of  

inorganic  N  during  transport  would  lead  to  an  ill-­‐represented  sample  of  available  N  and  

therefore  decided  to  use  total  soil  N  instead  of  plant  available  N.  

 

Total  C  and  N  were  obtained  through  the  Soil  and  Plant  Analysis  Laboratory  at  Iowa  

State  University  using  combustion  analyses  performed  on  a  LECO  CHN  TruSpec  and  

Elementar  Variomax  using  the  methods  found  in  Pella  (1990).  I  obtained  available  P  by  

using  the  Mehlich  III  extract  method  and  reading  fluorescence  at  630  nm  on  a  BioTek  

Synergy  HT  multi-­‐mode  microplate  reader.  N:P  ratio  was  calculated  by  dividing  ppm  of  

total  N  by  ppm  of  available  P.  pH  was  measured  by  creating  a  slurry  of  5  g  of  air  dried  

soil  with  10  ml  of  distilled  water  and  shaking  for  5  minutes,  and  then  reading  pH  using  a  

Fisher  Scientific  Accumet  Basic  AB15/15+  pH  reader.  Soil  texture  was  taken  from  pre-­‐

treatment  data  collected  at  each  site  by  the  Nutrient  Network.  

 Environmental  Variables  

I  used  30  year  climate  normals  from  the  NOAA  National  Climatic  Data  Center  to  obtain  

all  climatic  variables  from  the  different  sites  (NOAA  NCDC  2011).  The  climatic  variables  

that  I  used  were  mean  annual  temperature  (MAT),  growing  season  length  (GSL),  and  

mean  annual  precipitation  (MAP).  I  defined  growing  season  length  as  the  90%  

Page 25: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  17  

probability  of  the  number  of  freeze  free  days  above  0  degrees  C  (32˚  F).  Soil  information  

was  obtained  from  the  USDA  Web  Soil  Survey  (Web  Soil  Survey  2011).  Aridity  Index  

(AI)  was  used  as  a  measure  of  water  availability  for  plants.  I  calculated  AI  by  the  

formula  AI  =  PET  /  P,  where  PET  is  potential  evapotranspiration  in  mm  and  P  is  total  

precipitation  (in  mm)  (modified  from  UNEP  1997).  Data  on  PET  were  obtained  from  

EOS-­‐WEBSTER  by  the  University  of  New  Hampshire  (EOS-­‐WEBSTER  2012).  

 

Statistical  Analysis  

All  statistical  analyses  were  performed  in  R  statistical  computing  software  (R  

Development  Core  Team  2011).  I  used  structural  equation  modeling  (SEM)  to  parse  out  

effects  of  the  various  factors  thought  to  have  an  influence  on  mycorrhizal  colonization.  I  

also  included  latitude  as  having  an  effect  on  each  of  the  factors  in  the  model  to  control  

for  the  correlation  that  latitude  had  on  each  factor.  I  used  the  “lavaan”  package  in  R  to  

build  models  and  assess  model  fit  (Rosseel  2012)  and  used  several  model  fit  indices  to  

assess  the  fit  of  the  model  including  the  Tucker-­‐Lewis  Index  (TLI),  Comparative  Fit  

Index  (CFI),  chi-­‐square,  and  root  mean  square  error  of  approximation  (RMSEA).  I  began  

by  building  an  initial  model  that  included  all  of  the  factors  hypothesized  above  (Fig.  7),  

assessing  fit  of  this  full  model  using  the  above  indices,  and  performing  backwards  

selection  until  best-­‐fitting  model  was  achieved.  

           

Page 26: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  18  

Results    Variables  Across  Latitude  

The  percentage  of  mycorrhizal  colonization  decreased  significantly  with  increasing  

latitude  (p  <  0.001,  R2=0.14,  Fig.  7).  As  expected,  there  were  differences  across  latitude  

among  the  explanatory  data  variables  that  I  tested  (Fig.  8-­‐14).  Total  N,  log  N:P  ratio,  pH,  

MAT,  GSL,  and  aridity  index  (AI)  all  decreased  with  increasing  latitude  (N  -­‐  p  <  0.0001;  

R2=0.56,  log  N:P  ratio  -­‐  p  <  0.0001,  R2=0.46;  pH  -­‐  p  <  0.0001,  R2=0.68;  MAT  -­‐  p  <  0.0001,  

R2=0.99;  GSL  -­‐  p  <  0.0001;  R2=0.88;  AI  –  p  <  0.0001,  R2=0.54),  while  available  P  

increased  with  increasing  latitude  (P  -­‐  p  <  0.0001,  R2=0.18).  

 

Variables  Affecting  the  Percentage  of  Mycorrhizal  Colonization  

The  SEM  with  the  best  fitting  model  to  the  data  included  only  pH,  aridity  index  ,  and  the  

percentage  of  mycorrhizal  colonization  as  exogenous  variables  (chi-­‐square  =  154,  d.f.  =  

1,  p  =0.21;  TLI  =  0.993;  CFI  =  0.999;  RMSEA  =  0.05;  Fig.  16).  Within  this  best-­‐fitting  

model  aridity  index  was  the  only  variables  that  had  a  significant  effect  on  the  

percentage  of  mycorrhizal  colonization  across  latitude  (p  =  0.05,  standardized  

coefficient=0.19).  Since  the  original  full  model  did  not  fit  the  data  well  this  chosen  

model  is  considered  an  exploratory  analysis,  which  is  why  I  only  report  standardized  

coefficients  for  the  model.  

   Discussion    I  found  that  the  percentage  of  mycorrhizal  colonization  in  Schizachyrium  scoparium  

Page 27: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  19  

decreases  with  increasing  latitude.  To  my  knowledge,  there  is  only  one  other  study  that  

looks  at  mycorrhizal  fungi  along  a  latitude  gradient  (Koske  1987),  and  this  study  looks  

more  at  dominance,  richness,  and  community  composition  of  mycorrhizae  over  ~3.5°  of  

latitude.  My  study  is  novel  in  that  it  looks  at  rates  of  mycorrhizal  colonization  in  plants  

over  a  range  of  latitude  of  ~15°.  Rates  of  other  mutualisms  have  been  studied  with  

regards  to  latitude,  and  it  has  been  found  that  the  number  of  mutualisms  increase  with  

decreasing  latitude  or  are  higher  in  tropics  than  in  temperate  zones  (Schemske  et  al.  

2009).  This  is  exactly  in  line  with  what  I  have  found;  however,  mechanisms  for  this  

pattern  have  not  been  established.  I  hypothesized  that  the  increase  in  the  percentage  of  

mycorrhizal  colonization  moving  towards  southerly  latitudes  would  be  related  to  

increased  carbon  acquisition  from  higher  rates  of  photosynthesis  due  to  higher  MAT  

and  a  longer  time  span  to  photosynthesize  throughout  the  year  (increased  GSL).  

However,  aridity  had  a  stronger  influence  on  the  percentage  of  mycorrhizal  

colonization.  This  does  not  necessarily  mean  that  temperature  and  light  do  not  have  an  

influence  on  mycorrhizal  colonization,  but  rather  that  aridity  had  a  stronger  influence  

in  this  study.  It  is  both  theoretically  justified  (Gillooly  et  al.  2001,  Brown  et  al.  2004)  

and  empirically  shown  that  an  increase  in  temperature  will  increase  photosynthetic  

rate  and  similarly  carbon  assimilation  in  plants  (Lambers  et  al.  1998).  According  to  

theory  put  forth  by  Johnson  (2009)  this  should  result  in  an  increased  percentage  of  

mycorrhizal  colonization.  Future  work  on  this  subject  should  include  studies  that  

control  for  water  and  nutrient  limitation,  and  assess  rates  of  mycorrhizal  colonization  

along  light  and/or  temperature  gradients.      

Page 28: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  20  

 

I  interpret  the  effects  of  aridity  on  the  percentage  of  mycorrhizal  colonization  in  terms  

of  water  limitation.  Mycorrhizae  have  been  shown  to  assist  plants  in  the  acquisition  of  

water  (Hardie  and  Leyton  1981,  Mathur  and  Vyas  2000).  If  plants  are  limited  by  water  

(in  terms  of  aridity),  then  it  would  make  sense  that  this  has  an  influence  on  the  

percentage  of  mycorrhizal  colonization  found  in  their  root  systems.  The  effect  of  water  

limitation  on  the  percentage  of  mycorrhizal  colonization  could  be  tested  by  adding  a  

water  treatment  to  arid  sites  and  assessing  the  change  in  the  percentage  of  mycorrhizal  

colonization.  

 

Aridity  is  important  in  terms  of  global  change.  As  weather  patterns  continue  to  shift  it  

may  be  possible  to  see  larger  rain  events  with  longer  dry  spells  in  between  (IPCC  2012).  

If  this  is  the  case  plants  may  need  to  increase  rates  of  mycorrhizal  colonization  in  order  

to  avoid  water  limitation  during  those  spells.  This  would  represent  a  large  carbon  cost  

for  plants  that  previously  would  not  have  existed.  Effects  of  this  would  lead  to  either  

increased  carbon  costs  on  the  plant  or  increased  water  limitation,  both  of  which  could  

potentially  have  implications  on  populations  of  Schizachyrium  scoparium  and  in  turn  

community  dynamics  in  prairies  as  this  plant  is  pervasive  and  dominant  throughout  

much  of  its  range.  

