24
Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition. Face Recognition: A Convolutional Neural Network Approach Steve Lawrence , C. Lee Giles , Ah Chung Tsoi , Andrew D. Back , NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 Electrical and Computer Engineering, University of Queensland, St. Lucia, Australia Abstract Faces represent complex, multidimensional, meaningful visual stimuli and developing a computa- tional model for face recognition is difficult [43]. We present a hybrid neural network solution which compares favorably with other methods. The system combines local image sampling, a self-organizing map neural network, and a convolutional neural network. The self-organizing map provides a quanti- zation of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to mi- nor changes in the image sample, and the convolutional neural network provides for partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Lo` eve transform in place of the self-organizing map, and a multi-layer perceptron in place of the convolutional network. The Karhunen-Lo` eve transform performs almost as well (5.3% error versus 3.8%). The multi-layer per- ceptron performs very poorly (40% error versus 3.8%). The method is capable of rapid classification, requires only fast, approximate normalization and preprocessing, and consistently exhibits better clas- sification performance than the eigenfaces approach [43] on the database considered as the number of images per person in the training database is varied from 1 to 5. With 5 images per person the proposed method and eigenfaces result in 3.8% and 10.5% error respectively. The recognizer provides a measure of confidence in its output and classification error approaches zero when rejecting as few as 10% of the examples. We use a database of 400 images of 40 individuals which contains quite a high degree of variability in expression, pose, and facial details. We analyze computational complexity and discuss how new classes could be added to the trained recognizer. 1 Introduction The requirement for reliable personal identification in computerized access control has resulted in an in- creased interest in biometrics 1 . Biometrics being investigated include fingerprints [4], speech [7], signature dynamics [36], and face recognition [8]. Sales of identity verification products exceed $100 million [29]. Face recognition has the benefit of being a passive, non-intrusive system for verifying personal identity. The Also with the Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742. 1 Physiological or behavioral characteristics which uniquely identify us.

Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Acceptedfor publication,IEEETransactionsonNeuralNetworks,SpecialIssueon NeuralNetworksandPatternRecognition.

FaceRecognition:A ConvolutionalNeuralNetwork Approach

SteveLawrence��� ���

, C. LeeGiles����

, Ah ChungTsoi�, Andrew D. Back

���� ��������������� �������� ���!#"%$��������'&)(+*�&,��-.(/&� �(, 0#1 ���+2�$.�3��2��4 �� �65/&)�+78&)� ���'&��.9%:�

NECResearchInstitute,4 IndependenceWay, Princeton,NJ08540�ElectricalandComputerEngineering,Universityof Queensland,St. Lucia,Australia

Abstract

Facesrepresentcomplex, multidimensional,meaningfulvisual stimuli anddevelopinga computa-tional modelfor facerecognitionis difficult [43]. We presenta hybrid neuralnetwork solutionwhichcomparesfavorablywith othermethods.Thesystemcombineslocal imagesampling,a self-organizingmapneuralnetwork, anda convolutionalneuralnetwork. Theself-organizingmapprovidesa quanti-zationof the imagesamplesinto a topologicalspacewhereinputsthatarenearbyin theoriginal spacearealsonearbyin the outputspace,therebyproviding dimensionalityreductionandinvarianceto mi-nor changesin the imagesample,andtheconvolutionalneuralnetwork providesfor partial invarianceto translation,rotation,scale,anddeformation.Theconvolutionalnetwork extractssuccessively largerfeaturesin a hierarchicalsetof layers.We presentresultsusingtheKarhunen-Loevetransformin placeof the self-organizingmap,anda multi-layer perceptronin placeof the convolutional network. TheKarhunen-Loeve transformperformsalmostas well (5.3% error versus3.8%). The multi-layer per-ceptronperformsvery poorly (40%errorversus3.8%). Themethodis capableof rapidclassification,requiresonly fast,approximatenormalizationandpreprocessing,andconsistentlyexhibits betterclas-sificationperformancethantheeigenfacesapproach[43] on the databaseconsideredasthenumberofimagesperpersonin thetrainingdatabaseis variedfrom 1 to 5. With 5 imagesperpersontheproposedmethodandeigenfacesresultin 3.8%and10.5%errorrespectively. Therecognizerprovidesa measureof confidencein its outputandclassificationerror approacheszerowhenrejectingas few as 10% ofthe examples.We usea databaseof 400 imagesof 40 individualswhich containsquite a high degreeof variability in expression,pose,andfacialdetails.We analyzecomputationalcomplexity anddiscusshow new classescouldbeaddedto thetrainedrecognizer.

1 Intr oduction

The requirementfor reliablepersonalidentificationin computerizedaccesscontrol hasresultedin an in-creasedinterestin biometrics1. Biometricsbeinginvestigatedincludefingerprints[4], speech[7], signaturedynamics[36], andfacerecognition[8]. Salesof identity verificationproductsexceed$100million [29].Facerecognitionhasthebenefitof beingapassive,non-intrusive systemfor verifying personalidentity. The;=<?>@>�A4BDC@C,E@E�E�FHG�I�J�K�FHGL�FMG�I�J�FNJPO�QRC,<O�QSIPAT�U?I�VPC@W?T,E?X?I�GJPIY <?>@>�A4BDC@C,E@E�E�FHG�I�J�K�FHGL�FMG�I�J�FNJPO�QRC,<O�QSIPAT�U?I�VPCPUSK�W�I�V�FM<?>�QRWZ

Also with theInstitutefor AdvancedComputerStudies,Universityof Maryland,CollegePark,MD 20742.1Physiologicalor behavioral characteristicswhichuniquelyidentify us.

Page 2: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

techniquesusedin thebestfacerecognitionsystemsmaydependon theapplicationof thesystem.We canidentify at leasttwo broadcategoriesof facerecognitionsystems:

1. We want to find a personwithin a largedatabaseof faces(e.g. in a policedatabase).Thesesystemstypically returna list of themostlikely peoplein thedatabase[34]. Oftenonly oneimageis availableperperson.It is usuallynotnecessaryfor recognitionto bedonein real-time.

2. We want to identify particularpeoplein real-time(e.g. in a securitymonitoringsystem,locationtrackingsystem,etc.),or we want to allow accessto a groupof peopleanddeny accessto all others(e.g. accessto a building, computer, etc.) [8]. Multiple imagesper personareoften available fortrainingandreal-timerecognitionis required.

In this paper, weareprimarily interestedin thesecondcase2. Weareinterestedin recognitionwith varyingfacialdetail,expression,pose,etc.Wedonotconsiderinvarianceto highdegreesof rotationor scaling– weassumethata minimal preprocessingstageis availableif required.We areinterestedin rapidclassificationandhencewe do not assumethat time is availablefor extensive preprocessingandnormalization.Goodalgorithmsfor locatingfacesin imagescanbefoundin [43, 40, 37].

Theremainderof this paperis organizedasfollows. Thedatawe usedis presentedin section2 andrelatedwork with this andotherdatabasesis discussedin section3. The componentsanddetailsof our systemare describedin sections4 and 5 respectively. We presentand discussour resultsin sections6 and 7.Computationalcomplexity is consideredin section8 andwedraw conclusionsin section10.

2 Data

We have usedtheORL databasewhich containsa setof facestakenbetweenApril 1992andApril 1994attheOlivetti ResearchLaboratoryin Cambridge,UK3. Thereare10 differentimagesof 40 distinctsubjects.For someof thesubjects,theimagesweretakenat differenttimes.Therearevariationsin facialexpression(open/closedeyes,smiling/non-smiling),andfacialdetails(glasses/noglasses).All the imagesweretakenagainstadarkhomogeneousbackgroundwith thesubjectsin anup-right,frontalposition,with toleranceforsometilting androtationof up to about20 degrees.Thereis somevariationin scaleof up to about10%.Thumbnailsof all of theimagesareshown in figure1 anda largersetof imagesfor onesubjectis shown infigure2. Theimagesaregreyscalewith a resolutionof [6\^]`_6_�\ .3 RelatedWork

3.1 GeometricalFeatures

Many peoplehave exploredgeometricalfeaturebasedmethodsfor facerecognition.Kanade[17] presentedanautomaticfeatureextractionmethodbasedon ratiosof distancesandreporteda recognitionrateof be-

2However, we have not performedany experimentswherewe have requiredthesystemto rejectpeoplethatarenot in a selectgroup(important,for example,whenallowing accessto abuilding).

3TheORL databaseis availablefreeof charge,see<?>@>�A�BaC@C,E@E@E4FNJ�T�QRb�OPX�W�FNJPO�FHc�dSC,e�T?JPI@f�T,>�T,gST?VPI�Fh<?>�QRW

.

