41
100-m Effelsberg covers the band 2.64 - 43 GHz with a precision of a few percent for monthly sampling of 60 sources 30-m IRAM covers the band 86 - 250 GHz monthly also for roughly 60 sources 12-m APEX 345 GHz, located in Atacama desert in Chile at an altitude of 5100 m F-GAMMA program: multi-wavelength AGN studies in the Fermi-GST era E. Angelakis and L. Fuhrmann 1 , I. Nestoras 1 , J. A. Zensus 1 , N. Marchili 1 and T. P. Krichbaum 1 A. C. S. Readhead 2 , V. Pavlidou 2 , J. Richards 2 , W. Max-Moerbeck 2 , T. Pearson 2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hgel 69, Bonn 53121, Germany 2 California Institute of Technology, 1200 East California Blvd., Pasadena CA 91125, USA Thursday, June 24, 2010 FmJ 2010

F-GAMMA program: multi-wavelength AGN studies in the Fermi

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: F-GAMMA program: multi-wavelength AGN studies in the Fermi

100-m Effelsbergcovers the band 2.64 - 43 GHz with a precision of a few percent for monthly sampling of 60 sources

30-m IRAMcovers the band 86 - 250 GHz monthly also for roughly 60 sources

12-m APEX 345 GHz, located in Atacama desert in Chile at an altitude of 5100 m

F-GAMMA program:multi-wavelength AGN studies in the Fermi-GST era

E. Angelakisand L. Fuhrmann1, I. Nestoras1, J. A. Zensus1, N. Marchili1 and T. P. Krichbaum1

A. C. S. Readhead2, V. Pavlidou2, J. Richards2, W. Max-Moerbeck2, T. Pearson2

1 Max-Planck-Institut für Radioastronomie, Auf dem Hgel 69, Bonn 53121, Germany2 California Institute of Technology, 1200 East California Blvd., Pasadena CA 91125, USA

Thursday, June 24, 2010

FmJ 2010

Page 2: F-GAMMA program: multi-wavelength AGN studies in the Fermi

blazar phenomenology

Fuhrmann et al. 2008

extreme variability - time domain

0

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

J0238+1636-AO0235+16 2.64 4.85 8.35

10.45 14.60 23.05 32.00 42.00 86.00

142.33228.39

Angelakis et al. in prep.

Thursday, June 24, 2010

FmJ 2010

Page 3: F-GAMMA program: multi-wavelength AGN studies in the Fermi

blazar phenomenology

extreme variability - frequency domain

Krichbaum et al. in prep.

0.1

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J0854+2006 (OJ287) 2007.072007.152007.232007.322007.482007.552007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.792008.852008.932009.062009.332009.402009.482009.582009.662009.842009.842009.912010.012010.082010.162010.252010.332010.39

Angelakis et al. in prep.

Thursday, June 24, 2010

FmJ 2010

Page 4: F-GAMMA program: multi-wavelength AGN studies in the Fermi

blazar phenomenology

broad-band emission characteristics

Abdo et al. 2009

Thursday, June 24, 2010

FmJ 2010

Page 5: F-GAMMA program: multi-wavelength AGN studies in the Fermi

blazar phenomenology

high degree of linear polarizationextreme brightness temperatures

highly super-luminal motions

Thursday, June 24, 2010

FmJ 2010

Page 6: F-GAMMA program: multi-wavelength AGN studies in the Fermi

F-GAMMA programFermi-GST AGN Multi-wavelength Monitoring Alliance: monthly monitoring program of ~60 Fermi-GST blazars at 2.6 - 345 GHz

for spectra and LCs visit:

www.mpifr.de/div/vlbi/fgamma

Thursday, June 24, 2010

FmJ 2010

Page 7: F-GAMMA program: multi-wavelength AGN studies in the Fermi

100-m Effelsberg

‣Monthly monitoring of ~60 sources

‣2.64 - 43 GHz at 8 frequency steps

‣LCP/RCP 2.64, 4.85, 8.35, 10.45, 14.60 GHz and LCP: 32 GHz

‣Simultaneous spectra within 40 minutes

‣accuracy ~1% at low and <5% at high frequencies

30-m IRAM

‣Monthly monitoring of ~60 sources

‣86, 142 and 228 GHz

‣Linear Polarization

‣Simultaneous spectra within 5-10 minutes

‣accuracy <15%

12-m APEX

‣ Irregular “filer” monitoring

‣345 GHz

‣accuracy <15%

F-GAMMA programFermi-GST AGN Multi-wavelength Monitoring Alliance: monthly monitoring program of ~60 Fermi-GST blazars at 2.6 - 345 GHz

Thursday, June 24, 2010

FmJ 2010

Page 8: F-GAMMA program: multi-wavelength AGN studies in the Fermi

100-m Effelsberg

L. Furhmann, E. Angelakis, I. Nestoras, J. A. Zensus, N. Marchili, T. P. Krichbaum

30-m IRAM

H. Ungerechts, D. Riquelme, A. Sievers, C. Thum, I. Agudo

12-m APEX

S. Larson, A. Weiss et al.

F-GAMMA programFermi-GST AGN Multi-wavelength Monitoring Alliance: monthly monitoring program of ~60 Fermi-GST blazars at 2.6 - 345 GHz

Thursday, June 24, 2010

FmJ 2010

Page 9: F-GAMMA program: multi-wavelength AGN studies in the Fermi

40-m OVRO telescope

‣~1200 blazars at least 2–3 times per week (Richards et al. in prep.)

‣15 GHz

Caltech: A. C. S. Readhead, V. Pavlidou, J. Richards, W. Max-Moerbeck, T. Pearson

Richards et al. et al. in prep.

F-GAMMA programFermi-GST AGN Multi-wavelength Monitoring Alliance: monthly monitoring program of ~60 Fermi-GST blazars at 2.6 - 345 GHz

Thursday, June 24, 2010

FmJ 2010

Page 10: F-GAMMA program: multi-wavelength AGN studies in the Fermi

AIT, IT

1.3 m Skinakas telescope, Crete, Greece

I. Papadakis

AIT, Perugia, Italy

G. Tosti

Fermi-GST

J. A. Zensus (Affiliated Scientist), L. Fuhrmann (Affiliated PostDoc), I. Nestoras (Affiliated Student)

F-GAMMA programFermi-GST AGN Multi-wavelength Monitoring Alliance: monthly monitoring program of ~60 Fermi-GST blazars at 2.6 - 345 GHz

Thursday, June 24, 2010

FmJ 2010

Page 11: F-GAMMA program: multi-wavelength AGN studies in the Fermi

“first” source sample

prominent gamma-ray candidate blazars:

0003-066 3C120 3C273 1ES1959+650

0059+581 1ES0502+675 M87 PKS2155-152

PKS0215+015 PKS0528+134 3C279 2155-304

3C66A S50716+71 OP313 BLLac

4C28.07 PKS0735+17 PKS1406-076 S51803+78

AO0235+16 0748+126 H1426+428 3C371

NGC1052 TXS0814+425 1502+106 4C56.27

4C47.0 OJ248 PKS1510-08 Mkn180

1E0317.0+1835 S50836+71 1ES1544+820 TON599

3C84 OJ287 OS319 WCom

OE355 S40954+65 1622-297 4C21.35

PKS0336-01 PKS1038+064 4C38.41 4C31.63

NRAO150 Mkn421 3C345 3C446

3C111 1128+592 Mkn501 OY150

PKS0420-01 PKS1127-14 PKS1730-13

3C454.3 1ES2344+514 PKS2345-16

Fuhrmann et al. in prep.

