3
ME36500 Homework #12 Due: 12/11/2014 1/3 Problem #1 (30%) A sinusoidal signal of amplitude 1.5 mV and frequency of 10 kHz is buried in a noise signal that has a zero mean value. The noise has a uniform power spectral density of 100 pW/Hz, up to a cutoff frequency of 1 MHz. (a) Find the power and rms value of the noise signal. ! = 100 ×10 ! = 10 !! !"# = ! = 0.01 (b) What is the signal to noise ratio (SNR) in dB? Let’s assume S(t)=Asin(ωt+φ) ! = 1 ! ! ! = 2 ! sin + ^2 = ! 2 1 2 2 = ! 2 !! ! ! = 1 2 0.0015 ! = 1.125×10 !! W SNR in dB = 10 log !" ( ! / ! ) = 19.48 (c) The combined signal is now passed through an ideal bandpass filter with a center frequency of 10 Khz, a bandwidth of 1KHz, and a gain of 1. Is there an improvement in SNR? If so, how much improvement is obtained? ! = 100 ×10 ! = 10 !! SNR in dB = 10 log !" ( ! / ! ) = +10.5 SNR increased by almost 30 dB! (d) The filtered signal is then averaged after N repeated measurements. What further improvement in SNR is achieved? Express your answer in dB units. (SNR)Naverage = N*(SNR)orig (SNR)Naverage in dB = 10log10(SNRorg) + 10log10(N) Therefore SNR will increase by 10log10(N) dB Problem #2 (30%) A car engine operates at an average temperature of 100 °C. Its mass air flow sensor draws 2 amperes of current under nominal conditions and has a resistance of 4 Ω. Assume the mass air flow sensor is heated to the same temperature as the engine, and that sensor voltage is measured. (A) What is the magnitude of the power spectral density of the Johnson noise? ! = 4 = 1.38×10 !!" ! = 8.2×10 !!"

F14 HW12 sol - College of Engineering - Purdue University Word - F14_HW12_sol.docx Created Date 12/11/2014 7:17:12 PM

  • Upload
    ledien

  • View
    219

  • Download
    4

Embed Size (px)

Citation preview

ME36500 Homework #12 Due: 12/11/2014

1/3

Problem  #1  (30%)  A  sinusoidal  signal  of  amplitude  1.5  mV  and  frequency  of  10  kHz  is  buried  in  a  noise  signal  that  has  a  zero  mean  value.  The  noise  has  a  uniform  power  spectral  density  of  100  pW/Hz,  up  to  a  cut-­‐off  frequency  of  1  MHz.  

(a) Find  the  power  and  rms  value  of  the  noise  signal.  

𝑛! =100𝑝𝑊𝐻𝑧 ×10!𝐻𝑧 = 10!!𝑊  

𝑛!"# = 𝑛! = 0.01  𝑊    (b) What  is  the  signal  to  noise  ratio  (SNR)  in  dB?  

Let’s  assume  S(t)=Asin(ωt+φ)    

𝑆! =1𝑇 𝑆! 𝑡 𝑑𝑡  

!

!=𝜔2𝜋

𝐴! sin 𝜔𝑡 + 𝜑 ^2𝑑𝑡 =𝜔𝐴!

2𝜋122𝜋𝜔 =

𝐴!

2

!!!

!  

 

=12 0.0015

! = 1.125×10!!  W    SNR  in  dB  =  10 log!"( 𝑆!/𝑛!) = −19.48  𝑑𝐵  

 (c) The  combined  signal  is  now  passed  through  an  ideal  band-­‐pass  filter  with  a  center  

frequency  of  10  Khz,  a  bandwidth  of  1KHz,  and  a  gain  of  1.  Is  there  an  improvement  in  SNR?  If  so,  how  much  improvement  is  obtained?  

𝑛! =100𝑝𝑊𝐻𝑧 ×10!𝐻𝑧 = 10!!𝑊  

 SNR  in  dB  =  10 log!"( 𝑆!/𝑛!) = +10.5  𝑑𝐵  SNR  increased  by  almost  30  dB!  

 (d) The  filtered  signal  is  then  averaged  after  N  repeated  measurements.  What  further  

improvement  in  SNR  is  achieved?  Express  your  answer  in  dB  units.  (SNR)Naverage  =  N*(SNR)orig  (SNR)Naverage  in  dB  =  10log10(SNRorg)  +  10log10(N)  Therefore  SNR  will  increase  by  10log10(N)  dB  

 

Problem  #2  (30%)  A  car  engine  operates  at  an  average  temperature  of  100  °C.  Its  mass  air  flow  sensor  draws  2  amperes  of  current  under  nominal  conditions  and  has  a  resistance  of  4  Ω.  Assume  the  mass  air  flow  sensor  is  heated  to  the  same  temperature  as  the  engine,  and  that  sensor  voltage  is  measured.  