Page 29: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  21  

 

 

 Fig.  1.    Prediction  of  how  the  percentage  of  mycorrhizal  colonization  will  change  with  increasing  nitrogen  or  phosphorus  levels  in  the  soil.  

1a

[N] or [P]

% C

olon

izat

ion

1b

N:P ratio

% C

olon

izat

ion

1c

MAT and GSL

% C

olon

izat

ion

1d

Aridity

% C

olon

izat

ion

1e

!"

#$%&'&()*+,)&(

pH = 7.0

1f

!"#$#%&'

(")#*+

N, pH, Aridity, MAT, GSL

P, pH

Page 30: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  22  

   

 Fig.  2.  Prediction  of  how  the  percentage  of  mycorrhizal  colonization  will  change  with  increasing  N:P  ratio  in  the  soil.  

1a

[N] or [P]

% C

olon

izat

ion

1b

N:P ratio

% C

olon

izat

ion

1c

MAT and GSL

% C

olon

izat

ion

1d

Aridity

% C

olon

izat

ion

1e

!"

#$%&'&()*+,)&(

pH = 7.0

1f

!"#$#%&'

(")#*+

N, pH, Aridity, MAT, GSL

P, pH

Page 31: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  23  

   Fig.  3.  Prediction  of  how  the  percentage  of  mycorrhizal  colonization  will  change  with  increasing  mean  annual  temperature  (MAT)  and/or  growing  season  length  (GSL).

1a

[N] or [P]

% C

olon

izat

ion

1b

N:P ratio

% C

olon

izat

ion

1c

MAT and GSL

% C

olon

izat

ion

1d

Aridity

% C

olon

izat

ion

1e

!"

#$%&'&()*+,)&(

pH = 7.0

1f

!"#$#%&'

(")#*+

N, pH, Aridity, MAT, GSL

P, pH

Page 32: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  24  

   Fig.  4.  Prediction  of  how  the  percentage  of  mycorrhizal  colonization  will  change  with  levels  of  soil  pH.  

1a

[N] or [P]

% C

olon

izat

ion

1b

N:P ratio

% C

olon

izat

ion

1c

MAT and GSL

% C

olon

izat

ion

1d

Aridity

% C

olon

izat

ion

1e

!"

#$%&'&()*+,)&(

pH = 7.0

1f

!"#$#%&'

(")#*+

N, pH, Aridity, MAT, GSL

P, pH

Page 33: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  25  

 Fig.  5.  Prediction  of  how  the  percentage  of  mycorrhizal  colonization  will  change  with  increasing  aridity.  

Aridity

% C

olon

izat

ion

Page 34: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  26  

   Fig.  6.  Predictions  of  how  each  of  these  factors  that  potentially  have  an  impact  on  the  percentage  of  mycorrhizal  colonization  in  plants  will  change  across  latitude.  Note  that  pH  is  predicted  both  ways  as  there  is  not  currently  knowledge  of  how  pH  will  change  across  this  latitude  gradient.

1a

[N] or [P]

% C

olon

izat

ion

1b

N:P ratio

% C

olon

izat

ion

1c

MAT and GSL

% C

olon

izat

ion

1d

Aridity

% C

olon

izat

ion

1e

!"

#$%&'&()*+,)&(

pH = 7.0

1f

!"#$#%&'

(")#*+

N, pH, Aridity, MAT, GSL

P, pH

Page 35: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  27  

   Fig.  7.  The  relationship  between  the  percentage  of  mycorrhizal  colonization  in  Schizachyrium  scoparium  across  latitude.  This  figure  includes  data  points  from  all  plots  that  were  sampled  including  nutrient  treatments.  The  pattern  shown  here  is  still  significant  when  tested  with  control  only  plots  as  well  (p  <  0.05,  R2=0.17)  

32 34 36 38 40 42 44

2040

6080

Latitude

% C

olon

izat

ion

p < 0.001R2=0.14

Page 36: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  28  

   

   Fig.  8.  Regression  of  total  N  across  latitude;  total  N  decreases  with  increasing  latitude  (p  <  0.0001,  R2=0.56)  

32 34 36 38 40 42 44

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Latitude

tota

l N (%

)

p < 0.0001R2=0.56

Page 37: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  29  

   Fig.  9.  Regression  of  available  P  across  latitude;  available  P  increases  with  increasing  latitude  (p  <  0.0001,  R2=0.18)  

32 34 36 38 40 42 44

02

46

810

Latitude

avai

labl

e P(µg/g)

p < 0.0001R2=0.18

Page 38: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  30  

   Fig.  10.  Regression  of  log  N:P  ratio  across  latitude;  log  N:P  ratio  decreases  with  increasing  latitude  (p  <  0.0001,  R2=0.46)  

32 34 36 38 40 42 44

45

67

89

1011

Latitude

log

N:P

p < 0.0001R2=0.46

Page 39: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  31  

   Fig.  11.  Regression  of  mean  annual  temperature  (MAT)  across  latitude;  MAT  decreases  with  increasing  latitude  (p  <  0.0001,  R2=0.99)  

32 34 36 38 40 42 44

810

1214

1618

Latitude

MAT

p < 0.0001R2=0.99

Page 40: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  32  

   Fig.  12.  Regression  of  growing  season  length  across  latitude;  growing  season  length  decreases  with  increasing  latitude  (p  <  0.0001,  R2=0.88)  

32 34 36 38 40 42 44

140

160

180

200

220

Latitude

Gro

win

g S

easo

n

p < 0.0001R2=0.88

Page 41: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  33  

   Fig.  13.  Regression  of  pH  across  latitude;  pH  decreases  with  increasing  latitude  (p  <  0.0001,  R2=0.68)  

32 34 36 38 40 42 44

5.0

5.5

6.0

6.5

7.0

7.5

Latitude

pH

p < 0.0001R2=0.68

Page 42: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  34  

   Fig.  14.  Regression  of  aridity  index  (AI)  across  latitude;  AI  decreases  with  increasing  latitude  (p  <  0.0001,  R2=0.54)      

32 34 36 38 40 42 44

0.050

0.055

0.060

0.065

0.070

0.075

0.080

Latitude

AI

p < 0.0001R2=0.54

Page 43: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  35  

 Fig.  15  Full  SEM  model  that  I  started  with  to  explain  which  factors  best  explain  the  percentage  of  mycorrhizal  colonization  in  Schizachyrium  scoparium.      

Page 44: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  36  

 Fig.  16.  SEM  that  has  the  best  fit  to  the  data  (Chi-­‐square=1.54,  df=1,  p=0.22;  TLI=0.99;  CFI=0.99;  RMSEA=0.05).  This  model  shows  that  only  aridity  had  a  significant  effect  on  the  percentage  of  mycorrhizal  colonization  in  Schizachyrium  scoparium  across  the  latitude  gradient  sampled.  Numbers  reported  are  standardized  coefficients.                                  

Page 45: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  37  

References      Bååth,  E.,  and  J.  Spokes.  1989.  The  effect  of  added  nitrogen  and  phosphorus  on  

mycorrhizal  growth  response  and  infection  in  Allium  schoenoprasum.  

Canadian  Journal  of  Botany  67:3227–3232.  

Blackman,  F.,  and  G.  Matthaei.  1905.  Experimental  researches  in  vegetable  assimilation  

and  respiration.  IV.  -­‐-­‐A  quantitative  study  of  carbon-­‐dioxide  assimilation  

and  leaf-­‐temperature  in  natural  illumination.  Proceedings  of  the  Royal  

Society  B:  Biological  Sciences  76:402–460.  doi:  10.1098/rspb.1905.0037.  

Bollag,  J.  M.,  and  A.  Leonowicz.  1984.  Comparative  studies  of  extracellular  fungal  

laccases.  Applied  and  Environmental  Microbiology  48:849–854.  

Brown,  J.,  J.  Gillooly,  A.  Allen,  V.  Savage,  and  G.  B.  West.  2004.  Toward  a  metabolic  theory  

of  ecology.  Ecology  85:1771–1789.  

Cameron,  D.,  I.  Johnson,  D.  Read,  and  J.  Leake.  2008.  Giving  and  receiving:  measuring  the  

carbon  cost  of  mycorrhizas  in  the  green  orchid,  Goodyera  repens.  New  

Phytologist  180:176–184.  doi:  10.1111/j.1469-­‐8137.2008.02533.x.  

EOS-­‐WEBSTER.  (2012).  University  of  New  Hampshire.  Retrieved  April  30,  2012,  from  

http://eos-­‐webster.sr.unh.edu/data/SR.jsp.  

Fitter,  A.  1991.  Costs  and  benefits  of  mycorrhizas:  Implications  for  functioning  under  

natural  conditions.  Experientia  47:350–355.  doi:  10.1007/BF01972076.  

Fitter,  A.  2006.  What  is  the  link  between  carbon  and  phosphorus  fluxes  in  arbuscular  

mycorrhizas?  A  null  hypothesis  for  symbiotic  function.  New  Phytologist  

172:3–6.    

Page 46: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  38  

Fransson,  P.,  A.  Taylor,  and  R.  Finlay.  2001.  Elevated  atmospheric  CO2  alters  root  

symbiont  community  structure  in  forest  trees.  New  Phytologist  152:431–

442.  

Gillooly,  J.,  J.  Brown,  G.  West,  V.  Savage,  and  E.  Charnov.  2001.  Effects  of  size  and  

temperature  on  metabolic  rate.  Science  293:2248–2251.  

