21
Measurements and evaluations of activation cross sections of proton and deuteron induced reactions on metals F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary

F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Embed Size (px)

DESCRIPTION

Measurements and evaluations of activation cross sections of proton and deuteron induced reactions on metals. F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary. Topics. - PowerPoint PPT Presentation

Citation preview

Page 1: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Measurements and evaluations of activation cross sections

of proton and deuteron induced reactions on metals

F. Tárkányi, S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Institute of Nuclear Research of the Hungarian Academy of Sciences

(ATOMKI), Debrecen, Hungary

Page 2: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Topics

• Introduction

• Status of

charged particle activation data

• Experimental works

• Compilations and evaluations

• Possible contributions

Page 3: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Introduction

• Main task and profile of the Atomki Nuclear Reaction Data Group :

measurement, compilation, evaluation and application of low and medium energy charged particle nuclear reaction data

• In the frame of international collaborations

• Measurement, compilation and evaluation are connected to international projects and to the every day applications at the home institute and at institutes of collaborating partners

Page 4: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Collaborating partner institutes

• Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary

• Cyclotron Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium

• Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan

• Institute of Physics and Power Engineering (IPPE), Obninsk, Russian Federation

• Institut für Nuklearchemie, Forschungszentrum Jülich GmbH ( INC, FZJ),Jülich, Germany

• National Institute of Radiological Sciences (NIRS), Chiba, Japan

• iThemba Laboratory for Accelerator Based Sciences, Somerset West, South Africa

Page 5: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Status of proton and deuteron induced activation data (I)

• Aim of data measurementsnuclear reaction mechanismmedical isotope productionaccelerator technology

• Data producersnuclear physics laboratoriesradiochemistry laboratories

• Available experimental datamostly low energy datamostly natural target compositiondata only for limited productsvery few systematic studiesdatabase for protons is more complete

Page 6: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

• Quality of the datamany old data with outdated monitor and decay datasome new data measured with low “experience”some groups produce reliable datalarge systematic contradictions even in simple cases

• Reasonsbeam energy and intensity measurementtarget thickness and uniformityoverlapping gamma-rayslong target stacksunskilled researchers

Status of proton and deuteron induced activation data (II)

Page 7: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

• CompilationsEXFORLandolt-BornsteinIAEA recommended databasesIAEA Technical ReportsORNL CPX reportsCEA ReportsActivation data files

Status of proton and deuteron induced activation data (III)

Page 8: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

• Very few evaluations for CP activation• Methods: fit with analytical functions and

theoretical models• Importance of critically selected

experimental data• Very few experiment for validation• No uncertainties available• Quality of evaluated data, missing upgrade• IAEA co-ordination role

Status of proton and deuteron induced activation data (IV)

Page 9: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Examples (I)

Page 10: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Examples (II)

Page 11: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Experimental worksSystematic measurement of excitation functions

of charged particle induced reactions for many different applications

• Production of medical radioisotopes for diagnostics and for therapy

• Excitation functions of monitor reactions

• Activation cross sections for accelerator technology (waste transmutation, IFMIF, target technology)

• Activation cross sections for Thin Layer Activation (TLA)

• Activation cross sections for charged particle activation analysis

Page 12: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Accelerators

Accelerator k-value Laboratory City Beam

SSC 220 iThemba Labs Somerset West (ZA) p

Cyclone 110 UCL Louven La Neuve (BE) p, d

AVF 110 CYRIC Sendai (JP) p, d

AVF 930 90 NIRS Chiba (JP) p, 3He,

CGR 560 40 VUB Brussels (BE) p, d,

U 120M 37 INR Rez (CZ) p

CS 30 26 M Sinai Med Cent Miami (USA) p

CV 28JULIC

2845

FZ Julich Julich (DE) p, d, 3He,

MGC 20 20 Abo Akademi Turku (FI) p, d, 3He,

MGC 20 20 ATOMKI Debrecen (HU) p, d, 3He,

Page 13: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Experimental technique

• Activation method

• Stacked foil technique

• External beam of a cyclotron

• Commercial and self-prepared targets

• Stacked beam monitor foils

in the whole energy range

• X- and gamma-ray spectroscopy

• Iterative data evaluation

• Important role of theoretical results

in the data evaluation

Page 14: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

The stacked target technique

AA

Page 15: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Stacked foil irradiation technique