Thursday, June 24, 2010

FmJ 2010

Page 12: F-GAMMA program: multi-wavelength AGN studies in the Fermi

“first” source sample

detectability in the 3-month list Abdo et al. (2009a):

LAT detected*

FSRQs** 32 52% 15

BL Lacs** 23 38% 12

Radiogalaxies** 3 5% 1 (3C84)

Blazars** 3 5% 0

Total 61 28 (46%)

*Abdo et al., 2009a**Massaro et al. 2005, 2008, 2009,

Fuhrmann et al. in prep.

Thursday, June 24, 2010

FmJ 2010

Page 13: F-GAMMA program: multi-wavelength AGN studies in the Fermi

8 Fuhrmann et al.: The F-GAMMA program

1 10 100 1000frequency [GHz]

0.1

1

rms

[Jy]

All sourcesFSRQ

BL Lac

rms variations

Fig. 2. Behavior of the strength of variability vs. frequency as observedwith EB/PV: the mean σ-variations strongly increase towards higherfrequencies. The FSRQs in the ’prominent sample’ show systematicallyhigher variability amplitudes than BL Lacs.

weather conditions. The consequently larger measurement un-certainties at these bands are expected to cause increasingly lesssensitivity for the detection of significant variability, particularlyin the case of low amplitude variations and weaker sources.

In the subsequent analysis only those light curves have beenconsidered which exhibit significant varibility according to theχ2-test results.

5.3.2. Variability amplitudes

The strength of the observed variability has been quantified us-ing the modulation index mν = 100 × σν/ < S ν >, with σνbeing the root-mean-square variations and < S ν > the mean fluxdensity of the light curve at the given frequency. The calculatedmodulation indices of each source and frequency show a cleartrend: the averaged variability amplitude over all sources < m ν >steadily increases towards higher frequencies from 9.5±1.1 %at 110 mm to 30.0±2.4 % at 1 mm wavelength. This trend re-mains taking the frequency-dependence of the mean flux density< S (ν) >∼ να into account and e.g. using only the σ-variations.The behavior of < σν > versus frequency is shown in Fig. 2.Furthermore a trend is seen for the FSRQs in the sample to ex-hibit systematically higher < σν > compared to BL Lacs as seenfrom Fig. 2. In order to exclude further possible biases, the re-sults have been tested for any frequency dependence of the meanflux density. Furthermore, no trend is seen in the...

5.3.3. Variability time scales, brightness temperatures andDoppler factors

For each light curve characteristic variability time scales havebeen estimated using a structure function analysis (Simonetti etal. 1985). Given the large number of data-sets to be analyzed,two different algorithms have been developed aiming at an au-tomated estimation of the variability time scales. The first al-gorithm applies a least-square regression of the form S F(τ) =costant ∗τα to the structure function values at time-lag τ, S F(τ).The regression is calculated over time-lag windows of differentsize, for each providing a correlation coefficient. This methodexpoits the fact that for time-lags higher than the structure func-

tion plateau level the correlation coefficient should undergo amonotonic decreasing trend. Therefore, the characteristic timescale could be defined as the time-lag τreg for which the coeffi-cient regression is maximum. However, a change in the S F(τ)slope may cause a decrease in the regression coefficient beforethe plateau level is reached. In order to overcome this problem,the characteristic time scale τc1 was defined as the first structurefunction maximum at time-lags higher than τ reg.

The second algorithm for the estimation of the characteris-tic variability time scale exploits the fact that, after the plateau,the structure function value should become nearly constant, incase of a red-noise-like signal. We can describe this value asS Fplateau. Since the variability of AGNs in the radio bands canbe roughly classified as red-noise, we use the previous assump-tion to detect the plateau. In this way the characteristic time scaleτc2 is defined as the lower time-lag for which S F(τ) > S F plateau.

The usage of automated procedures for the estimation oftime scales offers two imporant advantages. It allows to consid-erably speed up the estimation and provides a fully objective andreproducible method. We compared the time scales obtained au-tomatically with the ones resulting from direct inspection of thestructure function plots for a sample of light curves. The agree-ment between the results is very good.

If the difference |τc1 − τc2| is equal or smaller than the aver-age sampling of the investigated light curve, we considered thetwo values as related to the same time scale, which then has beendefined as their average. Large discrepancies between the resultsof the two methods has been considered as strong evidence ofmultiple time scales in the light curves. In this case, the two val-ues have been considered separately. Occasionally, the estimatedtime scale coincides with the maximum time-lag investigated bymeans of structure function. This occurs in cases where the vari-ability is dominated by a monotonic trend not changing through-out the whole time span of the observations. Here, the estimatedtime scale must be considered as a lower limit to the true vari-ability time scale.

The deduced variability times scales typically range between80 and 500 days with a trend of faster variability towards higherfrequencies. more here!!!!!!

The deduced variability characteristics allow to obtain esti-mates of the involved source sizes via the light-travel time argu-ment as well as variability brightness temperatures and Dopplerfactors (see e.g. Fuhrmann et al. 2007 for details).

Given a time scale τ, the redshift z and the luminosity dis-tance of a source Dl, the angular size of the emitting region isestimated as

θ [mas] = 0.173

((1 + z)2τ [d]

Dl [Mpc]

)(1)

Assuming a single emitting component with Gaussianbrightness distribution, the brightness temperature can be esti-mated as follows

Tb [K] = 1.22 · 1012 S [Jy](θ [mas] ν [GHz]

)2 (2)

where S is the flux-density associated to the variable com-ponent and ν the frequency of the radiation. Considering τ as anestimation of the characteristic time scale of the variability and√S F(τ) as the characteristic flux-density variation, T b [K] can

be derived using Eq. 1 and

Tb[K] = 4.5 · 1010∆S [Jy]

(λ [cm]Dl[Mpc]

τ [d](1 + z)2

)2(3)

dependence of the variability amplitude on class and frequency:

Fuhrmann et al. in prep.

2.5-year data

Thursday, June 24, 2010

FmJ 2010

Page 14: F-GAMMA program: multi-wavelength AGN studies in the Fermi

variability amplitude vs. LAT detectability:

12 Fuhrmann et al.: The F-GAMMA program

1 10 100 1000frequency [GHz]

0.1

1

rms

[Jy

]

LAT detected [LBAS 3 months]

LAT non-detected [LBAS 3 months]

rms

Fig. 7. Behavior of the strength of variability vs. frequency for theFermi-LAT detected/non-detected sources of the EB/PV sample.

ties, artificial flux-flux correlations can be induced due to the ef-fect of distance. (ii) Conversely, in flux-limited surveys artificialluminosity-luminosity correlations can arise when consideringobjects in flux-limited surveys: most objects are close to the sur-vey sensitivity in each wavelength. Applying a common redshiftto return to luminosity space, artificial correlations arise. (iii)Many of the data used to obtained the claimed correlations werenot synchronous. With the large number of γ-ray AGN detectedby Fermi-GST these correlation studies can now be reconsideredand largely improved. First LBAS studies have been presented inAbdo et al. (2009) and Kovalev et al. (2009).

Here, we make use of the simultaneous cm- to short-mmwavelengths data obtained for the 29 Fermi-detected LBASsources of the EB/PV sample to investigate the existance of aradio/γ-ray flux-flux correlation. As examples, Fig. 8 shows thethree months averaged flux densities at 4.85, 14.6 and 86 GHzplotted against Fermi-LBAS γ-ray fluxes and photon indices in-tegrated over the same time period. An apparent correlation isseen for all frequencies, however, a truly intrinsic correlationneeds to be statistically assessed.