Giovannetti,  M.,  and  B.  Mosse.  1980.  An  evaluation  of  techniques  for  measuring  

vesicular  arbuscular  mycorrhizal  infection  in  roots.  New  Phytologist  

84:489–500.  

Hardie,  K.,  and  L.  Leyton.  1981.  The  influence  of  vesicular-­‐arbuscular  mycorrhiza  on  

growth  and  water  relations  of  red  clover.  New  Phytologist  89:599–608.  

Hutchinson,  T.,  and  M.  Havas  (Eds.).  1980.  Effects  of  acid  precipitation  on  terrestrial  

ecosystems.  (T.  Hutchinson  and  M.  Havas,  Eds.).  Plenum,  New  York.  

IPCC.  2012.  Managing  the  risks  of  extreme  events  and  disasters  to  advance  climate  change  

adaptation.  (C.  Field,  V.  Barros,  T.  Stocker,  D.  Qin,  D.  Dokken,  K.  Ebi,  M.  

Mastrandrea,  K.  Mach,  G.  Plattner,  S.  Allen,  M.  Tignor,  and  P.  Midgley,  

Eds.).  Cambridge  University  Press,  Cambridge,  UK  and  New  York,  NY,  

USA.  

Johnson,  N.  1993.  Can  fertilization  of  soil  select  less  mutualistic  mycorrhizae?  Ecological  

Applications  3:749–757.  doi:  10.2307/1942106.  

Johnson,  N.  C.  2009.  Resource  stoichiometry  elucidates  the  structure  and  function  of  

arbuscular  mycorrhizas  across  scales.  New  Phytologist  185:631–647.  doi:  

10.1111/j.1469-­‐8137.2009.03110.x.  

Page 47: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  39  

Johnson,  N.,  D.  Rowland,  L.  Corkidi,  L.  Egerton-­‐Warburton,  and  E.  Allen.  2003.  Nitrogen  

enrichment  alters  mycorrhizal  allocation  at  five  mesic  to  semiarid  

grasslands.  Ecology  84:1895–1908.  

Johnson,  N.,  G.  Likens,  M.  Feller,  and  C.  Driscoll.  1984.  Acid  rain  and  soil  chemistry.  

Science  225:1424–1425.  

Kiers,  E.,  M.  Duhamel,  Y.  Beesetty,  J.  Mensah,  O.  Franken,  E.  Verbruggen,  C.  Fellbaum,  G.  

Kowalchuk,  M.  Hart,  A.  Bago,  T.  Palmer,  S.  West,  P.  Vandenkoornhuyse,  J.  

Jansa,  and  H.  Buecking.  2011.  Reciprocal  rewards  stabilize  cooperation  in  

the  mycorrhizal  symbiosis.  Science  333:880–882.  doi:  

10.1126/science.1208473.  

Koske,  R.  1987.  Distribution  of  VA  myocorrhizal  fungi  along  a  latitudinal  temperature  

gradient.  Mycologia  79:55–68.  

Lambers,  H.,  F.  S.  I.  Chapin,  and  T.  L.  Pons.  1998.  Physiological  Plant  Ecology,  2nd  edition.  

Springer,  New  York.  

Langley,  J.,  P.  Dijkstra,  B.  Drake,  and  B.  Hungate.  2003.  Ectomycorrhizal  colonization,  

biomass,  and  production  in  a  regenerating  scrub  oak  forest  in  response  to  

elevated  CO2.  Ecosystems  6:424–430.  

Lukac,  M.,  C.  Calfapietra,  and  D.  Godbold.  2003.  Production,  turnover  and  mycorrhizal  

colonization  of  root  systems  of  three  Populus  species  grown  under  

elevated  CO2  (POPFACE).  Global  Change  Biology  9:838–848.  

Mathur,  N.,  and  A.  Vyas.  2000.  Influence  of  arbuscular  mycorrhizae  on  biomass  

production,  nutrient  uptake  and  physiological  changes  in  Ziziphus  

Page 48: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  40  

mauritiana  Lam.  under  water  stress.  Journal  of  Arid  Environments  

45:191–195.  doi:  10.1006/jare.2000.0644.  

Matthaei,  G.  1905.  Experimental  researches  on  vegetable  assimilation  and  respiration.  

III.  On  the  effect  of  temperature  on  carbon-­‐dioxide  assimilation.  

Philosophical  Transactions  of  the  Royal  Society  of  London.  Series  B,  

Containing  Papers  of  a  Biological  Character  197:47–105.  

Miller,  R.,  S.  Miller,  J.  Jastrow,  and  C.  Rivetta.  2002.  Mycorrhizal  mediated  feedbacks  

influence  net  carbon  gain  and  nutrient  uptake  in  Andropogon  gerardii.  

New  Phytologist  155:149–162.    

NOAA.  2011.  National  Oceanographic  and  Atmospheric  Administration  –  National  

Climatic  Data  Center.  Retrieved  September  30,  2011,  from  

http://www.ncdc.noaa.gov/oa/ncdc.html.  

Pella,  E.  1990.  Elemental  organic  analysis.  American  Laboratory  22:116–125.  

R  Development  Core  Team.  2011.  R:  A  Language  and  Environment  for  Statistical  

Computing.  R  Foundation  for  Statistical  Computing,  Vienna,  Austria.  

Richards,  B.  1961.  Soil  pH  and  mycorrhiza  development  in  Pinus.  Nature  190:105–106.    

doi:  10.1038/190105a0.  

Rillig,  M.,  C.  Field,  and  M.  Allen.  1999a.  Soil  biota  responses  to  long-­‐term  atmospheric  

CO2enrichment  in  two  California  annual  grasslands.  Oecologia  119:572–

577.  

Rillig,  M.,  G.  Hernandez,  and  P.  Newton.  2000.  Arbuscular  mycorrhizae  respond  to  

elevated  atmospheric  CO2  after  long-­‐term  exposure:  evidence  from  a  CO2  

Page 49: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  41  

spring  in  New  Zealand  supports  the  resource  balance  model.  Ecology  

Letters  3:475–478.  

Rillig,  M.,  S.  Wright,  M.  Allen,  and  C.  Field.  1999b.  Rise  in  carbon  dioxide  changes  soil  

structure.  Nature  400:628–628.    

Robertson,  G.,  D.  Coleman,  C.  Bledsoe,  and  P.  Sollins.  1999.  Standard  soil  methods  for  

long-­term  ecological  research.  Oxford  University  Press,  New  York.  

Rosseel,  Y.  2012.  lavaan:  An  R  package  for  structural  equation  modeling.  Journal  of  

Statistical  Software  48:1–36.  

Schemske,  D.,  G.  Mittelbach,  H.  Cornell,  J.  Sobel,  and  K.  Roy.  2009.  Is  there  a  latitudinal  

gradient  in  the  importance  of  biotic  interactions?  Annual  Review  of  

Ecology,  Evolution,  and  Systematics  40:245–269.  doi:  

10.1146/annurev.ecolsys.39.110707.173430.  

Schwartz,  M.,  and  J.  Hoeksema.  1998.  Specialization  and  resource  trade:  biological  

markets  as  a  model  of  mutualisms.  Ecology  79:1029–1038.    

Stokstad,  E.  2011.  Open-­‐source  ecology  takes  root  across  the  world.  Science  334:308–

309.  doi:  10.1126/science.334.6054.308.  

Theodorou,  C.,  and  G.  Bowen.  1969.  The  influence  of  pH  and  nitrate  on  mycorrhizal  

associations  of  Pinus  radiata  D.  Don.  Australian  Journal  of  Botany  17:59–

67.  

Titus,  J.,  and  J.  Leps.  2000.  The  response  of  arbuscular  mycorrhizae  to  fertilization,  

mowing,  and  removal  of  dominant  species  in  a  diverse  oligotrophic  wet  

meadow.  American  Journal  of  Botany  87(3):392-­‐401.  

Page 50: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  42  

Treseder,  K.  K.  2004.  A  meta-­‐analysis  of  mycorrhizal  responses  to  nitrogen,  

phosphorus,  and  atmospheric  CO2  in  field  studies.  New  Phytologist  

164:347–355.  doi:  10.1111/j.1469-­‐8137.2004.01159.x.  

Treseder,  K.  K.,  and  M.  F.  Allen.  2002.  Direct  nitrogen  and  phosphorus  limitation  of  

arbuscular  mycorrhizal  fungi:  a  model  and  field  test.  New  Phytologist  

155:507–515.  doi:  10.1046/j.1469-­‐8137.2002.00470.x.  

Treseder,  K.,  and  P.  Vitousek.  2001.  Effects  of  soil  nutrient  availability  on  investment  in  

acquisition  of  N  and  P  in  Hawaiian  rain  forests.  Ecology  82:946–954.    

UNEP.  1997.  World  Atlas  of  Desertification,  2nd  edition.  (N.  Middetone  and  D.  Thomas,  

Eds.).  John  Wiley  and  Sons,  New  York.  

USDA.  2011.  USDA  Web  Soil  Survey  –  Home.  Retrieved  September  29,  2011,  from  

http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.  

Valentine,  A.,  B.  Osborne,  and  D.  Mitchell.  2001.  Interactions  between  phosphorus  

supply  and  total  nutrient  availability  on  mycorrhizal  colonization,  growth,  

and  photosynthesis  of  cucumber.  Scientia  Horticulturae  88:177–189.  