2

Page 3: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Figure 1: TheORL facedatabase.Thereare10 imageseachof the40subjects.

tween45-75%with a databaseof 20 people.Brunelli andPoggio[6] computea setof geometricalfeaturessuchasnosewidth andlength,mouthposition,andchin shape.They reporta 90% recognitionrateon adatabaseof 47 people.However, they show thata simpletemplatematchingschemeprovides100%recog-nition for the samedatabase.Cox et al. [9] have recentlyintroduceda mixture-distancetechniquewhichachievesarecognitionrateof 95%usingaquerydatabaseof 95imagesfrom atotalof 685individuals.Eachfaceis representedby 30manuallyextracteddistances.

3

Page 4: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Figure 2: Thesetof 10 imagesfor onesubject.Considerablevariationcanbeseen.

Systemswhich employ preciselymeasureddistancesbetweenfeaturesmaybemostusefulfor finding pos-siblematchesin a largemugshotdatabase4. For otherapplications,automaticidentificationof thesepointswouldberequired,andtheresultingsystemwouldbedependentontheaccuracy of thefeaturelocationalgo-rithm. Currentalgorithmsfor automaticlocationof featurepointsdonot provide a highdegreeof accuracyandrequireconsiderablecomputationalcapacity[41].

3.2 Eigenfaces

High-level recognitiontasksaretypically modeledwith many stagesof processingasin theMarr paradigmof progressingfrom imagesto surfacesto three-dimensionalmodelsto matchedmodels[28]. However,Turk andPentland[43] arguethatit is likely thatthereis alsoarecognitionprocessbasedonlow-level, two-dimensionalimageprocessing.Their argumentis basedon theearlydevelopmentandextremerapidity offacerecognitionin humans,andonphysiologicalexperimentsin monkey cortex whichclaimto haveisolatedneuronsthat respondselectively to faces[35]. However, it is not clearthat theseexperimentsexcludethesoleoperationof theMarr paradigm.

Turk andPentland[43] presentafacerecognitionschemein whichfaceimagesareprojectedontotheprinci-palcomponentsof theoriginalsetof trainingimages.Theresultingeigenfacesareclassifiedby comparisonwith known individuals.

Turk andPentlandpresentresultson a databaseof 16 subjectswith variousheadorientation,scaling,andlighting. Their imagesappearidenticalotherwisewith little variation in facial expression,facial details,pose,etc. For lighting, orientation,andscalevariationtheir systemachieves96%,85% and64% correctclassificationrespectively. Scaleis renormalizedto theeigenfacesizebasedonanestimateof theheadsize.Themiddleof thefacesis accentuated,reducingany negativeaffectof changinghairstyleandbackgrounds.

In Pentlandetal. [34, 33] goodresultsarereportedonalargedatabase(95%recognitionof 200peoplefromadatabaseof 3,000).It is difficult to draw broadconclusionsasmany of theimagesof thesamepeoplelookvery similar, andthe databasehasaccurateregistrationandalignment[30]. In MoghaddamandPentland[30], very goodresultsarereportedwith theFERETdatabase– only onemistake wasmadein classifying150frontal view images.Thesystemusedextensive preprocessingfor headlocation,featuredetection,andnormalizationfor thegeometryof theface,translation,lighting, contrast,rotation,andscale.

4A mugshotdatabasetypically containssideviewswheretheperformanceof featurepointmethodsis known to improve [8].

4

Page 5: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Swetsand Weng [42] presenta methodof selectingdiscriminanteigenfeaturesusing multi-dimensionallinear discriminantanalysis.They presentmethodsfor determiningthe Most Expressive Features(MEF)andtheMostDiscriminatoryFeatures(MDF). Wearenotcurrentlyawareof theavailability of resultswhicharecomparablewith thoseof eigenfaces(e.g.ontheFERETdatabaseasin MoghaddamandPentland[30]).

In summary, it appearsthateigenfacesis a fast,simple,andpracticalalgorithm.However, it maybelimitedbecauseoptimalperformancerequiresahighdegreeof correlationbetweenthepixel intensitiesof thetrain-ing andtestimages.This limitation hasbeenaddressedby usingextensive preprocessingto normalizetheimages.

3.3 TemplateMatching

Templatematchingmethodssuchas[6] operateby performingdirectcorrelationof imagesegments.Tem-platematchingis only effectivewhenthequeryimageshave thesamescale,orientation,andilluminationasthetrainingimages[9].

3.4 Graph Matching

Anotherapproachto facerecognitionis the well known methodof GraphMatching. In [21], Ladesetal. presenta DynamicLink Architecturefor distortioninvariantobjectrecognitionwhich employs elasticgraphmatchingto find thecloseststoredgraph.Objectsarerepresentedwith sparsegraphswhoseverticesare labeledwith a multi-resolutiondescriptionin termsof a local power spectrum,andwhoseedgesarelabeledwith geometricaldistances.They presentgoodresultswith adatabaseof 87 peopleandtestimagescomposedof differentexpressionsandfacesturned15 degrees.The matchingprocessis computationallyexpensive, taking roughly 25 secondsto comparean imagewith 87 storedobjectswhenusinga parallelmachinewith 23 transputers.Wiskott et al. [45] usean updatedversionof the techniqueandcompare300 facesagainst300 different facesof the samepeopletaken from the FERETdatabase.They reportarecognitionrateof 97.3%.Therecognitiontime for thissystemwasnotgiven.

3.5 Neural Network Approaches

Much of thepresentliteratureon facerecognitionwith neuralnetworkspresentsresultswith only a smallnumberof classes(oftenbelow 20). Webriefly describeacoupleof approaches.

In [10] the first 50 principal componentsof the imagesareextractedandreducedto 5 dimensionsusingan autoassociative neuralnetwork. The resultingrepresentationis classifiedusinga standardmulti-layerperceptron.Goodresultsarereportedbut thedatabaseis quitesimple:thepicturesaremanuallyalignedandthereis no lighting variation,rotation,or tilting. Thereare20peoplein thedatabase.

A hierarchicalneuralnetwork which is grown automaticallyandnot trainedwith gradient-descentwasusedfor facerecognitionby WengandHuang[44]. They reportgoodresultsfor discriminationof tendistinctivesubjects.

5

Page 6: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

3.6 The ORL Database

In [39] a HMM-basedapproachis usedfor classificationof the ORL databaseimages. The bestmodelresultedin a13%errorrate.Samariaalsoperformedextensive testsusingthepopulareigenfacesalgorithm[43] on the ORL databaseandreporteda besterror rateof around10% whenthe numberof eigenfaceswasbetween175and199. We implementedtheeigenfacesalgorithmandalsoobservedaround10%error.In [38] Samariaextendsthe top-down HMM of [39] with pseudotwo-dimensionalHMMs. Theerror ratereducesto 5% at theexpenseof high computationalcomplexity – a singleclassificationtakesfour minutesonaSunSparcII. Samarianotesthatalthoughanincreasedrecognitionratewasachievedthesegmentationobtainedwith the pseudotwo-dimensionalHMMs appearedquiteerratic. Samariausesthesametrainingandtestsetsizesaswe do (200trainingimagesand200testimageswith no overlapbetweenthetwo sets).The5%errorrateis thebesterrorratepreviously reportedfor theORL databasethatweareawareof.

4 SystemComponents

4.1 Overview

In thefollowing sectionsweintroducethetechniqueswhichformthecomponentsof oursystemanddescribeour motivation for usingthem. Briefly, we explore the useof local imagesamplinganda techniqueforpartial lighting invariance,a self-organizingmap(SOM) for projectionof the imagesamplerepresentationinto a quantizedlower dimensionalspace,the Karhunen-Loeve (KL) transformfor comparisonwith theself-organizingmap,aconvolutionalnetwork (CN) for partialtranslationanddeformationinvariance,andamulti-layerperceptron(MLP) for comparisonwith theconvolutionalnetwork.

4.2 Local ImageSampling

Wehave evaluatedtwo differentmethodsof representinglocal imagesamples.In eachmethodawindow isscannedover theimageasshown in figure3.

1. Thefirst methodsimplycreatesavectorfrom a localwindow on theimageusingtheintensityvaluesat eachpoint in thewindow. Let i�jlk betheintensityat the m th column,andthe n th row of thegivenimage.If thelocalwindow is asquareof sides\�oqpr_ long,centeredon i�jlk , thenthevectorassociatedwith thiswindow is simply s i�jat3u � k?t3uwvxi�jat3u � k�t3uzy � v?{?{?{vSi3j|k�v?{?{?{vxi�jMy u � k�y u}t � vxi�jMy u � k�y u^~ .