In the cases presented in Fig. 8, the objects do not con-stitue a flux-limited sample, hence they are less sensitive tothe artificially-induced luminosity-luminosity corrections. Inaddition, they are prefectly simultaneous. In contrast: (a) theyare a small sample of limited dynamical range biased towardsthe bright end of the luminosity function. Consequently, theflux-flux plots may show artificial correlations due to thecommon-distance effect; (b) they are not necessarily a repre-sentative sample of the blazar population and consequently, ageneralized statement on the blazar population in general isnot possible; (c) because they do not constitute a flux-limitedsample, our correlation tests can not be benchmarked by sam-pling the luminosity function, as in e.g. Bloom (2008). Instead,assessing the statistical significance of the data should be onlybased on Monte-Carlo permutations of the observed data, whilekeeping the same luminosity and flux dynamical range. For thisreason, a new Monte-Carlo method is used to assess the intrinsicsignificance of the observed correlation shown in Fig. 8. Thismethod is introduced and described by Pavlidou et al. (2010).

In brief, the method has been applied as follows (seePavlidou et al. 2010 for details):

– move to luminosity space using the known redshifts andthe relation between monochromatic flux density S ν andluminosity Lν. The simultaneously measured radio spec-tral indices (Sect. 5.4) allow to concurrently perform a K-correction and calculate Lν at rest-frame frequency ν0 ac-cording to:

Lν(ν0) = S ν(ν) 4πd2(1 + z)1−α (4)

where d = (c/H0)∫z

0dz/√ΩΛ + Ωm(1 + z)3). In the case of

γ-ray observations the actual observed quantity is F, thephoton flux integrated over energy from E 0 = 100MeV to∞. This is related to monochromatic energy flux throughS γ = (α − 1)F where α is the (negative) photon spectralindex. The obtained sets of radio and γ-ray luminosities fixour luminosity dynamical range.

– construct simulated fluxes in radio and γ-ray by combiningeach luminosity with one of the redshifts. Fluxes outside theoriginal flux range are rejected as e.g. a single very high fluxor very low flux and a cluster of points of similar fluxes canproduce an artificially high correlation index, which wouldnot occur given the original flux dynamical range.

– pair up the accepted simulated fluxes in all possible combi-nations excluding the “true” flux pairs.

– select a large number (∼ 107) of N pair combinations, whereN is equal to the number of the original observations. Eachset of N pairs is a set of uncorrelated simulated flux observa-tions.

– compute the Pearson product-moment correlation coefficientr for each simulated data set.

Results are shown in Table 3 and the probability distributionsof r for the simulated samples with intrinsically uncorrelatedradio/γ-ray luminosities are given in Fig. 9. Arrows indicatethe r-values obtained for the actual data as given in Table 3.For the data shown in Fig. 8, the probability to obtain valuesof 0.58, 0.55 and 0.68 from intrinsically uncorrelated flux den-sities is 2.2 × 10−3, 4.7 × 10−3 and 2.2 × 10−4 for 4.85, 14.6and 86 GHz, respectively. Despite the small sample size of onlyabout 30 sources, the apparent radio/γ-ray correlation of Fig. 8is a statistically significant, intrinsic correlation seen at almostall radio frequencies. The results at 15 GHz are in perfect agree-ment with Pavlidou et al. (2010) using the 15 GHz OVRO mon-itoring data for the 49 LBAS sources of the ’parent sample’. Wefurther note that here quasi-simultaneous radio spectral indiceshave been used for the K-correction, in contrast to Pavlidou et al.(2010). The good agreement of results demonstrate the robust-ness of our statistical method against small changes of the radiospectral index. Further tests showed that the statistical results donot significantly change without applying a k-correction.

7. Summary and Outlook

A new, Fermi-GST dedicated and highly coordinatedAGN/blazar multi-frequency monitoring is presented. In acollaborative effort, the MPIfR, Caltech and IRAM groups, incollaboration with several other partners have launched a com-prehensive campaign combining several state-of-the-art radiotelescopes covering - for the first time - quasi-simultaneouslythe cm-, mm- and sub-mm wavebands for broad-band (radioto γ-ray) AGN studies. In a two-pronged strategy, the OVRO40m program is densely monitoring a large (∼ 1200) and statis-tically complete sample at 15 GHz since mid-2007, while theF-GAMMA program initiated in early 2007 is monitoring less

Fuhrmann et al. in prep.

2.5-year data

Thursday, June 24, 2010

FmJ 2010

Page 15: F-GAMMA program: multi-wavelength AGN studies in the Fermi

the maximum brightness temperature distribution:

Fuhrmann et al.: The F-GAMMA program 9

9 10 11 12 13 14 15 16 17log T

B

0

2

4

6

8

10

12

14

N

All sourcesFSRQs

BL Lacs

max. TB

Fig. 3. Distribution of the maximum brightness temperatures as ob-tained for the EB/PV sample.

where λ indicates the wavelength of the radiation. Eq. 3 andthe obtained values for τc and S F(τc) have been used to estimatethe variability brightness temperatures of sources for which z andDl are known. For each source, the brightness temperatures at allavailable frequencies have been calculated.

The obtained values range between 1010 and 1016 K often farbeyond the inverse-Compton limit of 1012 K (ref.). The distribu-tion of maximum variability brightness temperatures observedis shown in Fig. 3. A difference between FSRQs and BL Lacs inthe sample is evident with a trend of higher brightness temper-atures in FSRQs compared to BL Lacs. A significant differencebetween the two classes is statistically confirmed by a Student’st-test as well as a KS-test: (some numbers). The results indi-cate that the FSRQs in the EB/PV sample are typically strongerDoppler-boosted than BL Lacs, in good agreement with previousfindings (ref.).

In order to explain the excessive temperatures solely in termsof relativistic boosting of the radiation, the inverse-Comptonlimit of 1012 K provides Doppler factors of the emission region

by δvar,IC = (1 + z)3+α√Tb/1012. The obtained values range be-

tween (numbers).

5.4. Spectral behavior of the EB/PV sample

The quasi-simultaneous cm to short-mm band EB/PV spectra ofthe sources shown in Fig. 1 are presented in Fig. 4 demonstrat-ing a variety of behaviours. In several cases, the flares seen inthe light curves shown in Fig. 1 are accompanied by clear spec-tral evolution. The flares occur often with their spectral peaksνpeak at the highest frequencies and successively evolve towardslower frequencies and lower flux densities following the evo-lution dictated by the adiabatic shoch-in-jet models (Marscher& Gear 1985; Hughes et al. 1985). That is, following a three-stage evolutionary path (Compton, Synchrotron and Adiabaticphases; Marscher & Gear 1985, see also Valtaoja et al. 1992) inthe S νpeak − νpeak plane. Several cases, however, indicate a morecomplex situation with e.g. only small spectral changes that donot seem to be described by the standard three-stage scenario. Inthese cases, modifications are required or other models have to

be invoked. Geometrical effects in helical or precesing jet mod-els (e.g. Villata & Raiteri 1999) can possibly give additional con-tributions to the observed variability. A detailed study of spectralevolution including dedicated flare modelling will be presentedin subsequent papers (Nestoras et al., Rachen et al. in prep.).