• Advantageseffective use of acceleratorsame beam currentgood relative accuracy

• Disadvantagescumulating energy

uncertaintiesbeam broadeningcooling problemsdetector capacity

Page 16: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Theoretical calculations

• to check the prediction capability of different model codes using a priori

calculations

• to have a preliminary knowledge on the behaviour of the excitation

functions before the experiment and during the data evaluation

• to evaluate contradicting experimental data measured earlier (effective

threshold energies, energy shifts, significant differences in absolute

values)

• to estimate contributions from nuclear reactions on different stable

isotopes of the given element and from parent decays in the case of

cumulative processes

• to estimate radionuclide impurities from residual nuclei having

unfavourable decay characteristics (large T1/2, no gamma, etc.)

• to prepare recommended database

• mostly ALICE-IPPE code but in a few cases the EMPIRE-II, GNASH and

TALYS codes

Page 17: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Results

• Cross section data

of proton and deuteron induced reactions

for 38 metallic elements

• Cross section data

for production of about 450 radionuclides

Page 18: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Target Part. Investigated reaction products Medical TLA Monitor No. 9Be 3He 7Be 7Be 1

27Al p, d, 22,24Na 22Na 22,24Na 2

45Sc p 43K,43,44m,44Sc,44Ti 44gSc 5

natTi p, d, 3He, 48,49,51Cr, 48V, 43,44m,44g,47,48Sc 51Cr 48V, 51Cr 48V, 51Cr 9

natV p,d 48,51Cr, 48V 51Cr 3

55Mn p,d 52Fe,51,52,54Mn,48,49,51Cr 7

natFe p, d, 3He, 56,57Ni, 55,56,57,58,61Co, 52Fe, 52,54,56Mn, 48,51Cr, 48V, 47Sc 52,54Mn, 51Cr 56,57Co 56,57Co 15

59Co p,d,,3He, 60,61,62Cu, 56,57,58,60Co, 54Mn 60,61,62Cu 56,57,58,60Co 8

nat,64Ni p, d, e, 62,63,65Zn, 60,61,64,67Cu, 56,57Ni, 55,56,57,58,60,61Co, 52,54,56Mn, 48V

60,61,64,67Cu, 52,54Mn 61Cu 65Zn, 56,57Co, 19

natCu p, d, 3He, 66,67Ga, 62,63,65Zn, 64Cu, 65Ni, 56,58,60Co, 59Fe 66,67Ga 65Zn, 58,60Co, 62,63,65Zn, 56,58Co

11

nat,66,67,68Zn p, d 66,67,68Ga, 62,65,69mZn, 61,64,67Cu, 57Ni, 55,56,57,58,60Co, 52,54Mn

66,67,68Ga, 61,64,67Cu 65Zn, 56,57,58,60Co 17

89Y p, d 86,88,89Zr, 86,87m,87mg,88,90mY, 82,83,85Sr, 83,84Rb 88,89Zr, 87,88Y 88,89Zr, 87,88Y 13

natZr p,d 90,91m,92m,95,96Nb, 88,89,95,97Zr, 86,87,88Y 88,89Zr, 87,88Y 91m,92m,95mgNb, 95Zr

12

93Nb p, d, 94g,95m,95g,96mgTc, 90,93mMo, 89,90,91m,92m,95mgNb, 86,87,88,89Zr, 86,87m,87,88Y

94gTc, 88,89Zr, 87,88Y 95m,96mgTc 19

nat,100Mo p, d 94,95,95m,96,99Tc, 93m,99Mo, 90,92m,95,96Nb, 86,88,89Zr, 86,87,88Y 94,99mTc, 99Mo, 88Y 95m,96mgTc 96mgTc 17

103Rh p, d 101,103Pd, 101m,101g,102m,102gRh 103Pd 102gRh 6

natPd p, d, 104,105,111mCd, 103,104mg,105,106m,110m,111,112Ag, 100,101,109,111Pd, 99m,100mg,102Rh, 97Ru

103Ag (103Pd), 104,110,111Ag 105mg,110,111Ag 18

natAg p, d, 108g,108m,109mg,110g,110m,111mg,112mIn, 107,109Cd, 105,106m,110mAg, 100,101,103Pd, 99,100,101m,102,105Rh, 97Ru