2. The secondmethodcreatesa representationof the local sampleby forming a vectorout of a) theintensityof thecenterpixel i jlk , andb) thedifferencein intensitybetweenthecenterpixel andall otherpixelswithin thesquarewindow. Thevectoris givenby s i�jlk���i3jat3u � k?t3uwv�i3j|k���i�jat3u � k�t3uzy � v?{?{?{v� jlk�i�jlkRv?{?{?{v3i�jlk���i3jMy u � kPy u�t � v�i3jlk���i�jMy u � k�y u�~ . The resultingrepresentationbecomespartiallyinvariantto variationsin intensityof thecompletesample.Thedegreeof invariancecanbemodifiedby adjustingtheweight � jlk connectedto thecentralintensitycomponent.

6

Page 7: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Figure 3: A depictionof the local imagesamplingprocess.A window is steppedover the imageanda vectoriscreatedateachlocation.

4.3 The Self-OrganizingMap

4.3.1 Intr oduction

Mapsarean importantpart of both naturalandartificial neuralinformationprocessingsystems[2]. Ex-amplesof mapsin the nervous systemareretinotopicmapsin the visual cortex [31], tonotopicmapsintheauditorycortex [18], andmapsfrom theskin onto thesomatosensoriccortex [32]. Theself-organizingmap,or SOM,introducedby Teuvo Kohonen[20, 19] is anunsupervisedlearningprocesswhich learnsthedistribution of a setof patternswithoutany classinformation.A patternis projectedfrom aninputspacetoa positionin themap– informationis codedasthelocationof anactivatednode.TheSOM is unlike mostclassificationor clusteringtechniquesin that it providesa topologicalorderingof theclasses.Similarity ininput patternsis preserved in theoutputof theprocess.The topologicalpreservation of theSOM processmakesit especiallyusefulin theclassificationof datawhich includesa largenumberof classes.In thelocalimagesampleclassification,for example,theremaybeaverylargenumberof classesin whichthetransitionfrom oneclassto thenext is practicallycontinuous(makingit difficult to definehardclassboundaries).

4.3.2 Algorithm

We give a brief descriptionof the SOM algorithm, for moredetailssee[20]. The SOM definesa map-ping from an input space�z� onto a topologicallyorderedsetof nodes,usually in a lower dimensionalspace. An exampleof a two-dimensionalSOM is shown in figure 4. A referencevector in the inputspace,��j���s � j � v�� j � v?{�{�{�v�� j � ~�������� , is assignedto eachnodein the SOM. During training, eachin-put vector, � , is comparedto all of the �`j , obtainingthe location of the closestmatch ��� (given by� ������� �#�����H� j)� � �����`j �¡  where

� ¢£�denotesthenormof vector

¢). The input point is mappedto this

locationin theSOM.Nodesin theSOMareupdatedaccordingto:�`j¥¤a¦#p§_¨ � �`j�¤a¦�¨ pª©��Nj�¤a¦�¨@s �«¤a¦�¨¬���`j¥¤a¦�¨­~ (1)

where ¦ is the time during learningand ©4�Nj�¤a¦�¨ is the neighbourhoodfunction, a smoothingkernelwhichis maximumat ®�� . Usually, ©��Nj�¤a¦�¨ � ©�¤ �|¯ �¬� ¯ j � v�¦�¨ , where

¯ � and¯ j representthe locationof thenodes

7

Page 8: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

in theSOM outputspace.¯ � is thenodewith theclosestweightvectorto the input sampleand

¯ j rangesover all nodes. ©��Nj�¤a¦�¨ approaches0 as

� ¯ �¬� ¯ j � increasesandalsoas ¦ approaches° . A widely appliedneighbourhoodfunctionis: ©4�Nj �§± ¤a¦�¨�²@³�´ µ � � ¯ �¬� ¯ j � �\R¶ � ¤a¦�¨�· (2)

where± ¤a¦�¨ is ascalarvaluedlearningrateand ¶¸¤a¦�¨ definesthewidth of thekernel.They aregenerallyboth

monotonicallydecreasingwith time [20]. Theuseof theneighbourhoodfunctionmeansthatnodeswhicharetopographicallyclosein theSOMstructurearemovedtowardstheinputpatternalongwith thewinningnode.Thiscreatesasmoothingeffectwhichleadsto aglobalorderingof themap.Notethat ¶¸¤a¦�¨ shouldnotbereducedtoo far asthemapwill loseits topographicalorderif neighbouringnodesarenot updatedalongwith theclosestnode.TheSOM canbeconsidereda non-linearprojectionof theprobabilitydensity, ¹£¤a�º¨[20].

Figure 4: A two-dimensionalSOM showing a squareneighborhoodfunctionwhich startsas »�¼D½­¾H¿)À�Á andreducesinsizeto »�¼D½­¾M¿ÃÂ@Á over time.

4.3.3 Impr oving the BasicSOM

Theoriginal self-organizingmapis computationallyexpensive dueto:

1. In theearlystagesof learning,many nodesareadjustedin acorrelatedmanner. Luttrel [27] proposeda method,which is usedhere,thatstartsby learningin a smallnetwork, anddoublesthesizeof thenetwork periodicallyduring training. Whendoubling,new nodesare insertedbetweenthe currentnodes.Theweightsof thenew nodesaresetequalto theaverageof theweightsof the immediatelyneighboringnodes.

2. Eachlearningpassrequirescomputationof the distanceof the currentsampleto all nodesin thenetwork, which is Äz¤DÅƨ . However, this maybereducedto Äz¤DÇ�È6É«Åʨ usinga hierarchyof networkswhich is createdfrom theabove nodedoublingstrategy5.

5Thisassumesthatthetopologicalorderis optimalprior to eachdoublingstep.

8

Page 9: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

4.4 Karhunen-Loeve Transform

Theoptimallinearmethod6 for reducingredundancy in a datasetis theKarhunen-Loeve (KL) transformoreigenvectorexpansionvia PrincipleComponentsAnalysis(PCA) [12]. PCA generatesa setof orthogonalaxesof projectionsknown astheprincipalcomponents,or theeigenvectors,of theinputdatadistribution intheorderof decreasingvariance.TheKL transformis awell known statisticalmethodfor featureextractionandmultivariatedataprojectionandhasbeenusedwidely in patternrecognition,signalprocessing,imageprocessing,anddataanalysis.Pointsin an Ë -dimensionalinput spaceareprojectedinto an ® -dimensionalspace,®ÍÌÎË . TheKL transformis usedherefor comparisonwith theSOMin thedimensionalityreductionof thelocal imagesamples.TheKL transformis alsousedin eigenfaces,however in thatcaseit is usedontheentireimageswhereasit is only usedonsmalllocal imagesamplesin thiswork.

4.5 Convolutional Networks

The problemof facerecognitionfrom 2D imagesis typically very ill-posed, i.e. therearemany modelswhich fit thetrainingpointswell but do not generalizewell to unseenimages.In otherwords,therearenotenoughtrainingpointsin thespacecreatedby theinput imagesin orderto allow accurateestimationof classprobabilitiesthroughouttheinputspace.Additionally, for MLP networkswith the2D imagesasinput,thereis no invarianceto translationor localdeformationof theimages[23].

Convolutional networks (CN) incorporateconstraintsand achieve somedegreeof shift and deformationinvarianceusingthreeideas: local receptive fields, sharedweights,andspatialsubsampling.The useofsharedweightsalsoreducesthenumberof parametersin thesystemaidinggeneralization.Convolutionalnetworkshave beensuccessfullyappliedto characterrecognition[24, 22, 23, 5, 3].

A typical convolutional network is shown in figure 5 [24]. The network consistsof a setof layerseachof which containsoneor moreplanes.Approximatelycenteredandnormalizedimagesenterat the inputlayer. Eachunit in a planereceives input from a small neighborhoodin the planesof the previous layer.Theideaof connectingunitsto local receptive fieldsdatesbackto the1960swith theperceptronandHubelandWiesel’s [15] discoveryof locally sensitive,orientation-selective neuronsin thecat’svisualsystem[23].Theweightsforming the receptive field for a planeareforcedto beequalat all pointsin theplane. Eachplanecanbeconsideredasa featuremapwhich hasa fixedfeaturedetectorthat is convolved with a localwindow which is scannedover the planesin the previous layer. Multiple planesareusuallyusedin eachlayersothatmultiple featurescanbedetected.Theselayersarecalledconvolutional layers.Oncea featurehasbeendetected,its exactlocationis lessimportant.Hence,theconvolutionallayersaretypically followedby anotherlayerwhich doesa local averagingandsubsamplingoperation(e.g. for a subsamplingfactorof2: Ï6jlk � ¤Di � j � � kÐp�i � jMy ��� � kÐpÑi � j � � kPy � p�i � jMy ��� � kPy � ¨4ÒSÓ where Ï6jlk is the outputof a subsamplingplaneatposition m�v­n and i�jlk is theoutputof thesameplanein theprevious layer). Thenetwork is trainedwith theusualbackpropagationgradient-descentprocedure[13]. A connectionstrategy canbe usedto reducethenumberof weightsin thenetwork. For example,with referenceto figure5, Le Cunet al. [24] connectthefeaturemapsin thesecondconvolutional layeronly to 1 or 2 of themapsin thefirst subsamplinglayer(theconnectionstrategy waschosenmanually).