Van  Breemen,  N.,  P.  Burrough,  E.  Velthorst,  H.  Van  Dobben,  T.  de  Wit,  T.  Ridder,  and  H.  

Reijnders.  1982.  Soil  acidification  from  atmospheric  ammonium  sulphate  

in  forest  canopy  throughfall.  Nature  299:548–550.  

Wang,  G.,  D.  Stribley,  P.  Tinker,  and  C.  Walker.  1993.  Effects  of  pH  on  arbuscular  

mycorrhiza  I.  Field  observations  on  the  long-­‐term  liming  experiments  at  

Rothamsted  and  Woburn.  New  Phytologist  124:465–472.    

Wright,  R.,  and  D.  Schindler.  1995.  Interaction  of  acid  rain  and  global  changes:  Effects  on  

Page 51: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  43  

terrestrial  and  aquatic  ecosystems.  Water,  Air,  &  Soil  Pollution  85:89–99.  

doi:  10.1007/BF00483691.  

 

Page 52: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  44  

Chapter  3.  Responses  of  the  percentage  of  mycorrhizal  colonization  in  Schizachyrium  scoparium  to  nutrient  additions  and  nutrient  stoichiometry  across  

5  grassland  sites          Abstract  

Plant-­‐mycorrhizae  relationships  have  exhibited  a  range  of  rates  of  colonization  under  

different  resource  conditions.  Both  parties  may  not  exchange  resources  reciprocally  

based  on  environmental  conditions.  Resource  stoichiometry  has  been  invoked  as  a  

method  for  understanding  the  relationship  between  plants  and  fungi  and  how  resource  

ratios  alter  proportions  of  mycorrhizal  colonization  presumably  in  order  to  maximize  

allocation  of  resources.  However,  inter-­‐site  differences  are  typically  not  assessed  to  

evaluate  if  one  nutrient  has  a  greater  impact  on  all  mycorrhizal  colonization  in  plants  or  

if  the  driver  for  the  relationship  is  site  dependent.  I  used  five  sites  of  the  Nutrient  

Network,  a  global  grassland  research  cooperative,  to  assess  the  effects  of  nitrogen  (N),  

phosphorus  (P),  and  potassium  (K)  on  mycorrhizal  colonization  of  Schizachyrium  

scoparium,  a  dominant  species  throughout  much  of  central  North  American.  My  

objective  for  this  study  was  to  determine  if  the  percentage  of  mycorrhizal  colonization  

differs  in  response  to  nutrient  treatment  among  sites,  and  if  direction  and  magnitude  of  

response  is  related  to  ambient  soil  nutrient  conditions.  Sites  did  differ  significantly  in  

the  percentage  of  mycorrhizal  colonization  that  was  found  in  their  root  samples;  

however,  with  regards  to  site  differences  in  response  to  nutrient  treatment  there  was  

only  a  P  x  site  interaction.  Among  all  sites  N  addition  decreased  the  percentage  of  

mycorrhizal  colonization  in  Schizachyrium  scoparium.  Ambient  soil  N:P  ratio  appeared  

Page 53: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  45  

to  have  the  greatest  effect  on  the  mean  response  of  the  percentage  of  mycorrhizal  

colonization  with  P  treatment.  The  mean  P  responses  were  lowest  at  intermediate  N:P  

ratios  with  low  N:P  ratios  showing  little  response  and  high  N:P  ratios  showing  an  

increase  in  the  percentage  of  mycorrhizal  colonization.  These  results  are  evidence  

towards  suggesting  that  local  soil  conditions  at  sites  play  a  role  in  determining  how  

plants  will  respond  in  the  percentage  of  mycorrhizal  colonization  in  their  roots  with  

nutrient  addition.  

 

Introduction  

Mycorrhizae  are  important  for  nutrient  acquisition  in  plants  (e.g.  nitrogen  (N)  and  

phosphorus  (P))  (Clark  and  Zeto  2000,  Smith  and  Read  2008);  however,  relationships  

between  plants  and  mycorrhizae  have  been  speculated  to  lie  along  a  gradient  of  

mutualism  to  parasitism  depending  on  resource  conditions  (Johnson  et  al.  1997,  

Johnson  2009).  There  is  a  cost  to  the  plant  in  the  form  of  carbon  (C)  to  maintain  

mycorrhizal  relationships  (Miller  et  al.  2002),  and  this  cost  is  presumably  not  

reciprocated  equally  by  mycorrhizae  when  the  nutrients  they  obtain  are  readily  

available  (Fitter  1991).  Nutrient  limitation  in  plants  creates  a  greater  need  for  

mycorrhizae  to  acquire  nutrients  than  when  those  nutrients  are  at  high  levels  (Treseder  

and  Allen  2002).    When  nutrients  are  added  to  soil  there  is  presumably  no  longer  a  

reciprocal  transfer  of  nutrients  for  C,  and  plants  have  been  shown  to  decrease  C  

allocation  to  mycorrhizae  that  do  not  equally  reciprocate  (Graham  and  Eissenstat  1994,  

Kiers  et  al.  2011,  but  see  Grman  2012).  This  decrease  in  C  allocation  should  result  in  a  

Page 54: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  46  

reduction  in  the  proportion  of  root  system  colonized  by  mycorrhizae.    

 

Theory  has  been  developed  which  uses  ecological  stoichiometry  (or  more  specifically  

ratios  of  C:N:P,  Sterner  and  Elser  2002)  to  explain  the  status  of  plant-­‐mycorrhizae  

relationships  under  certain  resource  conditions  (Treseder  and  Allen  2002,  Johnson  

2009).  This  theory  predicts  that  when  nutrients  (i.e.  N  and  P)  are  limiting  to  a  plant  

then  the  plant  should  invest  photosynthetic  carbon  to  mycorrhizae  in  order  to  obtain  

these  limiting  soil  nutrients.  This  idea  of  optimal  allocation  of  photosynthetic  carbon  is  

in  line  with  what  Gleeson  and  Tilman  (1992)  predicted  for  plant  allocation  in  relation  to  

resource  limitation  (although  this  being  with  a  symbiosis  instead  of  plant  organs),  and  

is  sometimes  called  “functional  equilibrium”  (Brouwer  1983).  In  this  study  I  intend  to  

assess  the  functional  equilibrium  of  mycorrhizal  colonization  in  the  prairie  grass  

Schizachyrium  scoparium  by  assessing  if  and  how  different  nutrients  matter  given  

ambient  soil  conditions.  I  take  a  plant-­‐centric  view  of  the  plant-­‐mycorrhizae  

relationship  in  this  study  for  two  reasons:  1)  mycorrhizae  are  obligate  fungi,  whereas  

plants  are  facultative  on  mycorrhizae  for  growth  and  survival  -­‐  this  gives  plants  a  

benefit  in  this  relationship  because  mycorrhizae  need  plants,  but  plants  do  not  

necessarily  need  mycorrhizae,  and  2)  plants  have  been  shown  to  exhibit  at  least  some  

control  over  the  plant-­‐mycorrhizae  relationship  (Kiers  et  al.  2011).    

 

Studies  that  exhibit  reductions  of  mycorrhizal  colonization  after  nutrient  addition  have  

been  shown  empirically  in  a  number  of  cases  (Titus  and  Leps  2000,  Dekkers  and  van  

Page 55: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  47  

der  Werff  2001,  Treseder  2004).  However,  the  differences  in  concentrations  as  well  as  

stoichiometry  of  nutrients  at  various  sites  could  have  an  effect  on  nutrient  limitation  at  

these  sites  thereby  altering  responses  in  mycorrhizal  colonization  to  nutrient  additions.  

Indeed,  North  American  grassland  sites  have  been  shown  to  differ  in  their  nutrient  

limitations  (Craine  and  Jackson  2010).    

 

By  performing  this  study  I  intended  to  investigate  how  differences  in  site  nutrient  

concentration  and  stoichiometry  affected  the  response  of  the  percentage  of  mycorrhizal  

colonization  to  added  nutrients.  I  was  interested  in  understanding  how  changes  in  the  

concentration  and  stoichiometry  of  soil  nutrients  (C,N,P)  would  impact  mycorrhizal  

colonization  in  plants  at  various  sites  spanning  a  range  of  soil  types  and  nutrient  

concentrations  and  ratios.  I  hypothesized  that  the  addition  of  N  will  have  a  greater  

effect  in  reducing  the  percentage  of  mycorrhizal  colonization  in  plants  that  are  grown  in  

soils  low  in  N,  and  that  P  addition  would  lower  mycorrhizal  colonization  at  sites  that  

have  soils  low  in  P.  With  regards  to  soil  stoichiometry  I  hypothesized  that  as  soil  N:P  

ratios  increased  plants  would  show  less  of  a  response  to  N  and  more  of  a  response  to  P  

addition.  That  is,  at  low  N:P  ratios  plants  would  decrease  the  percentage  of  mycorrhizal  

colonization  in  their  root  system  in  response  to  N  addition  more  than  at  high  N:P  ratios,  

whereas  the  opposite  would  be  true  for  the  response  to  P  addition.  This  hypothesis  

stems  from  the  idea  that  whichever  resource  is  more  limiting  is  the  one  that  will  have  a  

greater  effect  on  changes  in  the  percentage  of  mycorrhizal  colonization  in  plants.    