110,111In, 110Ag, 103Pd 109Cd, 110mAg 21

nat,111,112,114,11

6Cd p, d, 3He,

110,111,113m,113Sn, 107g,108m,108g,109g,110m,110g,111mg,112m,113m,114m,115m,116m1In, 107,109,111m,115m,115g,117m,117gCd, 104g,105g,106m,110m,111g,113gAg

110,111,114mIn 114mIn 29

natIn p, d 111,113Sn, 111mg,112m,113m,114m,115m,116m1In 114mIn 113mgSn, 114mIn 8

Page 19: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

natSn p, d

116,117,119m,119g,121m,121g,123m,127m,127gTe, 115,116m,117,118m,120m,122,124,125,126,127Sb, 113,117m,125Sn, 109mg,110m,111mg,114mIn

117mSn, 110m,111mg,114mIn 121Te, 120,124Sb, 117mSn

26

natSb 3He, 121,123,124I 123,124I 126I 3

nat,122,123,124Te

p, d 121,123,124,126,128,130gI, 121gTe 123,124I 126I 7

133Cs p 131m,g,133mBa,129,130,131,132Cs 131Ba(131Cs) 6

Ba p 131,132,133,134,135,136La, 131,133Ba,,132,134,135Cs 131Ba(131Cs) 11

141Pr d 139m,140,141Nd, 142Pr, 137m, 139Ce, 140La 140Nd, 139Pr 7

natNd p, d 139Ce, 139m,147Nd,143,144,148m,148Pm, 139Ce 7

165Ho p,d 165Er,161,162,164,166Ho 165ER 5

natEr p, d, 166,167,169Yb, 163,165,166,167,168,170Tm, 161,169,171Er, 166,167Ho 167,170Tm, 165,169Er, 166Ho 169Yb, 167,168Tm 14

169Tm p, d 166,169Yb, 166,167,168,170Tm 169Yb, 170Tm 169Yb 6

natYb p,d, 170,171,172,173,175,177m,178m,179m,180mHf, 177Lu, 177Yb 177Lu 169Yb 11

natTa p,d 176,177,179,181W, 175,176,177,178,180,182Ta, 175,179,180Hf 13

natW p, d 181,182m,182g,183,184m,184g,186Re, 187W, 177,183Ta 186Re 183,184m,184gRe 10

natRe p,d 181,182,183m,183g,185Os, 181,182m,182g,183,184m,184g,186,188Re,185W 186Re 15

192Os d 192Ir 192Ir 1

natIr p, d 188,189,191,193mPt, 185,186g,187,188,189,190g,192g,194g,194m2Ir, 185Os 191,193mPt, 192g,194Ir 188,191Pt, 189,190,192Ir

23

natPt p, d,

191m,191g,192,193m,193g,195m,195g,197m,197g,199mHg, 191,192,193,194,195,196mg,196m2,198m,198g,199,200m,200gAu, 188,189,191,195m,197m,197gPt, 188,189,190,192,194mIr

198g,199Au, 191,195mPt, 192Ir

188,191Pt, 192Ir 33

197Au p, d 195m,195g,197mHg, 195,196,198m,198gAu 198gAu 195,196Au 7

Tl d 201,202m,203Pb,201,202Tl,,203Hg 201Tl 6

natPb p,d 203,204,205,206,207Bi, 203Pb, 202Tl 206Bi 205,206Bi 7

209Bi 3He? 208,209,210,211At, 210Po 211At 5

Page 20: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Compilations and evaluations

Recommended cross section data to monitor charged particle beam parameters (energy, intensity) 22 reactions (IAEA CRP 1995-1999)

Recommended cross sections and integral yields for production of diagnostic medical radioisotopes for SPECT and PET studies17 reactions (IAEA CRP 1995-1999)

Recommended cross sections and integral yields for production of therapeutic radioisotopes 35 reactions (IAEA CRP 2003-2007)

Recommended database for wear studies by using charged particle induced Thin Layer Activation Technique (in progress)

Database for charged particle activation of targets used for isotope production (in progress)

Page 21: F. T árkányi , S. Takács, F. Ditrói, B. Király, F. Szelecsényi, Z. Kovács

Possible contributions

to FENDL-3

Measurement of missing experimental data taking into account the irradiation possibilities

Compilation of literature experimental data

Critical evaluation of the experimental database

Selection of reliable datasets

Participation in the preparation of recommended datasets (cross section, integral yield) in collaboration with theoretical groups

Validation of recommended data sets with integral measurements