In order to quantify the spectral behaviour of the sources overthe first 2.5 years, mean spectral indices and breaks were ob-tained by performing power law fits to each individual observedradio spectrum. Spectral indices have been separately obtainedfor both, low frequencies (4.85, 10.45 and 15 GHz) and high fre-quencies (32, 86 and 140 GHz) respectively. First results of thisspectral analysis are presented in the following:

(i) The low frequency, spectral index (60, 28, 20 mm) dis-tribution is shown in the upper panel of Fig. 4. The mean overthe whole sample, independently of source class (grey area), is−0.03±0.27. The FSRQs distribution (black line) shows a meanof 0.01 ± 0.25 but it appears rather broadened with a sense ofbi-modality which is implied also by a median of −0.03. Thedistribution shown by the BL Lacs in the sample, on the otherhand (green line), gives a mean of −0.07 ± 0.23. The differencein the behaviour of these two classes is only apparent since nostatistical test has resulted any statistical significance (Student’st-test gave a probability of 0.27 and the “K-S” test a probabil-ity of 0.524). The radio galaxies (blue line) distribution shows amean of −0.32±0.57 and that of the unclassified blazars (orangeline) give a mean of 0.04 ± 0.27.

(ii) The high frequency spectral index (9, 3, 2 mm) distribu-tion is shown in the lower panel of Fig. 4. For the whole samplethe mean is −0.16±0.22. The FSRQs now show a much narrowerdistribution which is interestingly skewed towards negative val-ues (steeper spectra) with its mean at −0.20± 0.18. The BL Lacsin the sample, however, seem to concentrate around flatter spec-tral indices at a mean of −0.01 ± 0.16 and a tale that tends to-wards positive values (slightly inverted spectra). Indeed, statisti-cal tests indicate a significant difference in the two distributions:Student’s t-test gave a probability assuming the null hypothesisof 0.001 and the “K-S” test a corresponding P of 0.016. The ra-dio galaxies and unidentified blazars show a mean at−0.37±0.52and −0.3 ± 0.08, respectively.

(iii) The spectral peak distribution is shown in Fig. 6. Spectrahave been considered only, when the power law fit delivered aclear, significant spectral maximum in the frequency range con-sidered (2.6 – 230 GHz). Upper and lower limits to the spec-tral turnover have not been included. The whole sample shows amean turnover frequency of 9.6 ± 6.9 GHz, whereas FSRQs andBL Lacs show similar values with 9.7±7.0 and 9.03±6.95 GHz,respectively. No obvious differences in the distributions are seenconfirmed by statistical tests.

From the above description it is clear that the overall spectraare generally flat as expected by blazars. The rather blurred pic-ture seen in the low frequency spectral index becomes slightlyclear for the high frequency spectral index where a clear ten-dency of FSRQs to concentrate around negative values is op-posed to that of BL Lacs to concentrate around flat values. Theblurriness of the low frequency spectral index is expected sinceat this regime one observes the blending of past events whereasat higher frequencies this degeneracy is limited. The tendencyof the two distributions (FSRQs and BL Lacs) to separate fromeach other could be interpreted by assuming that BL Lacs showturnover frequencies at systematically higher frequencies whichwould be indication of different physical conditions at the twoclasses. In constrast, the similar spectral peak distributions donot confirm this. We note, however, that

Fuhrmann et al. in prep.

2.5-year data

Thursday, June 24, 2010

FmJ 2010

Page 16: F-GAMMA program: multi-wavelength AGN studies in the Fermi

S-S correlation: P = 2.2 x10−4 for r=0.68 to come from uncorrected S’s:

Pavlidou et al. in prep.

14 Fuhrmann et al.: The F-GAMMA program

0.1 1 10 100radio flux density [Jy]

1

10

100

1000

gam

ma-

ray

flu

x [

10

p

h c

m

s

]

FSRQ

BL Lac

RG

Gamma vs. radio flux

86 GHz

0.1 1 10 100radio flux density [Jy]

1

10

100

1000

FSRQ

BL Lac

RG

Peak Gamma vs. radio flux

86 GHz

-8-2

-1

0.1 1 10 100radio flux density [Jy]

1.5

2

2.5

3

gam

ma-

ray p

hoto

n i

ndex

FSRQ

BL Lac

RG

Gamma photon index vs. radio flux

86 GHz

0.1 1 10 100radio flux density [Jy]

1

10

100

1000

gam

ma-

ray

flu

x [

10

p

h c

m

s

]

FSRQ

BL Lac

RG

Gamma vs. radio flux

14.6 GHz

0.1 1 10 100radio flux density [Jy]

1

10

100

1000

FSRQ

BL Lac

RG

Peak Gamma vs. radio flux

14.6 GHz

-8-2

-1

0.1 1 10 100radio flux density [Jy]

1.5

2

2.5

3

gam

ma-

ray p

hoto

n i

ndex

FSRQ

BL Lac

RG

Gamma photon index vs. radio flux

14.6 GHz

0.1 1 10 100radio flux density [Jy]

1

10

100

1000

gam

ma-

ray

flu

x [

10

p

h c

m

s

]

FSRQ

BL Lac

RG

Gamma vs. radio flux

4.85 GHz

0.1 1 10 100radio flux density [Jy]

1

10

100

1000

FSRQ

BL Lac

RG

Peak Gamma vs. radio flux

4.85 GHz

-8-2

-1

0.1 1 10 100radio flux density [Jy]

1.5

2

2.5

3

gam

ma-

ray p

hoto

n i

ndex

FSRQ

BL Lac

RG

Gamma photon index vs. radio flux

4.85 GHz

Fig. 8. LBAS γ-ray flux and photon index vs. radio flux at 4.85 GHz (top), 15 GHz (middle) and 86 GHz (bottom) for the LAT detected sources inthe EB/PV sample.

0 0.2 0.4 0.6 0.8 1

r (Pearson product-moment correlation coefficient)

0

1

2

3

4

Mo

nte

-Car

lo e

val

uat

ed p

rob

abil

ity

den

sity

60mm/Fermi

data

0 0.2 0.4 0.6 0.8 1

r (Pearson product-moment correlation coefficient)

0

1

2

3

4

Monte

-Car

lo e

val

uat

ed p

robab

ilit

y d

ensi

ty

20mm/Fermi

data

0 0.2 0.4 0.6 0.8 1

r (Pearson product-moment correlation coefficient)

0

1

2

3

4

Monte

-Car

lo e

val

uat

ed p

robab

ilit

y d

ensi

ty

3mm/Fermi

data

Fig. 9. Left: Distribution of Monte-Carlo simulated r−values for Fermi-LAT vs. 60 mm radio fluxes; Middle: same for Fermi-LAT vs. 20 mmradio fluxes; Right: same for Fermi-LAT vs. 3 mm radio fluxes.

Gamma vs. radio flux Peak Gamma vs. radio flux

2.5-year data

Thursday, June 24, 2010

FmJ 2010

Page 17: F-GAMMA program: multi-wavelength AGN studies in the Fermi

F-GAMMA programthe new sample

FSRQs BL Lacs Blazars Sy RG Total

old sources 19 13 3 1 2 38

3-month list 19 14 3 0 1 37

11-month list

34 17 6 0 1 58

Total 36 17 9 1 2 65

Thursday, June 24, 2010

FmJ 2010

Page 18: F-GAMMA program: multi-wavelength AGN studies in the Fermi

3.5-year data

redshift distribution

Angelakis et al. in prep.