 

Page 56: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  48  

Methods  

Field  Sites  

I  collected  root  samples  of  Schizachyrium  scoparium  at  five  replicated  nutrient  addition  

sites  that  are  part  of  The  Nutrient  Network.  The  Nutrient  Network  is  a  global  research  

cooperative  that  investigates  top  down  and  bottom  up  controls  on  grassland  plant  

communities  by  employing  nutrient  and  herbivory  treatments  to  grassland  sites  around  

the  world  (Stokstad  2011).  Replicate  treatments  of  N,  P,  and  K  with  micronutrients  (K+)  

were  applied  in  a  factorial  block  design  to  investigate  singular  and  interactive  effects  of  

nutrients  on  various  aspects  of  plant  communities.  All  fertilizers  added  were  pellet  

fertilizers  that  were  added  in  the  following  quantities:  N  was  added  as  time-­‐release  

urea  (N2H4CO)  at  a  rate  of  23  kg  hectare-­‐1  year-­‐1.  P  was  added  as  triple  super  phosphate  

(Ca(H2PO4)2)  at  a  rate  of  51  kg  hectare-­‐1  year-­‐1.  K+  was  fertilized  together  as  a  

combination  of  potash  (KCl)  at  a  rate  of  22  kg  hectare-­‐1  year-­‐1  as  well  as  100  kg  hectare-­‐1  

year-­‐1  of  Scotts  Micromax,  which  is  a  blend  of  macro-­‐  and  micro-­‐nutrients  (e.g.  K,  Ca,  

Mg,  S,  B,  Cu,  Fe,  Mn,  Mo,  Zn).    All  treatments  were  applied  to  5  x  5  meter  plots  set  up  in  a  

randomized  block  design.  I  collected  root  samples  from  the  Nutrient  Network  plots  at  

the  following  five  sites:  Cedar  Creek  LTER,  MN;  Chichaqua  Bottoms,  IA  (CBGB);  Barta  

Brothers  Ranch,  NE;  Konza  LTER,  KS;  and  Temple,  TX  (which  is  located  at  the  USDA-­‐

ARS  Grassland  Soil  and  Water  Research  Laboratory,  Temple,  TX;  NutNet  2012).  I  chose  

these  sites  based  on  their  involvement  in  the  Nutrient  Network  and  having  replicate  N,  

P,  and  K  additions.  Sites  were  also  chosen  based  on  the  prevalence  of  Schizachyrium  

scoparium  at  each  site  as  well  as  a  location  in  the  center  of  the  range  of  the  species.  I  

Page 57: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  49  

chose  this  study  species  because  it  is  mycorrhizal  and  also  because  it  is  dominant  across  

much  of  its  range,  which  makes  findings  widely  applicable  as  well  as  allowed  me  to  test  

questions  about  ecological  stoichiometry  across  a  wide  range.    All  sites  had  at  least  3  

replicate  blocks  with  Cedar  Creek  LTER  having  5  blocks  and  CBGB  having  6  blocks.  Sites  

also  contained  additional  herbivore  exclosure  treatments  with  one  of  these  being  un-­‐

fertilized  and  another  fully  fertilized  (i.e.  with  N,  P,  and  K+micronutrients);  however,  

the  exclusion  of  herbivores  did  not  have  a  significant  effect  on  the  percentage  of  

mycorrhizal  colonization  in  Schizachyrium  scoparium  in  this  study  and  so  was  not  

included  in  analyses.  

 

Field  and  Lab  Methods  

I  collected  root  samples  from  Schizachyrium  scoparium  plants  using  a  1.75  cm  diameter  

soil  core  to  a  depth  of  30  cm.  Samples  were  collected  during  the  month  of  August,  2010.  

I  collected  samples  by  taking  the  root  core  just  off  the  center  of  the  bunchgrass  to  avoid  

destroying  the  meristem  and  harming  the  plant.    Roots  and  soil  samples  were  placed  in  

sealable  plastic  bags  and  stored  in  a  cooler  with  ice  while  in  transport  to  the  lab.  They  

were  then  stored  in  a  freezer  at  -­‐20°C  until  processed.  I  retrieved  roots  from  soil  

samples  by  sieving  the  samples  through  a  2mm  soil  sieve.  I  obtained  fresh  mass  of  

roots,  took  a  subsample  between  0.05  g  and  0.25  g  for  quantifying  mycorrhizal  

colonization,  and  dried  the  rest  of  the  root  sample  at  60°C  for  48  hours  in  order  to  

obtain  a  dry  mass.  The  ratio  between  dry  mass  and  fresh  mass  was  used  to  calculate  

dried  mass  of  the  subsample  used  for  assessing  mycorrhizal  colonization.  Roots  were  

Page 58: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  50  

stained  in  order  to  detect  mycorrhizae  using  the  trypan  blue  staining  procedure  

modified  from  Robertson  et  al.  (1999).  Modifications  consisted  of  tailoring  clearing  and  

staining  times  to  suit  the  roots  of  the  study  species  as  well  as  using  filtered  trypan  blue  

solution  instead  of  trypan  blue  powder.  Roots  were  cleared  in  a  2.5-­‐5%  potassium  

hydroxide  solution  at  90°C  for  3-­‐4  hours  then  left  in  the  potassium  hydroxide  solution  

at  room  temperature  for  6-­‐8  hours.  They  were  then  treated  in  alkaline  H202  for  1  hour,  

acidified  in  1%  HCl  for  1  hour,  and  stained  in  a  trypan  blue  solution  made  up  of  1:1:1  

(v:v:v)  glycerol,  lactic  acid,  water,  and  1%  (v)  of  0.2  μm  filtered  trypan  blue  solution.  

The  roots  were  stained  in  this  solution  at  90°C  for  1  hour.  Once  stained,  I  assessed  the  

percentage  of  mycorrhizal  colonization  in  the  root  sample  with  the  grid-­‐line  intercept  

technique  (Giovannetti  and  Mosse  1980).  

 

 

Soil  Analysis  

I  collected  the  following  soil  variables  for  each  soil  sample  collected  from  the  field:  total  

C,  total  N,  inorganic  P,  pH,  and  texture.  I  was  specifically  interested  in  obtaining  C,  N,  

and  P  in  order  to  calculate  stoichiometric  ratios  of  these.  Total  N  was  obtained  instead  

of  plant  available  N  because  of  the  time  lag  associated  with  transporting  root  and  soil  

samples  from  field  sites  to  the  lab.  I  was  concerned  that  denitrification  of  inorganic  N  

during  transport  would  lead  to  an  ill-­‐represented  sample  of  available  N  and  therefore  

decided  to  use  total  soil  N  instead  of  plant  available  N.  Total  C  and  N  were  obtained  

through  the  Soil  and  Plant  Analysis  Laboratory  at  Iowa  State  University  using  

Page 59: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  51  

combustion  analyses  performed  on  a  LECO  CHN  TruSpec  and  Elemtar  Variomax  using  

the  methods  found  in  Pella  (1990).  I  obtained  inorganic  P  by  using  the  Mehlich  III  

extract  method  and  reading  fluorescence  at  630  nm  on  a  microplate  reader.  C:N  and  N:P  

ratios  were  calculated  by  dividing  ppm  of  C  by  ppm  total  N  and  ppm  total  N  by  ppm  

available  P,  respectively.  pH  was  measured  by  creating  a  slurry  of  5  g  of  air  dried  soil  

with  10  ml  of  distilled  water  and  shaking  for  5  minutes,  and  then  reading  pH  using  a  

Fisher  Scientific  Accumet  Basic  AB15/15+  pH  reader.  Soil  texture  was  taken  from  pre-­‐

treatment  data  collected  at  each  site  by  the  Nutrient  Network.  

 

Statistical  Analyses  

Statistical  analyses  were  performed  using  R  statistical  computing  software  (R  2011).  I  

used  a  linear  mixed-­‐effects  ANOVA  using  the  nlme  package  for  R  (Pinheiro  et  al.  2012),  

to  test  for  differences  in  the  percentage  of  mycorrhizal  colonization  in  root  samples  

collected  among  sites  and  fertilizer  treatments.  I  treated  block  as  a  random  variable  to  

account  for  any  differences  among  blocks.  Aridity  was  not  included  as  a  random  

variable  even  though  it  was  found  to  affect  the  percentage  of  mycorrhizal  colonization  

because  this  should  be  adjusted  for  by  using  site  as  a  fixed  effect.  To  assess  responses  in  

the  percentage  of  mycorrhizal  colonization  along  ambient  soil  nutrient  conditions  I  

created  a  response  metric  of  mycorrhizal  colonization  to  nutrients  for  the  treatments  

that  had  a  significant  site  by  treatment  interaction.  This  response  metric  is  the  

difference  between  the  mean  percentage  of  mycorrhizal  colonization  in  treatment  plots  

and  the  mean  percentage  in  the  control  plots.  I  then  fit  regressions  of  this  response  

Page 60: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  52  

metric  to  mean  ambient  soil  nutrient  concentration  and  stoichiometric  ratios  for  each  

site  for  factors  that  had  a  significant  treatment  by  site  interaction  each.  

 

Results  

Response  to  Nutrients  Among  Sites  

Sites  differed  significantly  in  the  percentage  of  mycorrhizal  colonization  found  in  the  

roots  of  Schizachyrium  scoparium  (F=7.35,  df=4,169,  p  <  0.0001).  Among  all  sites  the  

addition  of  N  had  a  significant  effect  on  the  percentage  of  mycorrhizal  colonization  

(F=8.10,  df=1,169,  p  <  0.01).  There  was  a  significant  P  x  site  interaction  (F=2.62,  

df=4,169,  p  <  0.05);  however,  there  were  no  other  nutrient  by  site  interactions.  This  

means  that  statistically  speaking  the  percentage  of  mycorrhizal  colonization  in  

Schizachyrium  scoparium  does  not  respond  differently  to  N  or  K+  among  sites.  