6In theleastmeansquarederrorsense.

9

Page 10: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Figure 5: A typicalconvolutionalnetwork.

5 SystemDetails

Thesystemwe have usedfor facerecognitionis a combinationof theprecedingparts– a high-level blockdiagramisshown in figure6 andfigure7showsabreakdown of thevarioussubsystemsthatweexperimentedwith or discuss.

Figure 6: A high-level blockdiagramof thesystemwehaveusedfor facerecognition.

Oursystemworksasfollows (wegive completedetailsof dimensionsetc. later):

1. For the imagesin the trainingset,a fixedsizewindow (e.g. Ôr]ÊÔ ) is steppedover theentireimageasshown in figure3 andlocal imagesamplesareextractedat eachstep.At eachstepthewindow ismovedby 4 pixels.

2. A self-organizingmap(e.g. with threedimensionsandfive nodesper dimension,ÔRÕ � _�\6Ô totalnodes)is trainedonthevectorsfrom thepreviousstage.TheSOMquantizesthe25-dimensionalinputvectorsinto 125topologicallyorderedvalues.Thethreedimensionsof theSOMcanbethoughtof asthreefeatures.We alsoexperimentedwith replacingtheSOM with theKarhunen-Loeve transform.In this case,theKL transformprojectsthevectorsin the25-dimensionalspaceinto a 3-dimensionalspace.

3. Thesamewindow asin thefirst stepis steppedoverall of theimagesin thetrainingandtestsets.Thelocal imagesamplesarepassedthroughtheSOMat eachstep,therebycreatingnew trainingandtestsetsin theoutputspacecreatedby theself-organizingmap.(Eachinput imageis now representedby3 maps,eachof whichcorrespondsto adimensionin theSOM.Thesizeof thesemapsis equalto thesizeof theinput image( [6\�]�_6_�\ ) dividedby thestepsize(for astepsizeof 4, themapsare \6Ö8]×\6Ø ).)

10

Page 11: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Figure7: A diagramof thesystemwehaveusedfor facerecognitionshowing alternativemethodswhichweconsiderin this paper. Thetop “multi-layer perceptronstyleclassifier”representsthefinal MLP stylefully connectedlayerofthe convolutional network. We have shown this decompositionof the convolutional network in order to highlightthe possibility of replacingthe final layer (or layers)with a differenttype of classifier. The nearest-neighborstyleclassifieris potentially interestingbecauseit may make it possibleto addnew classeswith minimal extra trainingtime. Thebottom“multi-layer perceptron”shows thattheentireconvolutionalnetwork canbereplacedwith a multi-layer perceptron.We presentresultswith eithera self-organizingmapor the Karhunen-Loeve transformusedfordimensionalityreduction,andeitheraconvolutionalneuralnetwork or a multi-layerperceptronfor classification.

4. A convolutional neuralnetwork is trainedon the newly createdtraining set. We alsoexperimentedwith trainingastandardmulti-layerperceptronfor comparison.

5.1 Simulation Details

In this sectionwegive thedetailsof oneof thebestperformingsystems.

For theSOM, trainingis split into two phasesasrecommendedby Kohonen[20] – anorderingphase,anda fine-adjustmentphase.100,000updatesareperformedin thefirst phase,and50,000in thesecond.In thefirst phase,theneighborhoodradiusstartsat two-thirdsof thesizeof themapandreduceslinearly to 1. Thelearningrateduring this phaseis: Ù�{ÛÚ�]ܤ�_Ý�Î˺Ò�Åʨ where Ë is the currentupdatenumber, and Å is thetotal numberof updates.In thesecondphase,theneighborhoodradiusstartsat 2 andis reducedto 1. Thelearningrateduringthisphaseis: Ù�{lÙ�\^]`¤�_Þ��˺Ò�Åʨ .Theconvolutionalnetwork containedfivelayersexcludingtheinputlayer. A confidencemeasurewascalcu-latedfor eachclassification:Ï6ß�¤aÏ6ߪ�ÆÏ � ß�¨ whereÏ6ß is themaximumoutput,and Ï � ß is thesecondmaxi-mumoutput(for outputswhichhave beentransformedusingthesoftmaxtransformation:Ï6j � àNáPâRãåäæhçè^éê)ë.ì àNáPâRãåä ê çwhere í�j are the original outputs, Ï6j are the transformedoutputs,and î is the numberof outputs). Thenumberof planesin eachlayer, thedimensionsof theplanes,andthedimensionsof thereceptive fieldsareshown in table1. Thenetwork wastrainedwith backpropagation[13] for atotalof 20,000updates.Weights

11

Page 12: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

in thenetwork wereupdatedaftereachpatternpresentation,asopposedto batchupdatewhereweightsareonly updatedonceperpassthroughthetrainingset. All inputswerenormalizedto lie in therange-1 to 1.All nodesincludeda biasinput which waspartof theoptimizationprocess.Thebestof 10 randomweightsetswaschosenfor theinitial parametersof thenetwork by evaluatingtheperformanceon thetrainingset.Weightswere initialized on a nodeby nodebasisasuniformly distributed randomnumbersin the range¤¥��\�{|Ó�Òxïºj�v,\�{|Ó�Òxï�j�¨ where ï�j is thefan-inof neuronm [13]. Targetoutputswere-0.8and0.8usingthe ð�ñ �4òoutputactivation function7. The quadraticcost function wasused. A searchthenconverge learningrateschedulewasused8: ó � ô�õö÷�ø)ù y ú ìû.üDýSþ ìNÿ � ú ì�� û.üDý � õ ÿ ú ì � ö � ú ù ÷����� ì � ú ù � ÷ � whereó � learningrate, ó�� � initial learningrate

= 0.1, Å �total trainingepochs,Ë � currenttrainingepoch, � � ÔRÙ , � � Ù�{�6Ô . Thescheduleis shown in

figure8. Total trainingtimewasaroundfour hoursonanSGI Indy 100MhzMIPSR4400system.

00.050.1

0.150.2

0.250.3

0.350.4

0.450.5

50 100 150 200 250 300 350 400 450 500

Lear

ning

Rat

e

Epoch

Layer 1Layer 2

Figure 8: Thelearningrateasa functionof theepochnumber.

Layer Type Units x y Receptive Receptive Connectionfield x field y Percentage

1 Convolutional 20 21 26 3 3 1002 Subsampling 20 11 13 2 2 –3 Convolutional 25 9 11 3 3 304 Subsampling 25 5 6 2 2 –5 Fully connected 40 1 1 5 6 100

Table 1: Dimensionsfor the convolutionalnetwork. The connectionpercentagerefersto the percentageof nodesin thepreviouslayerwhich eachnodein thecurrentlayer is connectedto – a valuelessthan100%reducesthetotalnumberof weightsin thenetwork andmay improve generalization.Theconnectionstrategy usedhereis similar tothatusedby Le Cunetal. [24] for characterrecognition.However, asopposedto themanualconnectionstrategy usedby Le Cun et al., the connectionsbetweenlayers2 and3 arechosenrandomly. As an exampleof how the preciseconnectionscanbedeterminedfrom thetable– thesizeof thefirst layerplanes( ����� �� ) is equalto thetotalnumberof waysof positioninga ����� receptivefield on theinput layerplanes( ����� �� ).

7This helpsavoid saturatingthesigmoidfunction. If targetsweresetto theasymptotesof the sigmoidthis would tendto: a)drive theweightsto infinity, b) causeoutlier datato producevery largegradientsdueto the largeweights,andc) producebinaryoutputsevenwhenincorrect– leadingto decreasedreliability of theconfidencemeasure.