0 0.5 1 1.5 2 2.5 3 3.5redshift

0

2

4

6

8

10

N

FSRQs

BLLacs

Thursday, June 24, 2010

FmJ 2010

Page 19: F-GAMMA program: multi-wavelength AGN studies in the Fermi

Thursday, June 24, 2010

FmJ 2010

Page 20: F-GAMMA program: multi-wavelength AGN studies in the Fermi

F-GAMMA programthe spectra

Thursday, June 24, 2010

FmJ 2010

Page 21: F-GAMMA program: multi-wavelength AGN studies in the Fermi

F-GAMMA programthe spectra

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0102+5824 (0059+581) 2007.152007.232007.322007.382007.482007.552007.712007.772007.882007.962008.052008.132008.342008.492008.642008.712008.792008.852008.932009.282009.332009.412009.422009.662009.742009.842010.082010.162010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0217+0144 (PKS0215+015) 2007.152007.232007.322007.552007.652007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.79

2008.852008.932009.062009.282009.332009.412009.482009.582009.662009.742009.842009.842009.912009.912010.012010.082010.202010.252010.33

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0222+4302 (3C66A) 2007.152007.232007.322007.482007.652007.712007.862007.882007.962008.052008.132008.342008.412008.492008.642008.712008.792008.852008.93

2009.062009.282009.332009.412009.482009.582009.662009.742009.842009.912010.012010.012010.082010.162010.202010.252010.332010.39

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0237+2848 (4C28.07) 2007.072007.152007.232007.322007.552007.652007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.642008.712008.792008.852008.932009.062009.282009.332009.412009.482009.582009.662009.742009.842009.912010.082010.202010.252010.332010.39 0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0238+1636 (AO0235+16) 2007.072007.152007.232007.382007.482007.552007.652007.712007.862007.882007.962008.052008.132008.222008.342008.412008.492008.642008.71

2008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.082010.202010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0241-0815 (NGC1052) 2007.072007.152007.232007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.492008.642008.792008.852008.932009.022009.282009.332009.582009.742009.842009.912009.912010.012010.082010.162010.252010.33

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J0319+4130 (3C84) 2007.072007.152007.232007.322007.382007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.412008.492008.642008.712008.79

2008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.842009.912010.082010.162010.202010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0336+3218 (OE355) 2007.072007.152007.232007.322007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.572008.642008.712008.792008.852008.932009.062009.282009.332009.74

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J0359+5057 (NRAO150) 2007.072007.152007.232007.322007.382007.482007.652007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.642008.712008.792008.852008.932009.062009.282009.332009.422009.482009.662009.742009.842009.912010.202010.252010.332010.39

0.1

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J0418+3801 (3C111) 2007.152007.232007.322007.652007.712007.772007.882007.962008.052008.132008.222008.342008.412008.492008.642008.792008.852008.932009.062009.282009.332009.422009.482009.582009.662009.742009.842009.912010.012010.202010.252010.332010.39

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J0423-0120 (PKS0420-01) 2007.652007.712007.772007.882007.962008.052008.132008.222008.342008.492008.572008.642008.792008.852008.932009.062009.282009.332009.582009.662009.742009.842009.842009.912009.912010.012010.082010.162010.202010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0530+1331 (PKS0528+134) 2007.152007.232007.652007.712007.772007.882007.962008.052008.132008.222008.342008.572008.642008.792008.852008.932009.062009.282009.332009.412009.482009.582009.662009.742009.842009.842009.912009.912010.012010.162010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0721+7120 (S50716+71) 2007.072007.152007.232007.322007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.572008.64

2008.712008.792008.852008.932009.282009.332009.412009.482009.582009.662009.742009.842009.912010.082010.162010.252010.332010.39

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0730-1141 (0727-11) 2008.572008.792008.852008.932009.282009.332009.662009.842009.842009.912010.202010.252010.332010.39

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0750+1231 (0748+126) 2007.152007.232007.482007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0818+4222 (TXS0814+425) 2007.072007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.712008.792008.852008.932009.062009.332009.402009.482009.582009.662009.742009.842009.912010.202010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0830+2410 (OJ248) 2007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0841+7053 (S50836+71) 2007.072007.232007.322007.382007.482007.632007.712007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.282009.422009.582009.662009.842009.912010.162010.252010.332010.39

0.1

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J0854+2006 (OJ287) 2007.072007.152007.232007.322007.482007.552007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.792008.852008.932009.062009.332009.402009.482009.582009.662009.842009.842009.912010.012010.082010.162010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J0958+6533 (S40954+65) 2007.072007.152007.232007.322007.482007.552007.652007.712007.882007.962008.052008.132008.342008.492008.572008.642008.712008.792008.852008.932009.422009.582009.842009.912010.202010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1041+0610 (PKS1038+064) 2007.072007.152007.232007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.492008.712008.852008.932009.062009.282009.91

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1130-1449 (PKS1127-14) 2007.632007.772007.862007.882007.962008.052008.222008.342008.412008.492008.572008.712008.792008.852009.282009.332009.402009.482009.582009.842009.912010.202010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1159+2914 (TON599) 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.712008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.912010.202010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1224+2122 (4C21.35) 2007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.492008.712008.852008.932009.062009.282009.332009.412009.482009.582009.742010.33

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J1229+0203 (3C273) 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.492008.572008.712008.792008.852008.932009.282009.332009.402009.482009.582009.662009.842009.842009.912010.082010.162010.252010.332010.39

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J1256-0547 (3C279) 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.64

2008.712008.792008.852008.932009.062009.282009.332009.402009.482009.582009.662009.742009.842009.912009.912010.082010.162010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1310+3220 (OP313) 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.572008.642008.712008.792008.852008.932009.062009.282009.332009.402009.482009.582009.662009.742009.842009.912010.162010.252010.332010.39

0.1

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1504+1029 (1502+106) 2008.572008.642008.712008.792008.852008.932009.062009.282009.332009.402009.482009.582009.662009.742009.842009.912009.912010.082010.162010.252010.332010.39

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1512-0905 (PKS1510-08) 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.062009.282009.402009.482009.582009.662009.742010.082010.162010.252010.332010.39

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1635+3808 (4C38.41) 2007.072007.152007.232007.322007.382007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.57

2008.712008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.082010.162010.252010.332010.39

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J1800+7828 (S51803+78) 2007.382007.632007.712007.862007.882007.962008.052008.132008.412008.492008.572008.642008.712008.852009.282009.332009.412009.482009.582009.662009.742009.842009.912010.082010.162010.252010.33

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J2202+4216 (BLLAC) 2007.072007.152007.232007.322007.382007.482007.552007.652007.712007.772007.862007.882007.962008.052008.132008.222008.492008.572008.642008.712008.79

2008.852008.932009.062009.282009.332009.412009.482009.582009.662009.742009.842009.912009.912010.012010.012010.082010.162010.252010.332010.39

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J2253+1608 (2251+158) 2007.072007.152007.232007.322007.382007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.492008.572008.642008.712008.79

2008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.912009.912010.012010.082010.162010.202010.332010.39

1

10

1 10 100 1000

S (J

y)

Frequency (GHz)

J2348-1631 (PKS2345-16) 2007.152007.232007.322007.382007.552007.632007.712007.772007.882007.962008.052008.132008.222008.492008.572008.642008.792008.852008.932009.022009.28

Thursday, June 24, 2010

FmJ 2010

Page 22: F-GAMMA program: multi-wavelength AGN studies in the Fermi

F-GAMMA programthe spectra classification

Angelakis et al.: title 5

0

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0235+164 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0235+164 2007.072007.152007.232007.382007.482007.552007.652007.712007.862007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.08

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

J0654+4514 2.64 4.85 8.35 14.60 23.05 32.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

J0654+4514 2009.062009.332009.662009.742009.84

0.5

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1156+295 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1156+295 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.712008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

4.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1510-089 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1510-089 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.062009.282009.402009.482009.582009.662009.742010.08

Fig. 1. T1

Angelakis et al.: title 5

0

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0235+164 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0235+164 2007.072007.152007.232007.382007.482007.552007.652007.712007.862007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.08

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

J0654+4514 2.64 4.85 8.35 14.60 23.05 32.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

J0654+4514 2009.062009.332009.662009.742009.84

0.5

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1156+295 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1156+295 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.712008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