Significant  variables  can  be  seen  in  interaction  plots  showing  the  percentage  of  

mycorrhizal  colonization  in  control  treatments  and  nutrient  addition  treatments  for  N  

and  P  (Fig.  17  and  Fig.  18,  respectively).  Most  sites  decreased  in  mean  percentage  of  

mycorrhizal  colonization  in  response  to  N  (with  the  exception  of  Konza,  which  

increased  slightly  but  not  enough  to  be  significantly  different).  The  response  to  P  was  

more  variable  across  sites,  which  is  likely  the  reason  why  there  was  a  significant  P  x  site  

interaction.  

 

P  Response  to  Ambient  Soil  Conditions  

Since  P  was  the  only  factor  to  have  a  significant  treatment  by  site  interaction  I  assessed  

Page 61: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  53  

the  mean  response  in  the  percentage  of  mycorrhizal  colonization  in  relation  to  ambient  

soil  available  P  and  N:P  ratio.  Ambient  concentration  of  P  in  the  soil  did  not  have  a  

significant  effect  on  the  mean  response  of  the  percentage  of  mycorrhizal  colonization  to  

P  addition  (p  =  0.48,  R2  =  0.03);  however,  N:P  ratio  did  have  a  significant  U-­‐shaped  

influence  on  the  mean  response  of  the  percentage  of  mycorrhizal  colonization  to  P  

addition  (p  <  0.05,  R2  =0.93,  Fig.  19).  At  low  N:P  ratios  mycorrhizal  colonization  did  not  

decrease  much,  at  intermediate  N:P  ratios  the  percentage  of  mycorrhizal  colonization  

decreased  the  most,  and  at  higher  N:P  ratios  there  was  an    increase  in  the  percentage  of  

mycorrhizal  colonization  with  P  addition.    

 

Discussion  

I  was  interested  in  determining  if  sites  with  different  soil  nutrient  concentrations  and  

stoichiometry  responded  differently  to  the  addition  of  soil  nutrients.  I  found  that  N  

addition  decreased  the  percentage  of  mycorrhizal  colonization  overall,  and  that  there  

was  a  significant  P  x  site  interaction  (Table  4,  Fig.  17).  That  both  N  and  P  make  a  

difference  to  the  percentage  of  mycorrhizal  colonization  is  not  surprising.  Numerous  

studies  have  found  that  both  N  and  P  can  decrease  rates  of  mycorrhizal  colonization  in  

plants  (Johnson  1993,  Treseder  2004,  Porras-­‐Alfaro  et  al.  2007),  but  in  certain  

instances  the  percentage  of  mycorrhizal  colonization  can  increase  with  nutrient  

addition  (Treseder  and  Allen  2002).  This  is  thought  to  be  due  to  direct  soil  nutrient  

limitation  on  fungus  at  low  soil  nutrient  conditions,  and  a  halt  of  carbon  from  plant  to  

fungus  at  high  nutrient  conditions  due  to  a  decreased  need  for  mycorrhizal  fungi  by  the  

Page 62: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  54  

plant.  At  intermediate  soil  nutrient  concentrations  conditions  are  thought  to  exist  which  

allow  for  more  reciprocal  trade  of  carbon  and  nutrient  between  plant  and  fungus.  

Considering  the  model  that  Treseder  and  Allen  (2002)  present  we  would  expect  to  see  

little  response  to  nutrient  addition  at  high  nutrient  concentrations  because  the  

percentage  of  mycorrhizal  colonization  at  those  soil  concentrations  would  already  be  

low.  Alternatively,  if  soil  conditions  are  presently  low  and  nutrients  are  added,  then  an  

increase  in  the  percentage  of  mycorrhizal  colonization  would  be  expected  as  it  removes  

any  possible  nutrient  limitation  directly  imposed  on  mycorrhizal  fungi.  Nutrients  added  

to  soil  with  ambient  conditions  conducive  for  a  mutualistic  trade  of  carbon  for  nutrients  

should  drive  the  plant-­‐fungus  interaction  into  conditions  where  plants  no  longer  need  

mycorrhizal  fungi  for  nutrient  acquisition  and  decrease  carbon  allocation  to  fungi  

thereby  decreasing  the  percentage  of  mycorrhizal  colonization.  This  type  of  pattern  is  

what  I  found;  however,  it  is  for  ratios  of  total  N  to  available  P  in  the  soil.  This  suggests  

that  nutrient  limitation  on  plants  and  mycorrhizal  fungi  is  not  necessarily  related  to  

absolute  soil  nutrient  concentrations,  but  rather  the  stoichiometric  imbalance  of  

resources  in  the  soil.    

 

N  was  a  significant  factor  among  all  sites,  and,  for  the  most  part,  decreased  the  

percentage  of  mycorrhizal  colonization  in  Schizachyrium  scoparium  except  at  Konza  

Prairie  where  the  percentage  of  mycorrhizal  colonization  remained  relatively  static  

with  N  addition  (Fig.  17).  It  is  interesting  that  the  percentage  of  mycorrhizal  

colonization  decreased  with  N  addition  overall.  Although  variable  results  have  been  

Page 63: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  55  

shown  for  N  addition  in  other  studies  (Johnson  et  al.  2003)  almost  all  sites  in  this  study  

decreased  in  the  percentage  of  mycorrhizal  colonization  with  N  addition  except  for  one.  

Only  two  of  these  sites  showed  a  significant  response  in  the  percentage  of  mycorrhizal  

colonization  to  N  addition  when  assessed  individually  (Cedar  Creek  -­‐  ANOVA  -­‐  F=  6.859,  

df=1,9,  p  <  0.05;  CBGB  -­‐  ANOVA  -­‐  F=5.152,  df=1,36,  p  <  0.05);  however,  these  were  the  

two  sites  that  had  five  and  six  replicate  blocks,  respectively.  It  could  be  that  a  lack  of  

statistical  significance  for  N  addition  is  related  to  fewer  replicates  (n=3)  at  the  other  

sites,  or  it  could  be  that  the  two  sites  that  did  show  significant  responses  to  N  addition  

had  lower  soil  N  concentrations  and  lower  N:P  ratios.  Similar  results  for  responses  to  N  

have  been  achieved  previously  (Treseder  and  Vitousek  2001);  however,  opposite  or  

null  responses  have  also  been  shown  (Corkidi  et  al.  2002).  A  decrease  in  the  percentage  

of  mycorrhizal  colonization  among  all  sites  could  also  be  related  to  nutrient  limitation.  

Grassland  sites  have  been  shown  to  be  primarily  N-­‐limited  (Craine  and  Jackson  2010),  

and  Konza,  which  is  traditionally  thought  to  be  low  in  P,  was  the  only  site  to  not  show  

any  sort  of  response  at  all  to  N  (Fig.  17).  However,  there  was  no  significant  effect  of  the  

mean  response  in  percentage  of  mycorrhizal  colonization  to  N  addition  when  regressed  

against  total  soil  N  values  or  N:P  ratio  (N  -­‐  p=0.36,  R2  =0.03;  N:P  -­‐  p=0.11,  R2  =0.49).  

 

It  seems  that  plants  follow  the  functional  equilibrium  model  with  respect  to  

mycorrhizal  colonization  and  nutrient  concentration  and  stoichiometry;  however,  this  

pattern  is  only  evident  when  nutrient  conditions  are  appropriate  to  allow  mycorrhizae  

to  seemingly  avoid  direct  nutrient  limitation.  The  fact  that  mycorrhizae  are  obligate  

Page 64: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  56  

biotrophs  on  plants  makes  it  difficult  to  test  direct  resource  limitation  on  mycorrhizae  

since  this  limitation  could  ultimately  be  related  to  limits  on  plant  photosynthesis  and  

carbon  production,  and  hence  carbon  allocation  to  mycorrhizae.  My  results  seem  to  

follow  theory  of  nutrient  concentration  and  stoichiometry  on  both  mycorrhizal  

colonization  in  plants  and  direct  nutrient  limitation  on  mycorrhizal  fungi;  however,  

more  work,  including  controlled  greenhouse  experiments,  should  be  done  to  parse  out  

the  effects  of  nutrient  status,  stoichiometry,  and  nutrient  limitation  of  mycorrhizae  on  

plant-­‐mycorrhizae  relationships.  An  understanding  of  the  controls  of  these  variables  on  

mycorrhizae  and  their  relationships  to  plants  are  becoming  increasingly  important  as  

nutrient  deposition  is  a  large  component  of  global  change.  Knowledge  of  these  

relationships  will  give  us  insight  into  how  they  will  be  affected  by  such.  

 

Page 65: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  57  

 

Table

1.Soiltypeandseriesforeachsitewheresampleswerecollected.Soilinformationwasobtained

from

USDA

WebSoilSurvey(2011).

Site

Soil

Type

Soil

Series

Soil

Order

CedarCreekLTER,MN

SandyOutw

ashPlain

Zim

mermanloamyfinesandandfinesand

Entisols

BartaBrothersRanch,NE

Sandhills

Valentinefinesand

Entisols

ChichauquaBottomsGreenbelt,IA

Sandyloam

Farrarfinesandyloam;Ankenyfinesandyloam

Mollisols

KonzaPrairie

LTER,KS

Silty

clayloam

Florencecherty

siltloam

Mollisol

Temple,TX

Blackclaysoil

Austin

clay

Vertisol

1

Page 66: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  58  

 

   

                                               

2

Table 2. Soil texture for each site where samples were collected. Soiltexture information was obtained from Nutrient Network pre-treatmentdata.