8Relatively highlearningratesaretypically usedin orderto helpavoidslow convergenceandlocalminima.However, aconstantlearningrateresultsin significantparameterandperformancefluctuationduringtheentiretrainingcyclesuchthattheperformanceof thenetwork canaltersignificantlyfrom thebeginningto theendof thefinal epoch.Moody andDarkin have proposed“searchthenconverge” learningrateschedules.We have found that theseschedulesstill resultin considerableparameterfluctuationandhencewe have addedanothertermto further reducethe learningrateover thefinal epochs(a simplerlinearschedulealsoworkswell). Wehave foundtheuseof learningrateschedulesto improve performanceconsiderably.

12

Page 13: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

6 Experimental Results

We performedvariousexperimentsandpresenttheresultshere.Exceptwhenstatedotherwise,all experi-mentswereperformedwith 5 trainingimagesand5 testimagesperpersonfor a totalof 200trainingimagesand200testimages.Therewasno overlapbetweenthetrainingandtestsets.We notethata systemwhichguessesthe correctanswerwould be right oneout of forty times,giving an error rateof 97.5%. For thefollowing setsof experiments,wevaryonly oneparameterin eachcase.Theerrorbarsshown in thegraphsrepresentplusor minusonestandarddeviation of thedistribution of resultsfrom anumberof simulations9.We notethat ideally we would like to have performedmoresimulationsper reportedresult,however, wewerelimited in termsof computationalcapacityavailableto us. The constantsusedin eachsetof exper-imentswere: numberof classes:40, dimensionalityreductionmethod:SOM, dimensionsin theSOM: 3,numberof nodesperSOMdimension:5, imagesampleextraction:original intensityvalues,trainingimagesperclass:5. Notethattheconstantsin eachsetof experimentsmaynot give thebestpossibleperformanceasthecurrentbestperformingsystemwasonly obtainedasa resultof theseexperiments.Theexperimentsareasfollows:

1. Variation of thenumberof outputclasses– table2 andfigure9 show theerrorrateof thesystemasthenumberof classesis variedfrom 10 to 20 to 40. We madeno attemptto optimizethesystemfor thesmallernumbersof classes.As we expect,performanceimproveswith fewer classesto discriminatebetween.

Numberof classes 10 20 40

Error rate 1.33% 4.33% 5.75%

Table2: Errorrateof thefacerecognitionsystemwith varyingnumberof classes(subjects).Eachresultis theaverageof threesimulations.

0

2

4

6

8

10

10 20 40

Tes

t Err

or %

Number of classes

Figure9: Theerrorrateasafunctionof thenumberof classes.Wedid notmodify thenetwork from thatusedfor the40classcase.

9Weranmultiplesimulationsin eachexperimentwherewevariedtheselectionof thetrainingandtestimages(out of a total of����� � ���"!$#%�'&)( �possibilities)andtherandomseedusedto initialize theweightsin theconvolutionalneuralnetwork.

13

Page 14: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

2. Variation of thedimensionalityof theSOM– table3 andfigure10 show theerrorrateof thesystemasthedimensionof theself-organizingmapis variedfrom 1 to 4. Thebestperformingvalueis threedimensions.

SOMDimension 1 2 3 4

Error rate 8.25% 6.75% 5.75% 5.83%

Table 3: Error rateof the facerecognitionsystemwith varyingnumberof dimensionsin the self-organizingmap.Eachresultgivenis theaverageof threesimulations.

0

2

4

6

8

10

1 2 3 4

Tes

t Err

or %

SOM Dimensions

Figure 10: Theerrorrateasa functionof thenumberof dimensionsin theSOM.

3. Variation of thequantizationlevelof theSOM– table4 andfigure11show theerrorrateof thesystemasthesizeof theself-organizingmapis variedfrom 4 to 10nodesperdimension.TheSOMhasthreedimensionsin eachcase.Thebestaverageerror rateoccursfor 8 or 9 nodesperdimension.This isalsothebestaverageerrorrateof all experiments.

SOMSize 4 5 6 7 8 9 10

Error rate 8.5% 5.75% 6.0% 5.75% 3.83% 3.83% 4.16%

Table4: Error rateof thefacerecognitionsystemwith varyingnumberof nodesperdimensionin theself-organizingmap.Eachresultgivenis theaverageof threesimulations.

4. Variation of the image sampleextractionalgorithm– table5 shows theresultof usingthetwo localimagesamplerepresentationsdescribedearlier. Wefoundthatusingtheoriginal intensityvaluesgavethebestperformance.Weinvestigatedalteringtheweightassignedto thecentralintensityvaluein thealternative representationbut wereunableto improve theresults.

Input type Pixel intensities Differencesw/baseintensity

Error rate 5.75% 7.17%

Table 5: Error rateof the facerecognitionsystemwith varying imagesamplerepresentation.Eachresult is theaverageof threesimulations.

14

Page 15: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

0

2

4

6

8

10

4 5 6 7 8 9 10

Tes

t Err

or %

SOM nodes per dimension

Figure 11: Theerrorrateasa functionof thenumberof nodesperdimensionin theSOM.

5. SubstitutingtheSOMwith theKL transform– table6 showstheresultsof replacingtheself-organizingmapwith theKarhunen-Loeve transform.We investigatedusingthefirst one,two, or threeeigenvec-tors for projection.Surprisingly, thesystemperformedbestwith only 1 eigenvector. ThebestSOMparameterswe tried producedslightly betterperformance.The quantizationinherentin the SOMcouldprovidea degreeof invarianceto minor imagesampledifferencesandquantizationof thePCAprojectionsmayimprove performance.

Dimensionalityreduction LinearPCA SOM

Error rate 5.33% 3.83%

Table 6: Error rateof the facerecognitionsystemwith linearPCA andSOM featureextractionmechanisms.Eachresultis theaverageof threesimulations.

6. Replacingthe CN with an MLP – table7 shows the resultsof replacingthe convolutional networkwith a multi-layerperceptron.Performanceis verypoor. This resultwasexpectedbecausethemulti-layerperceptrondoesnothave theinbuilt invarianceto minortranslationandlocaldeformationwhichis createdin the convolutional network usingthe local receptive fields, sharedweights,andspatialsubsampling.As anexample,considerwhena featureis shiftedin a testimagein comparisonwiththe trainingimage(s)for the individual. We expecttheMLP to have difficulty recognizinga featurewhichhasbeenshiftedin comparisonto thetrainingimagesbecausetheweightsconnectedto thenewlocationwerenot trainedfor thefeature.

TheMLP containedonehiddenlayer. We investigatedthefollowing hiddenlayersizesfor themulti-layer perceptron:20, 50, 100, 200, and500. The bestperformancewasobtainedwith 200 hiddennodesandatrainingtimeof 2 days.Thelearningratescheduleandinitial learningratewerethesameasfor the original network. Note that the bestperformingKL parameterswereusedwhile the bestperformingSOMparameterswerenot. Wenotethatit maybeconsideredfairerto compareagainstanMLP with multiplehiddenlayers[14], however selectionof theappropriatenumberof nodesin eachlayer is difficult (e.g. we have tried a network with two hiddenlayerscontaining100and50 nodesrespectively which resultedin anerrorrateof 90%).

7. Thetradeoff betweenrejectionthresholdandrecognition accuracy– Figure12 shows a histogramoftherecognizer’s confidencefor thecaseswhentheclassifieris correctandwhenit is wrongfor oneof

15

Page 16: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

LinearPCA SOM

MLP 41.2% 39.6%CN 5.33% 3.83%

Table7: Errorratecomparisonof thevariousfeatureextractionandclassificationmethods.Eachresultis theaverageof threesimulations.

thebestperformingsystems.Fromthis graphweexpectthatclassificationperformancewill increasesignificantly if we rejectcasesbelow a certainconfidencethreshold. Figure13 shows the systemperformanceastherejectionthresholdis increased.We canseethatby rejectingexampleswith lowconfidencewe cansignificantlyincreasetheclassificationperformanceof thesystem.If we considerasystemwhichusedavideocamerato takeanumberof picturesoverashortperiod,wecouldexpectthatahighperformancewouldbeattainablewith anappropriaterejectionthreshold.

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

His

togr

am*

Confidence

Confidence when WrongConfidence when Correct

Figure 12: A histogramdepictingtheconfidenceof theclassifierwhenit turnsout to becorrect,andtheconfidencewhenit is wrong.Thegraphsuggeststhatwecanimproveclassificationperformanceconsiderablyby rejectingcaseswheretheclassifierhasa low confidence.

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

0 5 10 15 20

Per

cent

Cor

rect

Reject Percentage

Classification Performance

Figure 13: Thetestsetclassificationperformanceasa functionof thepercentageof samplesrejected.Classificationperformancecanbeimprovedsignificantlyby rejectingcaseswith low confidence.