4.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1510-089 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1510-089 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.062009.282009.402009.482009.582009.662009.742010.08

Fig. 1. T1

Angelakis et al.: title 5

0

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0235+164 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0235+164 2007.072007.152007.232007.382007.482007.552007.652007.712007.862007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.08

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

J0654+4514 2.64 4.85 8.35 14.60 23.05 32.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

J0654+4514 2009.062009.332009.662009.742009.84

0.5

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1156+295 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1156+295 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.712008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

4.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1510-089 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1510-089 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.062009.282009.402009.482009.582009.662009.742010.08

Fig. 1. T1

8 Angelakis et al.: title

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0528+134 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)Frequency (GHz)

0528+134 2007.152007.232007.652007.712007.772007.882007.962008.052008.132008.222008.342008.572008.642008.792008.852008.932009.062009.282009.332009.412009.482009.582009.662009.742009.842009.842009.912009.912010.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0948+002 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0948+002 2009.062009.282009.332009.402009.482009.582009.662009.742009.842009.842009.912010.08

0.5

1

1.5

2

2.5

3

3.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1308+326 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1308+326 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.572008.642008.712008.792008.852008.932009.062009.282009.332009.402009.482009.582009.662009.742009.842009.91

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0238-084 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0238-084 2007.072007.152007.232007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.492008.642008.792008.852008.932009.022009.282009.332009.582009.742009.842009.912009.912010.012010.08

Fig. 4. T2

8 Angelakis et al.: title

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0528+134 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0528+134 2007.152007.232007.652007.712007.772007.882007.962008.052008.132008.222008.342008.572008.642008.792008.852008.932009.062009.282009.332009.412009.482009.582009.662009.742009.842009.842009.912009.912010.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0948+002 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0948+002 2009.062009.282009.332009.402009.482009.582009.662009.742009.842009.842009.912010.08

0.5

1

1.5

2

2.5

3

3.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1308+326 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1308+326 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.572008.642008.712008.792008.852008.932009.062009.282009.332009.402009.482009.582009.662009.742009.842009.91

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0238-084 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0238-084 2007.072007.152007.232007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.492008.642008.792008.852008.932009.022009.282009.332009.582009.742009.842009.912009.912010.012010.08

Fig. 4. T2

Angelakis et al.: title 9

2

3

4

5

6

7

8

9

10

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1730-130 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1730-130 2007.072007.152007.232007.322007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.932009.582009.662009.742009.84

0.5

1

1.5

2

2.5

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

0827+243 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0827+243 2007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

2345-16 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

2345-16 2007.152007.232007.322007.382007.552007.632007.712007.772007.882007.962008.052008.132008.222008.492008.572008.642008.792008.852008.932009.022009.28

Fig. 5. T2

Type 1 Type 210 Angelakis et al.: title

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0814+425 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0814+425 2007.072007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.712008.792008.852008.932009.062009.332009.402009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1803+784 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1803+784 2007.382007.632007.712007.862007.882007.962008.052008.132008.412008.492008.572008.642008.712008.852009.282009.332009.412009.482009.582009.662009.742009.842009.912010.08

3

4

5

6

7

8

9

10

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0727-11 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0727-11 2008.572008.792008.852008.932009.282009.332009.662009.842009.842009.91

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

0748+126 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0748+126 2007.152007.232007.482007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

Fig. 6. T3

10 Angelakis et al.: title

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0814+425 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0814+425 2007.072007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.712008.792008.852008.932009.062009.332009.402009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5Fl

ux D

ensi

ty (J

y)

Time

1803+784 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1803+784 2007.382007.632007.712007.862007.882007.962008.052008.132008.412008.492008.572008.642008.712008.852009.282009.332009.412009.482009.582009.662009.742009.842009.912010.08

3

4

5

6

7

8

9

10

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0727-11 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0727-11 2008.572008.792008.852008.932009.282009.332009.662009.842009.842009.91

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

0748+126 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0748+126 2007.152007.232007.482007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

Fig. 6. T3

10 Angelakis et al.: title

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0814+425 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0814+425 2007.072007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.712008.792008.852008.932009.062009.332009.402009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5Fl

ux D

ensi

ty (J

y)Time

1803+784 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1803+784 2007.382007.632007.712007.862007.882007.962008.052008.132008.412008.492008.572008.642008.712008.852009.282009.332009.412009.482009.582009.662009.742009.842009.912010.08

3

4

5

6

7

8

9

10

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0727-11 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0727-11 2008.572008.792008.852008.932009.282009.332009.662009.842009.842009.91

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

0748+126 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0748+126 2007.152007.232007.482007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

Fig. 6. T3

Type 3 14 Angelakis et al.: title

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1219+285 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

1219+285 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.492008.572008.712008.792008.852008.932009.062009.332009.412009.482009.582009.662009.842009.912010.01

0

5

10

15

20

25

30

35

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

2251+158 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

2251+158 2007.072007.152007.232007.322007.382007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.492008.572008.642008.712008.792008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.912009.912010.012010.08

2

3

4

5

6

7

8

9

10

11

12

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0415+379 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

0415+379 2007.152007.232007.322007.652007.712007.772007.882007.962008.052008.132008.222008.342008.412008.492008.642008.792008.852008.932009.062009.282009.332009.422009.482009.582009.662009.742009.842009.912010.01

0.5

1

1.5

2

2.5

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0836+710 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0836+710 2007.072007.232007.322007.382007.482007.632007.712007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.282009.422009.582009.662009.842009.91

Fig. 10. T4

14 Angelakis et al.: title

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1219+285 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

1219+285 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.492008.572008.712008.792008.852008.932009.062009.332009.412009.482009.582009.662009.842009.912010.01

0

5

10

15

20

25

30

35

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

2251+158 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

2251+158 2007.072007.152007.232007.322007.382007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.492008.572008.642008.712008.792008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.912009.912010.012010.08

2

3

4

5

6

7

8

9

10

11

12

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0415+379 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

0415+379 2007.152007.232007.322007.652007.712007.772007.882007.962008.052008.132008.222008.342008.412008.492008.642008.792008.852008.932009.062009.282009.332009.422009.482009.582009.662009.742009.842009.912010.01

0.5

1

1.5

2

2.5

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0836+710 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0836+710 2007.072007.232007.322007.382007.482007.632007.712007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.282009.422009.582009.662009.842009.91

Fig. 10. T4

Angelakis et al.: title 15

0.5

1

1.5

2

2.5

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0333+321 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0333+321 2007.072007.152007.232007.322007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.572008.642008.712008.792008.852008.932009.062009.282009.332009.74

0.1

0.15

0.2

0.25

0.3

0.35

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

2344+514 2.64 4.85 8.35 14.60 32.00 42.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

2344+514 2007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.492008.792008.852008.932009.062009.282009.33

2

3

4

5

6

7

8

9

10

11

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1641+399 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

1641+399 2007.152007.232007.322007.382007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.712008.792008.852008.932009.062009.282009.422009.482009.582009.842010.08

Fig. 11. T4

Type 4

Thursday, June 24, 2010

FmJ 2010

Page 23: F-GAMMA program: multi-wavelength AGN studies in the Fermi

F-GAMMA programthe spectra classification

Angelakis et al.: title 5

0

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0235+164 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0235+164 2007.072007.152007.232007.382007.482007.552007.652007.712007.862007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.08

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

J0654+4514 2.64 4.85 8.35 14.60 23.05 32.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

J0654+4514 2009.062009.332009.662009.742009.84

0.5

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1156+295 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1156+295 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.712008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

4.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1510-089 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1510-089 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.062009.282009.402009.482009.582009.662009.742010.08