Site % Sand % Silt % Clay

Cedar Creek LTER, MN 90 7 3Barta Brothers Ranch, NE 96 3.5 0.5Chichauqua Bottoms Greenbelt, IA 88 8 4Konza Prairie LTER, KS 19 56 25Temple, TX 31 31 38

Page 67: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  59  

3

Table

3.Total

carbon

,nitrogen,an

davailable

phosphorusforam

bient

(con

trol

plot)

soilsat

sites

wheremycorrhizal

sampleswerecollected.

Numbersreportedin

table

aremeans,

andnu

mbersin

parentheses

areSE.

Site

Tota

lC

(%)

Tota

lN

(%)

Available

P(µ

g/g)

C:N

N:P

Cedar

Creek

LTER,MN

0.6(0.06)

0.03

(0.004)

1.70

(0.13)

25.2

(4.0)

682(95)

Barta

BrothersRan

ch,NE

0.4(0.03)

0.03

(0.006)

0.13

(0.04)

16.3

(2.6)

17,066

(5731)

Chichau

quaBottomsGreenbelt,IA

0.5(0.08)

0.05

(0.008)

1.55

(0.13)

19.2

(6.6)

1373

(265)

Kon

zaPraireLTER,KS

4.0(0.2)

0.331(0.017)

0.36

(0.03)

13.2

(0.12)

34,772

(2295)

Tem

ple,TX

9.3(0.1)

0.268(0.017)

0.41

(0.05)

35.1(2.3)

27,690

(3567)

Page 68: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  60  

 

                             

4

Table 4. Results from mixed-effects ANOVA treatment by site and all

interactions on the percentage of mycorrhizal colonization in Schizachyriumscoparium. Significant factors are reported in bold.

Factor d.f. F-value p-value

N 1 and 169 8.10 < 0.01P 1 and 169 1.82 0.18

K 1 and 169 0.41 0.53

Site 4 and 169 7.35 < 0.0001N x P 1 and 169 0.34 0.56

N x K 1 and 169 1.46 0.23

P x K 1 and 169 2.08 0.15

N x Site 4 and 169 0.87 0.48

P x Site 4 and 169 2.62 < 0.05K x Site 4 and 169 0.32 0.84

N x P x K 1 and 169 1.66 0.20

N x P x Site 4 and 169 0.69 0.60

N x K x Site 4 and 169 0.49 0.74

P x K x Site 4 and 169 0.45 0.77

N x P x K x Site 4 and 169 0.32 0.86

Page 69: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  61  

 Fig.  17.  Interaction  plot  showing  the  mean  response  to  N  addition  across  sites.  Most  sites  decrease  in  the  percentage  of  mycorrhizal  colonization  fairly  consistently  except  for  Konza,  which  shows  an  increase  in  the  mean  percentage  of  mycorrhizal  colonization  with  N  addition.  

3035

4045

50

N Addition

Mea

n %

Col

oniz

atio

n

Site

templekonzabartacbgbcc

N Y

Page 70: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  62  

   Fig.  18.  Interaction  plot  showing  the  change  in  the  mean  percentage  of  mycorrhizal  colonization  with  and  without  P  addition.  Sites  show  a  wider  range  of  responses  to  the  addition  of  P,  which  is  shown  to  be  significant  along  ambient  N:P  ratios.    

3035

4045

P Addition

Mea

n %

Col

oniz

atio

n

Site

templekonzacbgbbartacc

N Y

Page 71: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  63  

 Fig.  19.  The  mean  response  of  the  percentage  of  mycorrhizal  colonization  to  P  addition  per  site  plotted  against  mean  ambient  soil  N:P  ratios  at  respective  sites.  Response  to  P  addition  shows  a  significant  U-­‐shaped  relationship  along  a  range  of  N:P  ratios  (p  <  0.05,  R2=0.93).  Error  bars  shown  are  standard  errors  of  the  mean  response  on  the  percentage  of  mycorrhizal  colonization  to  P  treatment  and  ambient  N:P  ratios  at  sites.  Note  that  the  points  used  in  this  correlation  are  mean  values  per  site  as  opposed  to  actual  responses.              

0 5000 10000 15000 20000 25000 30000 35000

-20

-10

010

20

Ambient N:P

Mea

n R

espo

nse

in %

Col

oniz

atio

n P

p<0.05R2=0.93

Page 72: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  64  

 References    Brouwer,  R.  1983.  Functional  equilibrium:  sense  or  nonsense.  Netherlands  Journal  of  

Agricultural  Science  31:335–348.  

Clark,  R.  B.,  and  S.  K.  Zeto.  2000.  Mineral  acquisition  by  arbuscular  mycorrhizal  plants.  

Journal  of  Plant  Nutrition  23:867–902.  doi:  

10.1080/01904160009382068.  

Corkidi,  L.,  D.  Rowland,  and  N.  Johnson.  2002.  Nitrogen  fertilization  alters  the  

functioning  of  arbuscular  mycorrhizas  at  two  semiarid  grasslands.  Plant  

and  Soil  240:299–310.  

Craine,  J.  M.,  and  R.  D.  Jackson.  2010.  Plant  nitrogen  and  phosphorus  limitation  in  98  

North  American  grassland  soils.  Plant  and  Soil  334:73–84.  doi:  

10.1007/s11104-­‐009-­‐0237-­‐1.  

Dekkers,  T.,  and  P.  van  der  Werff.  2001.  Mutualistic  functioning  of  indigenous  

arbuscular  mycorrhizae  in  spring  barley  and  winter  wheat  after  cessation  

of  long-­‐term  phosphate  fertilization.  Mycorrhiza  10:195–201.  

Fitter,  A.  1991.  Costs  and  benefits  of  mycorrhizas:  Implications  for  functioning  under  

natural  conditions.  Experientia  47:350–355.  doi:  10.1007/BF01972076.  

Giovannetti,  M.,  and  B.  Mosse.  1980.  An  evaluation  of  techniques  for  measuring  

vesicular  arbuscular  mycorrhizal  infection  in  roots.  New  Phytologist  

84:489–500.  

Gleeson,  S.,  and  D.  Tilman.  1992.  Plant  allocation  and  the  multiple  limitation  hypothesis.  

American  Naturalist  139:1322–1343.  

Page 73: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  65  

Graham,  J.,  and  D.  Eissenstat.  1994.  Host  genotype  and  the  formation  and  function  of  VA  

mycorrhizae.  Plant  and  Soil  159:179–185.  

Grman,  E.  2012.  Plant  species  differ  in  their  ability  to  reduce  allocation  to  non-­‐beneficial  

arbuscular  mycorrhizal  fungi.  Ecology  93:711–718.  doi:  10.1890/11-­‐

1358.1.  

Johnson,  N.  1993.  Can  fertilization  of  soil  select  less  mutualistic  mycorrhizae?  Ecological  

Applications  3:749–757.  doi:  10.2307/1942106.  

Johnson,  N.  C.  2009.  Resource  stoichiometry  elucidates  the  structure  and  function  of  

arbuscular  mycorrhizas  across  scales.  New  Phytologist  185:631–647.  doi:  

10.1111/j.1469-­‐8137.2009.03110.x.  

Johnson,  N.,  D.  Rowland,  L.  Corkidi,  L.  Egerton-­‐Warburton,  and  E.  Allen.  2003.  Nitrogen  

enrichment  alters  mycorrhizal  allocation  at  five  mesic  to  semiarid  

grasslands.  Ecology  84:1895–1908.  

Johnson,  N.,  J.  Graham,  and  F.  Smith.  1997.  Functioning  of  mycorrhizal  associations  

along  the  mutualism-­‐parasitism  continuum.  New  Phytologist  135(4):575-­‐

586.  

Kiers,  E.,  M.  Duhamel,  Y.  Beesetty,  J.  Mensah,  O.  Franken,  E.  Verbruggen,  C.  Fellbaum,  G.  

Kowalchuk,  M.  Hart,  A.  Bago,  T.  Palmer,  S.  West,  P.  Vandenkoornhuyse,  J.  

Jansa,  and  H.  Buecking.  2011.  Reciprocal  rewards  stabilize  cooperation  in  

the  mycorrhizal  symbiosis.  Science  333:880–882.  doi:  

10.1126/science.1208473.  

Madson,  J.  1993.  Tall  Grass  Prairie.  Page  112.  Falcon  Pr  Pub  Co.  

Page 74: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  66  

Miller,  R.,  S.  Miller,  J.  Jastrow,  and  C.  Rivetta.  2002.  Mycorrhizal  mediated  feedbacks  

influence  nNet  carbon  gain  and  nutrient  uptake  in  Andropogon  gerardii.  

New  Phytologist  155:149–162.    

NutNet.  (2012).  NutNet  –  Home.  Retrieved  October  9,  2012,  from  

http://www.nutnet.umn.edu/.  

Pella,  E.  1990.  Elemental  organic  analysis.  American  Laboratory  22:116–125.  

Pinheiro,  J.,  D.  Bates,  S.  DebRoy,  D.  Sarkar,  and  R.  D.  C.  Team.  2012.  nlme:  Linear  and  

Nonlinear  Mixed  Effects  Models.  