8. Comparisonwith otherknownresultson thesamedatabase– Table8 shows a summaryof theper-formanceof thesystemsfor which we have resultsusingtheORL database.In this case,we usedaSOM quantizationlevel of 8. Our systemis thebestperformingsystem10 andperformsrecognition

10The4%errorratereportedis anaverageof multiplesimulations– individualsimulationshavegivenerrorratesaslow as1.5%.

16

Page 17: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

roughly500timesfasterthanthesecondbestperformingsystem– thepseudo2D-HMMs of Samaria.Figure14showstheimageswhichwereincorrectlyclassifiedfor oneof thebestperformingsystems.

Figure14: Testimages.Theimageswith a thick whiteborderwereincorrectlyclassifiedby oneof thebestperform-ing systems.

System Error rate Classificationtime

Top-down HMM 13% n/aEigenfaces 10.5% n/a

Pseudo2D-HMM 5% 240seconds�

SOM+CN 3.8% + 0.5seconds�

Table8: Error rateof thevarioussystems.À On aSunSparcII. , OnanSGI Indy MIPSR4400100Mhzsystem.

9. Variation of the numberof training images per person. Table9 shows the resultsof varying thenumberof imagesper classusedin the training set from 1 to 5 for PCA+CN,SOM+CN andalsofor the eigenfacesalgorithm. We implementedtwo versionsof the eigenfacesalgorithm– the firstversioncreatesvectorsfor eachclassin the training set by averagingthe resultsof the eigenfacerepresentationover all imagesfor the sameperson.This correspondsto the algorithmasdescribedby Turk andPentland[43]. However, we foundthatusingseparatetrainingvectorsfor eachtrainingimageresultedin betterperformance.We foundthatusingbetween40 to 100eigenfacesresultedinsimilar performance.We canseethat thePCA+CNandSOM+CNmethodsarebothsuperiorto theeigenfacestechniqueevenwhenthereis only onetrainingimageperperson.TheSOM+CNmethodconsistentlyperformsbetterthanthePCA+CNmethod.

17

Page 18: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Imagesperperson 1 2 3 4 5

Eigenfaces– averageperclass 38.6 28.8 28.9 27.1 26Eigenfaces– oneperimage 38.6 20.9 18.2 15.4 10.5

PCA+CN 34.2 17.2 13.2 12.1 7.5SOM+CN 30.0 17.0 11.8 7.1 3.8

Table9: Error ratefor theeigenfacesalgorithmandtheSOM+CNasthesizeof thetrainingsetis variedfrom 1 to 5imagesperperson.Averagedovertwo differentselectionsof thetrainingandtestsets.

7 Discussion

Theresultsindicatethataconvolutionalnetwork canbemoresuitablein thegivensituationwhencomparedwith a standardmulti-layer perceptron.This correlateswith the commonbelief that the incorporationofprior knowledgeis desirablefor MLP stylenetworks(theCN incorporatesdomainknowledgeregardingtherelationshipof thepixelsanddesiredinvarianceto adegreeof translation,scaling,andlocaldeformation).

Convolutional networks have traditionally beenusedon raw imageswithout any preprocessing.Withoutthepreprocessingwe have used,theresultingconvolutionalnetworksarelarger, morecomputationallyin-tensive, andhave not performedaswell in our experiments(e.g. usingno preprocessingandthesameCNarchitectureexceptinitial receptive fieldsof 8 ] 8 resultedin approximatelytwo timesgreatererror(for thecaseof five imagesperperson)).

Figure15 shows the randomlychoseninitial local imagesamplescorrespondingto eachnodein a two-dimensionalSOM, and the final sampleswhich the SOM converges to. Scanningacrossthe rows andcolumnswe canseethat thequantizedsamplesrepresentsmoothlychangingshadingpatterns.This is theinitial representationfrom which successively higher level featuresareextractedusing the convolutionalnetwork. Figure16shows theactivationof thenodesin asampleconvolutionalnetwork for aparticulartestimage.

Figure 15: SOMimagesamplesbeforetraining(a randomsetof imagesamples)andaftertraining.

Figure17 shows theresultsof sensitivity analysisin orderto determinewhich partsof theinput imagearemost importantfor classification.Using the methodof Baluja andPomerleauasdescribedin [37], eachof the input planesto the convolutional network wasdivided into \ ]Ñ\ segments(the input planesare\6Ö=]r\6Ø ). Eachof 168( _�\=]w_@Ó ) segmentswasreplacedwith randomnoise,onesegmentata time. Thetestperformancewascalculatedat eachstep. Theerrorof thenetwork whenreplacingpartsof the input withrandomnoisegivesanindicationof how importanteachpartof theimageis for theclassificationtask.From

18

Page 19: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Figure 16: A depictionof the nodemapsin a sampleconvolutionalnetwork showing the activation valuesfor aparticulartestimage. The input imageis shown on the left. In this casethe imageis correctlyclassifiedwith onlyoneactivatedoutputnode(the top node). From left to right after the input image,the layersare: the input layer,convolutionallayer1, subsamplinglayer1, convolutionallayer2, subsamplinglayer2, andtheoutputlayer. Thethreeplanesin theinput layercorrespondto thethreedimensionsof theSOM.

thefigureit canbeobservedthat,asexpected,theeyes,nose,mouth,chin,andhair regionsareall importantto theclassificationtask.

Cantheconvolutionalnetwork featureextractionform theoptimalsetof features?Theansweris negative– it is unlikely that thenetwork couldextractanoptimalsetof featuresfor all images.Althoughtheexactprocessof humanfacerecognitionis unknown, therearemany featureswhich humansmay usebut oursystemis unlikely to discover optimally – e.g. a) knowledgeof thethree-dimensionalstructureof theface,b) knowledgeof thenose,eyes,mouth,etc.,c) generalizationto glasses/noglasses,differenthair growth,etc.,andd) knowledgeof facialexpressions.

8 Computational Complexity

TheSOM takesconsiderabletime to train. This is not a drawbackof theapproachhowever, asthesystemcanbe extendedto cover new classeswithout retrainingthe SOM. All that is requiredis that the imagesamplesoriginally usedto train theSOM aresufficiently representative of the imagesamplesusedin newimages.For theexperimentswe have reportedhere,thequantizedoutputof theSOM is very similar if we

19

Page 20: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

0 2 4 6 8 10 120

2

4

6

8

10

12

14

0.0128

0.013

0.0132

Figure 17: Sensitivity to variouspartsof the input image. It canbeobservedthat theeyes,mouth,nose,chin, andhair regionsareall importantfor theclassification.The - axiscorrespondsto themeansquarederrorratherthantheclassificationerror (themeansquarederror is preferablebecauseit variesin a smootherfashionasthe input imagesareperturbed).Theimageorientationcorrespondsto uprightfaceimages.

train it with only 20 classesinsteadof 40. In addition,theKarhunen-Loeve transformcanbeusedin placeof theSOMwith aminimal impactonsystemperformance.

It alsotakesa considerableamountof time to train a convolutional network, how significantis this? Theconvolutionalnetwork extractsfeaturesfrom theimage.It is possibleto usefixedfeatureextraction.Con-siderif we separatethe convolutional network into two parts: the initial featureextractionlayersandthefinal featureextractionandclassificationlayers. Givena well chosensampleof the completedistributionof faceswhich we wantto recognize,thefeaturesextractedfrom thefirst sectioncouldbeexpectedto alsobeusefulfor theclassificationof new classes.Thesefeaturescould thenbeconsideredfixed featuresandthefirst partof thenetwork maynot needto beretrainedwhenaddingnew classes.Thepoint at which theconvolutional network is broken into two would dependon how well the featuresat eachstageareusefulfor theclassificationof new classes(thelarger featuresin thefinal layersarelesslikely to bea goodbasisfor classificationof new examples).Wenotethatit maybepossibleto replacethesecondpartwith anothertypeof classifier– e.g.anearest-neighborsclassifier. In thiscasethetimerequiredfor retrainingthesystemwhenaddingnew classesis minimal(theextractedfeaturevectorsaresimplystoredfor thetrainingimages).