Fig. 1. T1

Angelakis et al.: title 5

0

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0235+164 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0235+164 2007.072007.152007.232007.382007.482007.552007.652007.712007.862007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.08

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

J0654+4514 2.64 4.85 8.35 14.60 23.05 32.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

J0654+4514 2009.062009.332009.662009.742009.84

0.5

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1156+295 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1156+295 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.712008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

4.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1510-089 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1510-089 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.062009.282009.402009.482009.582009.662009.742010.08

Fig. 1. T1

Angelakis et al.: title 5

0

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0235+164 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0235+164 2007.072007.152007.232007.382007.482007.552007.652007.712007.862007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.08

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

J0654+4514 2.64 4.85 8.35 14.60 23.05 32.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

J0654+4514 2009.062009.332009.662009.742009.84

0.5

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1156+295 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1156+295 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.712008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

4.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1510-089 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1510-089 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.062009.282009.402009.482009.582009.662009.742010.08

Fig. 1. T1

8 Angelakis et al.: title

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0528+134 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)Frequency (GHz)

0528+134 2007.152007.232007.652007.712007.772007.882007.962008.052008.132008.222008.342008.572008.642008.792008.852008.932009.062009.282009.332009.412009.482009.582009.662009.742009.842009.842009.912009.912010.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0948+002 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0948+002 2009.062009.282009.332009.402009.482009.582009.662009.742009.842009.842009.912010.08

0.5

1

1.5

2

2.5

3

3.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1308+326 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1308+326 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.572008.642008.712008.792008.852008.932009.062009.282009.332009.402009.482009.582009.662009.742009.842009.91

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0238-084 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0238-084 2007.072007.152007.232007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.492008.642008.792008.852008.932009.022009.282009.332009.582009.742009.842009.912009.912010.012010.08

Fig. 4. T2

8 Angelakis et al.: title

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0528+134 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0528+134 2007.152007.232007.652007.712007.772007.882007.962008.052008.132008.222008.342008.572008.642008.792008.852008.932009.062009.282009.332009.412009.482009.582009.662009.742009.842009.842009.912009.912010.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0948+002 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0948+002 2009.062009.282009.332009.402009.482009.582009.662009.742009.842009.842009.912010.08

0.5

1

1.5

2

2.5

3

3.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1308+326 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

1308+326 2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.572008.642008.712008.792008.852008.932009.062009.282009.332009.402009.482009.582009.662009.742009.842009.91

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0238-084 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0238-084 2007.072007.152007.232007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.492008.642008.792008.852008.932009.022009.282009.332009.582009.742009.842009.912009.912010.012010.08

Fig. 4. T2

Angelakis et al.: title 9

2

3

4

5

6

7

8

9

10

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

1730-130 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1730-130 2007.072007.152007.232007.322007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.932009.582009.662009.742009.84

0.5

1

1.5

2

2.5

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

0827+243 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0827+243 2007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

2345-16 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

2345-16 2007.152007.232007.322007.382007.552007.632007.712007.772007.882007.962008.052008.132008.222008.492008.572008.642008.792008.852008.932009.022009.28

Fig. 5. T2

Type 1 Type 2 10 Angelakis et al.: title

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0814+425 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0814+425 2007.072007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.712008.792008.852008.932009.062009.332009.402009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1803+784 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1803+784 2007.382007.632007.712007.862007.882007.962008.052008.132008.412008.492008.572008.642008.712008.852009.282009.332009.412009.482009.582009.662009.742009.842009.912010.08

3

4

5

6

7

8

9

10

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0727-11 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0727-11 2008.572008.792008.852008.932009.282009.332009.662009.842009.842009.91

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

0748+126 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0748+126 2007.152007.232007.482007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

Fig. 6. T3

10 Angelakis et al.: title

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0814+425 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0814+425 2007.072007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.712008.792008.852008.932009.062009.332009.402009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1803+784 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1803+784 2007.382007.632007.712007.862007.882007.962008.052008.132008.412008.492008.572008.642008.712008.852009.282009.332009.412009.482009.582009.662009.742009.842009.912010.08

3

4

5

6

7

8

9

10

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0727-11 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0727-11 2008.572008.792008.852008.932009.282009.332009.662009.842009.842009.91

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

0748+126 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0748+126 2007.152007.232007.482007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

Fig. 6. T3

10 Angelakis et al.: title

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0814+425 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0814+425 2007.072007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.342008.412008.492008.712008.792008.852008.932009.062009.332009.402009.482009.582009.662009.742009.842009.91

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1803+784 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

1803+784 2007.382007.632007.712007.862007.882007.962008.052008.132008.412008.492008.572008.642008.712008.852009.282009.332009.412009.482009.582009.662009.742009.842009.912010.08

3

4

5

6

7

8

9

10

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0727-11 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0727-11 2008.572008.792008.852008.932009.282009.332009.662009.842009.842009.91

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

0748+126 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

1 10 100

S (J

y)

Frequency (GHz)

0748+126 2007.152007.232007.482007.652007.712007.882007.962008.052008.132008.342008.412008.492008.642008.712008.792008.852008.932009.062009.282009.33

Fig. 6. T3

Type 3 14 Angelakis et al.: title

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1219+285 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

1219+285 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.492008.572008.712008.792008.852008.932009.062009.332009.412009.482009.582009.662009.842009.912010.01

0

5

10

15

20

25

30

35

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

2251+158 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

2251+158 2007.072007.152007.232007.322007.382007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.492008.572008.642008.712008.792008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.912009.912010.012010.08

2

3

4

5

6

7

8

9

10

11

12

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0415+379 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

0415+379 2007.152007.232007.322007.652007.712007.772007.882007.962008.052008.132008.222008.342008.412008.492008.642008.792008.852008.932009.062009.282009.332009.422009.482009.582009.662009.742009.842009.912010.01

0.5

1

1.5

2

2.5

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0836+710 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0836+710 2007.072007.232007.322007.382007.482007.632007.712007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.282009.422009.582009.662009.842009.91

Fig. 10. T4

14 Angelakis et al.: title

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5Fl

ux D

ensi

ty (J

y)Time

1219+285 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

1219+285 2007.072007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.492008.572008.712008.792008.852008.932009.062009.332009.412009.482009.582009.662009.842009.912010.01

0

5

10

15

20

25

30

35

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

2251+158 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

2251+158 2007.072007.152007.232007.322007.382007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.492008.572008.642008.712008.792008.852008.932009.062009.282009.332009.412009.412009.482009.582009.662009.742009.842009.912009.912010.012010.08

2

3

4

5

6

7

8

9

10

11

12

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

0415+379 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

0415+379 2007.152007.232007.322007.652007.712007.772007.882007.962008.052008.132008.222008.342008.412008.492008.642008.792008.852008.932009.062009.282009.332009.422009.482009.582009.662009.742009.842009.912010.01

0.5

1

1.5

2

2.5

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0836+710 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0836+710 2007.072007.232007.322007.382007.482007.632007.712007.962008.052008.132008.222008.342008.412008.492008.572008.642008.712008.792008.852008.932009.282009.422009.582009.662009.842009.91

Fig. 10. T4

Angelakis et al.: title 15

0.5

1

1.5

2

2.5

3

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0

Flux

Den

sity

(Jy)

Time

0333+321 2.64 4.85 8.35 14.60 23.05 32.00 42.00

0.1

1

10

1 10 100

S (J

y)

Frequency (GHz)

0333+321 2007.072007.152007.232007.322007.552007.652007.712007.772007.862007.882007.962008.052008.132008.342008.572008.642008.712008.792008.852008.932009.062009.282009.332009.74