(A) What  is  the  magnitude  of  the  power  spectral  density  of  the  Johnson  noise?  

𝜙! = 4𝑘𝑅𝑇  𝑤ℎ𝑒𝑟𝑒  𝐾 = 1.38×10!!"  

𝜙! = 8.2×10!!"  

ME36500 Homework #12 Due: 12/11/2014

2/3

(B) What  is  the  magnitude  of  the  power  spectral  density  of  the  Shot  noise?  

𝜙! = 2𝐼𝑞𝑅!  𝑤ℎ𝑒𝑟𝑒  𝑞 = 1.6×10!!"  

𝜙! = 1.0×10!!"  (C) Find  the  maximum  allowable  cutoff  frequency  (𝑓!)  for  an  ideal  low  pass  filter  that  will  

reduce  the  total  power  of  Johnson  and  Shot  noise  below  1×10!!"  𝑊.  Assume  the  low  pass  filter  is  characterized  by   𝑇 2𝜋𝑓 = 1  𝑖𝑓  𝑓 ≤ 𝑓!  and   𝑇 2𝜋𝑓 = 0  𝑖𝑓  𝑓 ≥ 𝑓! .    Total  noise  is  𝜙!"# =  𝜙! + 𝜙! ≈ 𝜙!  Using  the  low  pass  filter  

𝑊!"! = 𝜙!𝑑𝑓 = 1.0×10!!"𝑓! = 1×10!!"!!

!  

𝑠𝑜  𝑓! = 1000  𝐻𝑧    

Problem  #3  (40%)  A  sensing  element  has  its  output  differentially  amplified  as  shown  below.  The  instrumentation  amplifier  has  an  input  impedance  of  𝑍!" =  125  MΩ,  a  gain  of  1500,  and  a  CMRR  of  40  dB.    Sensing  element  parameters  are  𝐸! = 30  mV, 𝑅! = 3  kΩ,    𝑅! = 2  kΩ  and  𝑅! = 7  kΩ.  

   (A) Determine  the  output  voltage  𝐸!  if  common-­‐mode  voltage  is  neglected.  

Since  𝑍!" ≫ (𝑅! + 𝑅! + 𝑅!),  virtually  no  current  flows  through  𝑍!".  Thus,  𝐸!  and  𝑅!,𝑅!,𝑅!  form  a  simple  voltage  divider  network.  Hence,  the  voltage  at  the  amplifier  input  is:  

𝑉!" = 𝐸!𝑅!

𝑅! + 𝑅! + 𝑅!= 30   mV ⋅

23+ 2+ 7 = 5  mV  

 With  an  amplifier  gain  of  1500,  the  output  voltage  is  𝐸! = 7.5  [𝑉].  

(B) Determine  the  output  voltage  𝐸!  if  common-­‐mode  voltage  is  included.  Voltage  at  upper  amplifier  input:  

𝑉!""#$ = 𝐸!𝑅! + 𝑅!

𝑅! + 𝑅! + 𝑅!= 30   mV ⋅

93+ 2+ 7 = 22.5   mV  

 Voltage  at  lower  amplifier  input:  

ME36500 Homework #12 Due: 12/11/2014

3/3

𝑉!"#$% = 𝐸!𝑅!

𝑅! + 𝑅! + 𝑅!= 30   mV ⋅

73+ 2+ 7 = 17.5  [mV]  

 Hence,  common-­‐mode  voltage  is  𝑉!"#$% = 17.5  [mV].  Since   𝐶𝑀𝑅𝑅 !" = 40  dB, 𝐶𝑀𝑅𝑅 = 10

!"!" = 100.  Thus,  accounting  for  the  common-­‐

mode  voltage:  

𝐸! = 7.5+ 1500. 0175100  = 7.5+ 0.2625 = 7.7625  [V]  

 (C) The  differential  amplifier  is  used  as  the  first  stage  of  a  digital  data  acquisition  system  

that  employs  a    ±10  V,  12-­‐bit  ADC.  How  many  effective  bits  of  error  are  introduced  by  the  common-­‐mode  voltage  effect?  Quantization  interval:  𝑄 = 20  [𝑉] 2!" = 4.88  mV  Voltage  due  to  common-­‐mode  interference:  262.5  mV  Q  intervals  spanned  by  interference:  262.5  mV 4.88  mV = 53.79  Effective  bits  of  error:  log! 53.79 = 5.75 ≈ 6  bits