Porras-­‐Alfaro,  A.,  J.  Herrera,  D.  O.  Natvig,  and  R.  L.  Sinsabaugh.  2007.  Effect  of  long-­‐term  

nitrogen  fertilization  on  mycorrhizal  fungi  associated  with  a  dominant  

grass  in  a  semiarid  grassland.  Plant  and  Soil  296:65–75.  doi:  

10.1007/s11104-­‐007-­‐9290-­‐9.  

R.  2011.  R:  A  Language  and  Environment  for  Statistical  Computing.  R  Foundation  for  

Statistical  Computing,  Vienna,  Austria.  Retrieved  from  http://www.R-­‐

project.org.  

Robertson,  G.,  D.  Coleman,  C.  Bledsoe,  and  P.  Sollins.  1999.  Standard  soil  methods  for  

long-­term  ecological  research.  Oxford  University  Press,  New  York.  

Smith,  S.,  and  D.  J.  Read.  2008.  Mycorrhizal  Symbiosis.  Page  800,  3rd  edition.  Academic  

Press.  

Stokstad,  E.  2011,  October  21.  Open-­‐source  ecology  takes  root  across  the  world.  Science  

334:308–309.  doi:  10.1126/science.334.6054.308.  

Titus,  J.,  and  J.  Leps.  2000.  The  response  of  arbuscular  mycorrhizae  to  fertilization,  

Page 75: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  67  

mowing,  and  removal  of  dominant  species  in  a  diverse  oligotrophic  wet  

meadow.  American  Journal  of  Botany  87:392–401.  

Treseder,  K.  K.  2004.  A  meta-­‐analysis  of  mycorrhizal  responses  to  nitrogen,  

phosphorus,  and  atmospheric  CO2  in  field  studies.  New  Phytologist  

164:347–355.  doi:  10.1111/j.1469-­‐8137.2004.01159.x.  

Treseder,  K.  K.,  and  M.  F.  Allen.  2002.  Direct  nitrogen  and  phosphorus  limitation  of  

arbuscular  mycorrhizal  fungi:  a  model  and  field  test.  New  Phytologist  

155:507–515.  doi:  10.1046/j.1469-­‐8137.2002.00470.x.  

Treseder,  K.,  and  P.  Vitousek.  2001.  Effects  of  soil  nutrient  availability  on  investment  in  

acquisition  of  N  and  P  in  Hawaiian  rain  forests.  Ecology  82:946–954.    

USDA.  2011.  USDA  Web  Soil  Survey  –  Home.  Retrieved  September  29,  2011,  from  

http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.  

Page 76: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  68  

Chapter  4.  Conclusion      This  thesis  detailed  two  components  of  factors  that  affect  the  percentage  of  mycorrhizal  

colonization  in  Schizachyrium  scoparium.  The  first  chapter  looked  at  factors  affecting  

the  rate  of  mycorrhizal  colonization  across  latitude,  and  the  second  chapter  

investigated  how  ambient  soil  conditions  at  sites  affected  responses  in  the  percentage  

of  mycorrhizal  colonization  to  nutrient  treatment.    

 

In  the  first  study  I  found  that  the  percentage  of  mycorrhizal  colonization  in  

Schizachyrium  scoparium  decreased  with  increasing  latitude.  Using  structural  equation  

modeling  I  found  this  trend  to  be  related  to  differences  in  aridity  among  sites.  

 

In  the  second  study,  which  focused  on  responses  of  mycorrhizal  colonization  rates  to  

nutrient  treatment,  I  found  that  N  significantly  decreased  the  percentage  of  mycorrhizal  

colonization  in  Schizachyrium  scoparium  and  that  there  was  a  P  x  site  interaction.  The  

addition  of  N  decreased  the  percentage  of  mycorrhizal  colonization  across  sites  while  

responses  to  the  addition  of  P  were  site  dependent.  Depending  on  site  the  addition  of  P  

caused  the  percentage  of  mycorrhizal  colonization  to  increase,  decrease,  or  have  no  

change  at  all.  Upon  further  investigation  I  found  both  the  direction  and  magnitude  of  

response  to  P  addition  to  be  related  to  ambient  N:P  stoichiometry  in  the  soil  at  a  site.  At  

sites  with  low  N:P  ratio  there  was  little  change  in  the  percentage  of  mycorrhizal  

colonization.  At  sites  with  intermediate  N:P  ratio  there  was  a  decrease  in  the  

percentage  of  mycorrhizal  colonization.  While  at  sites  with  a  high  N:P  ratio  the  addition  

Page 77: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  69  

of  P  actually  increased  the  percentage  of  mycorrhizal  colonization.  

 

As  previous  research  has  shown  there  are  a  number  of  factors  that  affect  rates  of  

mycorrhizal  colonization  in  plants.  The  majority  of  this  prior  research  has  focused  on  

nutrient  conditions  in  the  soil  (mostly  N  and  P  concentrations)  and  carbon  dioxide  

addition.  In  the  first  chapter  of  this  thesis  I  show  that  factors  alternative  to  these  (i.e.  pH  

and  aridity)  are  important  in  determining  rates  of  mycorrhizal  colonization  in  plants.  

Similarly,  in  the  second  chapter  of  this  thesis  I  show  that  it  is  not  simply  N  and  P  

concentrations  that  are  important  in  determining  rates  of  mycorrhizal  colonization,  but  

also  the  stoichiometry  of  these  resources.  While  I  did  not  collect  evidence  to  determine  

limitations  to  growth  and  optimal  allocation  of  resources  in  this  study,  the  findings  

could  be  interpreted  as  being  related  to  such.    

 

Across  sites  the  overriding  factor  controlling  the  percentage  of  mycorrhizal  

colonization  in  Schizachyrium  scoparium  was  aridity.  I  interpret  this  to  mean  that  water  

limitation  places  a  limit  on  plants  and  that  plants  respond  by  increasing  mycorrhizal  

colonization  to  acquire  water  resources.  This  is  also  presumably  why  I  did  not  detect  an  

effect  of  nutrients  across  sites  in  the  structural  equation  model.  If  aridity  was  the  

overarching  factor  affecting  mycorrhizal  colonization  among  sites,  then  nutrient  input  

probably  would  not  matter.  Conversely,  when  we  pick  apart  the  data  at  a  site-­‐specific  

level  and  look  at  how  nutrient  additions  affect  the  percentage  of  mycorrhizal  

colonization  within  sites  there  are  results  related  to  the  ambient  N:P  ratio  found  in  the  

Page 78: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  70  

soil  at  sites.  I  interpret  the  results  I  have  found  and  presented  in  chapter  3  of  this  thesis  

as  stoichiometric-­‐induced  limitation  placed  on  plants  and  mycorrhizal  fungi,  which  

differs  among  sites.        

 

These  results  are  important  as  a  continuation  for  understanding  the  dynamics  of  the  

plant-­‐mycorrhizae  relationship.  This  relationship  is  incredibly  complex  as  it  can  be  

affected  by  various  environmental  factors  and  strategy  decisions  by  the  participating  

organisms.  In  addition  these  influences  can  impact  plants  and  mycorrhizal  fungi  

independently,  which  can  influence  the  relationship  from  multiple  dimensions.  

Therefore,  enhancing  understanding  of  at  least  several  aspects  of  this  relationship  is  

important.  I  have  shown  here  that  different  factors  can  affect  rates  of  mycorrhizal  

colonization  in  plants  at  multiple  scales.  

 

This  study  was  also  important  in  terms  of  revealing  the  factors  affecting  the  percentage  

of  mycorrhizal  colonization  in  Schizachyrium  scoparium  across  latitude.  Aridity  was  

important  in  determining  rates  of  mycorrhizal  colonization  across  latitude.    More  work  

is  needed,  including  modeling  and  controlled  greenhouse  experiments,  in  order  to  fully  

understand  how  various  factors  affect  rates  of  mycorrhizal  colonization  in  this  species.  

In  addition,  more  theory  needs  to  be  developed  to  understand  how  changes  in  multiple  

factors  such  as  those  seen  across  latitude  can  affect  plant-­‐mycorrhizae  relationships.  

My  study  only  found  that  aridity  influenced  rates  of  mycorrhizal  colonization;  however,  

this  does  not  mean  that  light  and  temperature  have  no  effect  on  the  relationship.  

Page 79: Factors affecting mycorrhizal colonization in Schizachyrium scoparium

  71  

Current  theory  suggests  that  light  and  temperature  should  matter  in  this  relationship.  

Modeling  and  controlled  experiments  with  gradients  of  various  factors  such  as  water  

limitation  should  be  performed  in  order  to  truly  understand  the  complexity  of  factors  

affecting  this  relationship.  

 

Understanding  how  these  factors  influence  mycorrhizal  colonization  in  this  species  will  

become  increasingly  important  in  light  of  global  change.  If  aridity  is  changing  due  to  

increased  drought  conditions,  then  the  effects  of  these  could  greatly  influence  rates  of  

mycorrhizal  colonization  in  Schizachyrium  scoparium.  It  will  be  important  to  monitor  

this  relationship  and  how  it  affects  populations  of  this  grass  species  because  of  its  

dominance  across  much  of  the  central  United  States  and  prairie/plains  ecosystems.  

Changes  in  the  population  of  this  plant  could  have  drastic  influences  on  these  

communities  because  of  its  dominance.