0.1

0.15

0.2

0.25

0.3

0.35

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

2344+514 2.64 4.85 8.35 14.60 32.00 42.00

0.1

1

1 10 100

S (J

y)

Frequency (GHz)

2344+514 2007.152007.232007.382007.482007.552007.652007.712007.882007.962008.052008.132008.222008.492008.792008.852008.932009.062009.282009.33

2

3

4

5

6

7

8

9

10

11

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

1641+399 2.64 4.85 8.35 14.60 23.05 32.00 42.00

1

10

100

1 10 100

S (J

y)

Frequency (GHz)

1641+399 2007.152007.232007.322007.382007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.712008.792008.852008.932009.062009.282009.422009.482009.582009.842010.08

Fig. 11. T4

Type 4

Thursday, June 24, 2010

FmJ 2010

Page 24: F-GAMMA program: multi-wavelength AGN studies in the Fermi

0.1

1

10

1 10 100 1000

S (

Jy)

Frequency (GHz)

J0238+1636 (AO0235+16)2007.072007.152007.232007.382007.482007.552007.652007.712007.862007.882007.962008.052008.132008.222008.342008.412008.492008.642008.71

2008.792008.852008.932009.062009.282009.412009.482009.582009.662009.742009.842009.912010.012010.082010.202010.252010.332010.39

Type 1 0

1

2

3

4

5

6

7

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

J0238+1636-AO0235+16 2.64 4.85 8.35

10.45 14.60 23.05 32.00 42.00 86.00

142.33228.39

MOJAVE database

Thursday, June 24, 2010

FmJ 2010

Page 25: F-GAMMA program: multi-wavelength AGN studies in the Fermi

Type 2

0.1

1

10

1 10 100 1000

S (

Jy)

Frequency (GHz)

J1310+3220 (OP313)2007.152007.232007.322007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.342008.412008.572008.642008.712008.792008.852008.932009.062009.282009.332009.402009.482009.582009.662009.742009.842009.912010.162010.252010.332010.39

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

J1310+3220-OP313 2.64 4.85 8.35

10.45 14.60 23.05 32.00 42.00 86.00

142.33228.39

MOJAVE database

Thursday, June 24, 2010

FmJ 2010

Page 26: F-GAMMA program: multi-wavelength AGN studies in the Fermi

Type 4

1

10

100

1 10 100 1000

S (

Jy)

Frequency (GHz)

J1642+3948 (3C345)2007.152007.232007.322007.382007.482007.552007.632007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.492008.572008.712008.792008.852008.932009.062009.282009.422009.482009.582009.842010.082010.162010.252010.33

1

2

3

4

5

6

7

8

9

10

11

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5 2010.0 2010.5

Flux

Den

sity

(Jy)

Time

J1642+3948-3C345 2.64 4.85 8.35

10.45 14.60 23.05 32.00 42.00 86.00

142.33228.39

MOJAVE database

Thursday, June 24, 2010

FmJ 2010

Page 27: F-GAMMA program: multi-wavelength AGN studies in the Fermi

Type 5

0.1

1

10

1 10 100 1000

S (

Jy)

Frequency (GHz)

J2158-1501 (PKS2155-152)2007.322007.632007.712007.772007.882007.962008.052008.342008.492008.572008.642008.712008.792008.852008.932009.28

0.5

1

1.5

2

2.5

3

3.5

4

2006.5 2007.0 2007.5 2008.0 2008.5 2009.0 2009.5

Flux

Den

sity

(Jy)

Time

J2158-1501-PKS2155-152 2.64 4.85 8.35

10.45 14.60 23.05 32.00 42.00 86.00

142.33

MOJAVE database

Thursday, June 24, 2010

FmJ 2010

Page 28: F-GAMMA program: multi-wavelength AGN studies in the Fermi

Type 3 1

10

1 10 100 1000

S (

Jy)

Frequency (GHz)

J0730-1141 (0727-11)2008.572008.792008.852008.932009.282009.332009.662009.842009.842009.912010.202010.252010.332010.39

MOJAVE database

1

10

100

1 10 100 1000

S (J

y)

Frequency (GHz)

J0359+5057 (NRAO150) 2007.072007.152007.232007.322007.382007.482007.652007.712007.772007.862007.882007.962008.052008.132008.222008.342008.412008.642008.712008.792008.852008.932009.062009.282009.332009.422009.482009.662009.742009.842009.912010.202010.252010.332010.39

Thursday, June 24, 2010

FmJ 2010

Page 29: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Thursday, June 24, 2010

FmJ 2010

Page 30: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Spectral Evolution

Thursday, June 24, 2010

FmJ 2010

Page 31: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Spectral Evolution

Achromatic Variability

Thursday, June 24, 2010

FmJ 2010

Page 32: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Spectral Evolution

Achromatic Variability

Steep Spectrum

Thursday, June 24, 2010

FmJ 2010

Page 33: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Thursday, June 24, 2010

FmJ 2010

Page 34: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Core activity dominates

Thursday, June 24, 2010

FmJ 2010

Page 35: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Core activity dominates

Jet activity dominates

Thursday, June 24, 2010

FmJ 2010

Page 36: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Core activity dominates

Jet activity dominates Jet

Thursday, June 24, 2010

FmJ 2010

Page 37: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Total T1+T2+T4 T3 T5

FSRQ 38 76% (29) 16% (6) 8% (3)

BL Lacs 20 40% (8) 35% (7) 25% (5)

Core activity dominates

Jet activity dominates Jet

redshift “brings” the action into our band-pass

Thursday, June 24, 2010

FmJ 2010

Page 38: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spec.

Angelakis, Fuhrmann, Nestoras et al. in prep.

1 10 100Peak Frequency (GHz)

0.1

1

10

100

Peak

Flu

x (J

y)

0355+5080727-110814+4250215+015

1 10 100 1000Peak Frequency (GHz)

1

10

Peak

Flu

x (J

y)

0851+2020059+5810235+1641156+295

spectral evolution qualitatively similar to “shock-in-jet” model by Marscher & Gear

Type 3 Type 1, 2 and 4

Thursday, June 24, 2010

FmJ 2010

Page 39: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Comments

‣Incomplete sample

‣Observational Biases

‣Selection effects

‣It seems though that two major mechanisms are producing variability

Questions

‣What mechanism makes type 3 sources have such a persistently convex spectrum?

‣Are there “typical timescales” corresponding to each?

‣What physical processes could account for them?

‣Could magnetic field / orientation changes cause the type 3 variability?

Thursday, June 24, 2010

FmJ 2010

Page 40: F-GAMMA program: multi-wavelength AGN studies in the Fermi

two types of behavior + steep spectrum

Next steps

‣How are the Doppler factors distributed over variability types?

‣Apparent speeds?

‣Study other properties of each variability type

‣gamma-ray correspondence of variability (type 3) => indicate the gamma-ray emission region

‣cm, mm - gamma-rays cross-correlation analysis (on going)

‣analyze out polarization data

Thursday, June 24, 2010

FmJ 2010

Page 41: F-GAMMA program: multi-wavelength AGN studies in the Fermi

100-m EffelsbergLocated in Effelsberg it covers the band 2.64 - 43 GHz with a precision of a few percent for monthly sampling of 60 sources

30-m IRAMLocated in Granada, Spain it covers the band 86 - 250 GHz monthly also for roughly 60 sources

12-m APEX It covers the 345 GHz band and it is located in Atacama desert in Chile at an altitude of 5100 m

Thank you!

for spectra and LCs visit:

www.mpifr.de/div/vlbi/fgamma

Thursday, June 24, 2010

FmJ 2010