To give anideaof thecomputationalcomplexity of eachpartof thesystemwedefine:

.0/Thenumberof classes.21Thenumberof nodesin theself-organizingmap.2354Thenumberof weightsin theconvolutionalnetwork. 3�6Thenumberof weightsin theclassifier.27�8Thenumberof trainingexamples.29Thenumberof nodesin theneighborhoodfunction.29 9�4Thetotal numberof next nodesusedto backpropagatetheerrorin theCN. 9 9 6Thetotal numberof next nodesusedto backpropagatetheerrorin theMLP classifier.0:<;Theoutputdimensionof theKL projection.2=>;Theinputdimensionof theKL projection. 1@?�ACB�DFEG1Thenumberof trainingsamplesfor theSOMor theKL projection.23 = 9 ;H: 3Thenumberof local imagesamplesperimage

20

Page 21: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Tables10 and11 show theapproximatecomplexity of thevariouspartsof thesystemduring trainingandclassification.We show thecomplexity for boththeSOM andKL alternativesfor dimensionalityreductionandfor boththeneuralnetwork (MLP) andanearest-neighborsclassifier(asthelastpartof theconvolutionalnetwork – not asa completereplacement,i.e. this is not the sameas the earliermulti-layer perceptronexperiments).We notethat theconstantassociatedwith the log factorsmay increaseexponentiallyin theworst case(cf. neighborsearchingin high dimensionalspaces[1]). We have aimedto show how thecomputationalcomplexity scalesaccordingto thenumberof classes,e.g. for thetrainingcomplexity of theMLP classifier:althoughIKJML2NOIQP"PRL maybelargerthan IQS , both IQJML and IKPTPRL scaleroughlyaccordingto IQS .

Section Trainingcomplexity

KL UWV�VYXZNOI L[�\T] I_^a`cbed�f�gh^iNkjRImln \"]0o UWVGI L[p\ NOImln \"]SOM UWVYqsr)I�^H`)bid�ftgu^�IQP5qvLxwpy�z{I ^ ]0o U|VGI�^H`)bid�ftgu^)IKP}wpy�z{I ^ ] ( IKP varies)CN UWVYq l IQ~p�RVGIQJ�reNkIKPTPvr ]�]2o U|VGIQ~p�'IQJir ]MLP Classifier UWVYq l I ~p� VGI J�L NkI PTPTL ]�]2o U|VGI ~p� I S ]NN Classifier UWVGIK~p� ]

Table 10: Trainingcomplexity. �R� and �"� representthenumberof timesthetrainingsetis presentedto thenetworkfor theSOMandtheCN respectively.

Section Classificationcomplexity

KL U|VGI J [ P \ n J I [p\ I n \ ]SOM U|VGI J [ P \ n J qsr�wpy�z}I ^ ]0o U|VGI J [ P \ n J w�y�z{I ^ ]CN U|VYq�L�IQJir ]0o U|VGIQJ�r ]MLP Classifier U|VGIQJ�L ]2o UWVGIQS ]NN Classifier U|VYq���w�y�z{IQ~p� ]2o U|VGwpy�z�I_S ]

Table11: Classificationcomplexity. �"� representsthedegreeof sharedweightreplication.

With referenceto table11,consider, for example,themainSOM+CNarchitecturein recognitionmode.Thecomplexity of theSOM moduleis independentof thenumberof classes.Thecomplexity of theCN scalesaccordingto thenumberof weightsin thenetwork. Whenthenumberof featuremapsin theinternallayersis constant,thenumberof weightsscalesroughlyaccordingto thenumberof outputclasses(thenumberofweightsin theoutputlayerdominatestheweightsin theinitial layers).

In termsof computationtime, the requirementsof real-timetasksvaries. The systemwe have presentedshouldbe suitablefor a numberof real-timeapplications.The systemis capableof performinga classi-fication in lessthanhalf a secondfor 40 classes.This speedis sufficient for taskssuchasaccesscontrolandroommonitoringwhenusing40 classes.It is expectedthatanoptimizedversioncouldbesignificantlyfaster.

9 Further Research

Wecanidentify thefollowing avenuesfor improving performance:

21

Page 22: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

1. More carefulselectionof the convolutional network architecture,e.g. by using the Optimal BrainDamagealgorithm[25] asusedby Le Cunet al. [24] to improve generalizationandspeeduphand-writtendigit recognition.

2. Moreprecisenormalizationof theimagesto accountfor translation,rotation,andscalechanges.Anynormalizationwouldbelimited by thedesiredrecognitionspeed.

3. The variousfacial featurescould be ranked accordingto their importancein recognizingfacesandseparatemodulescould be introducedfor variouspartsof the face,e.g. the eye region, the noseregion, andthemouthregion (Brunelli andPoggio[6] obtainvery goodperformanceusinga simpletemplatematchingstrategy onpreciselytheseregions).

4. An ensembleof recognizerscould be used. Thesecould be combinedvia simplemethodssuchasa linear combinationbasedon the performanceof eachnetwork, or via a gatingnetwork and theExpectation-Maximizationalgorithm[16, 11]. Examinationof theerrorsmadeby networks trainedwith differentrandomseedsandby networkstrainedwith theSOMdataversusnetworkstrainedwiththeKL datashows thata combinationof networksshouldimprove performance(thesetof commonerrorsbetweentherecognizersis oftenmuchsmallerthanthetotal numberof errors).

5. Invarianceto a groupof desiredtransformationscouldbeenhancedwith theadditionof pseudo-datato thetrainingdatabase– i.e. theadditionof new examplescreatedfrom thecurrentexamplesusingtranslation,etc.Leen[26] shows thataddingpseudo-datacanbeequivalentto addinga regularizertothecostfunctionwheretheregularizerpenalizeschangesin theoutputwhenthe input goesunderatransformationfor which invarianceis desired.

10 Conclusions

We have presenteda fast,automaticsystemfor facerecognitionwhich is a combinationof a local imagesamplerepresentation,a self-organizingmapnetwork, anda convolutional network for facerecognition.The self-organizingmapprovidesa quantizationof the imagesamplesinto a topologicalspacewherein-putsthatarenearbyin theoriginal spacearealsonearbyin theoutputspace,which resultsin invariancetominor changesin the imagesamples,andtheconvolutional neuralnetwork providesfor partial invarianceto translation,rotation,scale,anddeformation.Substitutionof theKarhunen-Loeve transformfor theself-organizingmapproducedsimilar but slightly worseresults.Themethodis capableof rapidclassification,requiresonly fast,approximatenormalizationandpreprocessing,andconsistentlyexhibitsbetterclassifica-tion performancethantheeigenfacesapproach[43] onthedatabaseconsideredasthenumberof imagesperpersonin the trainingdatabaseis variedfrom 1 to 5. With 5 imagesperpersontheproposedmethodandeigenfacesresultin 3.8%and10.5%errorrespectively. Therecognizerprovidesameasureof confidenceinits outputandclassificationerrorapproacheszerowhenrejectingasfew as10%of theexamples.We havepresentedavenuesfor furtherimprovement.

Therearenoexplicit three-dimensionalmodelsin oursystem,howeverwehave foundthatthequantizedlo-cal imagesamplesusedasinputto theconvolutionalnetwork representsmoothlychangingshadingpatterns.Higher level featuresareconstructedfrom thesebuilding blocksin successive layersof the convolutionalnetwork. In comparisonwith theeigenfacesapproach,we believe that thesystempresentedhereis abletolearnmoreappropriatefeaturesin orderto provideimprovedgeneralization.Thesystemis partiallyinvariantto changesin thelocal imagesamples,scaling,translationanddeformationby design.

22

Page 23: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

Acknowledgments

We would like to thankIngemarCox, SimonHaykin andtheanonymousreviewersfor helpful comments,and the Olivetti ResearchLaboratoryand FerdinandoSamariafor compiling and maintainingthe ORLdatabase.This work hasbeenpartially supportedby theAustralianResearchCouncil (ACT) andtheAus-tralianTelecommunicationsandElectronicsResearchBoard(SL).

References

[1] S.Arya andD.M. Mount. Algorithmsfor fastvectorquantization.In J.A. StorerandM. Cohn,editors,Proceedingsof DCC93: DataCompressionConference, pages381–390.IEEEPress,1993.

[2] Hans-UlrichBauerandKlaus R. Pawelzik. Quantifyingthe neighborhoodpreservation of Self-OrganizingFeatureMaps.IEEETransactionson Neural Networks, 3(4):570–579,1992.

[3] YoshuaBengio,Y. Le Cun,andD. Henderson.Globally trainedhandwrittenword recognizerusingspatialrepresentation,spacedisplacementneuralnetworksandhiddenMarkov models. In Advancesin Neural InformationProcessingSystems6,SanMateoCA, 1994.MorganKaufmann.

[4] J.L.Blue,G.T. Candela,P.J.Grother, R.Chellappa,andC.L. Wilson. Evaluationof patternclassifiersfor fingerprintandOCRapplications.PatternRecognition, 27(4):485–501,April 1994.

[5] L. Bottou,C. Cortes,J.S.Denker, H. Drucker, I. Guyon,L. Jackel, Y. Le Cun,U. Muller, E. Sackinger, P. Simard,andV.N.Vapnik.Comparisonof classifiermethods:A casestudyin handwrittendigit recognition.In Proceedingsof theInternationalConferenceon PatternRecognition, LosAlamitos,CA, 1994.IEEEComputerSocietyPress.

[6] R. Brunelli andT. Poggio.Facerecognition:Featuresversustemplates.IEEETransactionsonPatternAnalysisandMachineIntelligence, 15(10):1042–1052,October1993.

[7] D. K. Burton.Text-dependentspeaker verificationusingvectorquantizationsourcecoding.IEEETransactionsonAcoustics,Speech, andSignalProcessing, 35(2):133,1987.

[8] R. Chellappa,C.L. Wilson, andS. Sirohey. Humanandmachinerecognitionof faces:A survey. Proceedingsof theIEEE,83(5):705–740,1995.

[9] IngemarJ.Cox,JoumanaGhosn,andPeterN. Yianilos.Feature-basedfacerecognitionusingmixture-distance.In ComputerVisionandPatternRecognition. IEEEPress,1996.

[10] David DeMersandG.W. Cottrell.Non-lineardimensionalityreduction.In S.J.Hanson,J.D.Cowan,andC.LeeGiles,editors,Advancesin Neural InformationProcessingSystems5, pages580–587,SanMateo,CA, 1993.MorganKaufmannPublishers.

[11] H. Drucker, C. Cortes,L. Jackel, Y. Le Cun,andV.N. Vapnik. Boostingandotherensemblemethods.Neural Computation,6:1289–1301,1994.

[12] K. Fukunaga.Introductionto StatisticalPatternRecognition,SecondEdition. AcademicPress,Boston,MA, 1990.

[13] S.Haykin. Neural Networks,A ComprehensiveFoundation. Macmillan,New York, NY, 1994.

[14] S.Haykin. Personalcommunication,1996.

[15] D.H. Hubel andT.N. Wiesel. Receptive fields,binocularinteraction,andfunctionalarchitecturein the cat’s visual cortex.Journalof Physiology (London), 160:106–154,1962.

[16] R.A. Jacobs.Methodsfor combiningexperts’probabilityassessments.Neural Computation, 7:867–888,1995.

[17] T. Kanade.PictureProcessingbyComputerComplex andRecognitionof HumanFaces. PhDthesis,KyotoUniversity, 1973.

[18] Hajime Kita andYoshikazuNishikawa. Neuralnetwork modelof tonotopicmapformationbasedon the temporaltheoryof auditorysensation.In Proceedingsof the World Congresson Neural Networks,WCNN93, volumeII, pages413–418,Hillsdale,NJ,1993.LawrenceErlbaum.

[19] T. Kohonen.Theself-organizingmap.Proceedingsof theIEEE, 78:1464–1480,1990.

[20] T. Kohonen.Self-OrganizingMaps. Springer-Verlag,Berlin, Germany, 1995.

[21] Martin Lades,JanC. Vorbruggen,JoachimBuhmann,Jorg Lange,ChristophvonderMalsburg, Rolf P. Wurtz,andWolfgangKonen.Distortioninvariantobjectrecognitionin thedynamiclink architecture.IEEETransactionsonComputers, 42(3):300–311,1993.

23

Page 24: Face Recognition: A Convolutional Neural Network Approach · 2007-07-07 · Accepted for publication, IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern

[22] Y. Le Cun.Generalisationandnetwork designstrategies.TechnicalReportCRG-TR-89-4,Departmentof ComputerScience,Universityof Toronto,1989.

[23] Y. Le CunandYoshuaBengio.Convolutionalnetworksfor images,speech,andtimeseries.In MichaelA. Arbib, editor, TheHandbookof Brain TheoryandNeural Networks, pages255–258.MIT Press,Cambridge,Massachusetts,1995.

[24] Y. Le Cun,B. Boser, J.S.Denker, D. Henderson,R. Howard,W. Hubbard,andL. Jackel. Handwrittendigit recognitionwitha backpropagationneuralnetwork. In D. Touretzky, editor, Advancesin Neural InformationProcessingSystems2, pages396–404.MorganKaufmann,SanMateo,CA, 1990.

[25] Y. Le Cun,J.S.Denker, andS.A. Solla. OptimalBrain Damage.In D.S.Touretzky, editor, Neural InformationProcessingSystems, volume2, pages598–605,SanMateo,1990.(Denver 1989),MorganKaufmann.

[26] ToddK. Leen.Fromdatadistributionsto regularizationin invariantlearning.Neural Computation, 3(1):135–143,1991.

[27] StephenP. Luttrell. Hierarchicalself-organizingnetworks. In Proceedingsof the 1st IEE Conferenceon Artificial NeuralNetworks, pages2–6,London,UK, 1989.British NeuralNetwork Society.

[28] D. Marr. Vision. W. H. Freeman,SanFrancisco,1982.

[29] B. Miller. Vital signsof identity. IEEESpectrum, pages22–30,February1994.

[30] B. MoghaddamandA. Pentland.Facerecognitionusingview-basedandmodulareigenspaces.In AutomaticSystemsfor theIdentificationandInspectionof Humans,SPIE, volume2257,1994.

[31] K. Obermayer, GaryG. Blasdel,andK. Schulten.A neuralnetwork modelfor theformationandfor thespatialstructureofretinotopicmaps,orientationandoculardominancecolumns.In Teuvo Kohonen,Kai Makisara,Olli Simula,andJariKangas,editors,Artificial Neural Networks, pages505–511,Amsterdam,Netherlands,1991.Elsevier.

[32] K. Obermayer, H. Ritter, andK. Schulten.Large-scalesimulationof aself-organizingneuralnetwork: Formationof asoma-totopicmap. In R. Eckmiller, G. Hartmann,andG. Hauske, editors,Parallel Processingin Neural SystemsandComputers,pages71–74,Amsterdam,Netherlands,1990.North-Holland.

[33] A. Pentland,B. Moghaddam,andT. Starner. View-basedandmodulareigenspacesfor facerecognition.In IEEEConferenceonComputerVisionandPatternRecognition, 1994.

[34] A. Pentland,T. Starner, N. Etcoff, A. Masoiu,O. Oliyide, andM. Turk. Experimentswith eigenfaces.In Lookingat PeopleWorkshop,InternationalJoint ConferenceonArtificial Intelligence1993, Chamberry, France,1993.

[35] Perret,Rolls, andCaan.Visualneuronesresponsive to facesin themonkey temporalcortex. ExperimentalBrain Research,47:329–342,1982.

[36] Y.Y. Qi and B.R. Hunt. Signatureverification using global and grid features. Pattern Recognition, 27(12):1621–1629,December1994.

[37] HenryA. Rowley, ShumeetBaluja,andT. Kanade.Humanfacedetectionin visualscenes.TechnicalReportCMU-CS-95-158,Schoolof ComputerScience,CarnegieMellon University, Pittsburgh,PA, July 1995.

[38] F.S.Samaria.FaceRecognition usingHiddenMarkov Models. PhDthesis,Trinity College,Universityof Cambridge,Cam-bridge,1994.

[39] F.S.SamariaandA.C. Harter. Parameterisationof astochasticmodelfor humanfaceidentification.In Proceedingsof the2ndIEEEworkshoponApplicationsof ComputerVision, Sarasota,Florida,1994.

[40] Kah-Kay SungandT. Poggio. Learninghumanfacedetectionin clutteredscenes.In ComputerAnalysisof Images andPatterns, pages432–439,1995.

[41] K. Sutherland,D. Renshaw, andP.B. Denyer. Automaticfacerecognition. In First InternationalConferenceon IntelligentSystemsEngineering, pages29–34,Piscataway, NJ,1992.IEEEPress.

[42] D.L. SwetsandJ.J.Weng.Usingdiscriminanteigenfeaturesfor imageretrieval. IEEETransactionson PatternAnalysisandMachineIntelligence, to appear, 1996.

[43] M. Turk andA. Pentland.Eigenfacesfor recognition.J. of CognitiveNeuroscience, 3:71–86,1991.

[44] J.Weng,N. Ahuja,andT.S.Huang.Learningrecognitionandsegmentationof 3-d objectsfrom 2-d images.In Proceedingsof theInternationalConferenceon ComputerVision, ICCV93, pages121–128,1993.

[45] LaurenzWiskott, Jean-MarcFellous,NorbertKruger, andChristophvon derMalsburg. Facerecognitionandgenderdeter-mination.In Proceedingsof theInternationalWorkshoponAutomaticFaceandGestureRecognition, Zurich,1995.

24