56
Copepod's 2 lens telescope Trilobite fossil 500 million years Black ant House Fly Scallop Octopus Cuttlefish Eyes everywhere…

Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Copepod's 2 lens telescope

Trilobite fossil 500 million years

Black antHouse Fly

Scallop

Octopus

Cuttlefish

Eyes everywhere…

Page 2: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Modeling fly phototransduction:

Page 3: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Limits of modeling?

• vertebrate phototransduction (rods, cones)

• insect phototransduction

• olfaction, taste, etc…

Comparative systems biology?

Page 4: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Fly photo-transduction

• About the phenomenon

• Molecular mechanism

• Phenomenological Model

• Predictions and comparisons with experiment.

Outline:

Page 5: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Compound eyeof the fly

Page 6: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Fly photoreceptor cell

hv

50nm

1.5 μm

Na+, Ca2+

Microvillus

Rhodopsin

Page 7: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Single photon response in Drosophila: a Quantum Bump

Lowlight

Dimflash

“All-or-none”response

Henderson and Hardie, J.Physiol. (2000) 524, 179

Page 8: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Comparison of a fly with a toad.

From Hardie and Raghu, Nature 413, (2001)

Single photon response:

Notedifferent scales directions of current!!

Page 9: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Linearity of macroscopic response

hv

Linearsummationover microvillae

Page 10: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Average QB wave-form

A miracle fit:

Henderson and Hardie, J.Physiol. (2000) 524, 179

QB aligned at tmax

Page 11: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

QB variability

Peak current Jmax (pA)#

even

ts

rms Jmean J

( )( )

.4max

max

≈ 0

# of

eve

nts

Latency (ms)

Latency distribution

Page 12: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Multi-photon response

QB waveform

Convolutionwith latencydistribution

Macroscopic response= average QB

Latency distributiondetermines the averagemacroscopic response

!!! Fluctuations control the mean !!!

Page 13: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Advantages of Drosophila photo-transduction as a model

signaling system:

• Input: Photons• Output: Changes in membrane potential• Single receptor cell preps• Drosophila genetics

Page 14: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Molecular mechanism offly phototransduction

Page 15: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Response initiation

IP3 + DAGPIP2

PKCGαβγGDP PLCβ

Trp

Low [Na+], [Ca++]

High [Na+], [Ca++]

Ca pump

*GTPGDP

GTP Trp*

Na+, Ca++

DAG

Cast: Rh = Rhodopsin; Gαβγ = G-proteinPIP2 = phosphatidyl inositol-bi-phosphateDAG = diacyl glycerolPLCβ = Phospholipase C -beta ; TRP = Transient Receptor Potential Channel

DAG Kinase

Rh

hv

*Rh*

Page 16: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Positive Feedback

PKC

Na+, Ca++

PLCβ

PIP2 IP3 + DAG

hv

*GαβγGDP GTP

GDP

GTP Trp

Rh

High [Ca++]

Intermediate [Ca++]

DAG

Trp***

Intermediate [Ca] facilitates opening of Trp channelsand accelerates Ca influx.

Ca pump

Page 17: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Negative feedback and inactivation

PKC

Na+, Ca++

PLCβ

PIP2 IP3 + DAG

*GαβγGDP GTP

GDP

GTP

Rh* **

Cast: Ca++ acting directly and indirectly e.g. via PKC = Protein Kinase Cand Cam = CalmodulinArr = Arrestin (inactivates Rh* )

High [Ca++]

High [Ca++]

**Cam ??

Arr

Ca pump

Trp*

Page 18: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Comparison of early steps

From Hardie and Raghu, Nature 413, (2001)

Vertebrate Drosophila

2nd messengers

cGMPDAG

Page 19: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

…and another cartoonc.

d

a.

b.

From Hardie and Raghu, Nature 413, (2001)

Page 20: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

InaD signaling complex

InaDPDZ domainscaffold

From Hardie and Raghu, Nature 413, (2001)

Page 21: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Speed and space: the issue of localization and confinement.

Order of magnitude estimate of activation rates:

G* ~ PLC* ~ k [G] ~ 10μm2/s 100 / .3 μm2 > 1 ms-1

Diffusion limit onreaction rate

Protein (areal) density

! FastEnough !

~ 1μm2/s 10 / .3 μm2 =.03ms-1 << 1 ms-1

Possible role for InaD scaffold !

However if:! TooSlow !

Page 22: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

How “complex” should the model

of a complex network be?

Page 23: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

A naïve model

“Input” TRP channel Ca2+

( G*, PLCβ*, DAG)

low

high

Page 24: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Kinetic equations:Activation stage ( G-protein; PLCβ; DAG ):

ddt

A A IA= − +−τ 1

QB “generator” stage ( Trp, Ca++ ):

ddt

Trp A F Ca Trp F Ca Trp

ddt

Ca Trp Ca Ca Ca Ca

nTrp

ex Ca

* ( ) ( ) *

[ ] *([ ] [ ]) ([ ] [ ])

*= −

= − − −

+−

τ

σ τ

1

10

# open channels Positive and negative feedback

Ca++ influx via Trp* Ca++ outflow/pump

Input (Rh activity)

Page 25: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Feedback Parameterization

F Ca g Ca KCa K

Dm

Dmα α

α

α

α

α( ) ([ ] / )

([ ] / )= +

+1

1

Parameterized by the “strength” gα (~ ratio at high/low [Ca])

Characteristic concentration KDα

and Hill constant mα

Note: this has assumed that feedback in instantaneous…

Page 26: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Null-clines and fixed points

0 100 200 300 400 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A=.2

.05.03

A=.02

[Ca]/[Ca0]

Trp*

/Trp

[Ca]=0

[TRP*]=0null-cline

Page 27: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Problems with the simple model

Model Experiment

• In response to a step of Rh* activity (e.g. in Arr mutant ) QB current relaxes to zero

• Ca dynamics is fast rather than slow no “overshoot”

• Long latency is observed

“High”

fixed point

Page 28: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Order of magnitude estimate of Ca fluxes

[Ca]dark ~ .2μM

[Ca]peak ~ 200μM

1 Ca ion / microvillus

1000 Ca ion / microvillus

30% of 10pA Influx 104 Ca2+ / ms

Hence, Ca is being pumped out very fast ~ 10 ms-1

[Ca] is in a quasi-equilibrium

Note: μ−villus volume ~ 5*10-12 μl

Page 29: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Microvillus as a Ca compartment

Compare 10 ms-1 with diffusion rate across the microvillus:

τ -1 ~ Dca / d2 ~ 1 μm2/ms / .0025 μm2 = 400 ms -1

But diffusion along the microvillus:

τ -1 ~ 1 μm2/ms / 1 μm2 = 1 ms -1 is too slowcompared to 10ms-1

50nm

1-2 um

Hence it is decoupled from the cell.

Note: microvillae could not be > .3μm in diameter,i.e it is possible the diameter is set by diffusion limit

Ca++

Page 30: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Slow negative feedback

Assume negative feedback is mediated by a Ca-binding protein (e.g. Calmodulin??)

ddt

B k Ca B Bx x* *[ ]= − −τ 1

F B g B KB K

Dm

Dm− −

= ++

−( *) ([ *] / )

([ *] / )1

1

Slow relaxation

Page 31: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

A more ‘biochemically correct’ model:ddt

G* ...=

ddt

PLC* ...=

ddt

DAG[ ] ...=

ddt

Trp* ...=

ddt

Ca[ ] ...=

ddt

B[ *] ...= DelayedCa negative feedback

F+

F-

Feedback

Cascadeddt

Rh* ...=

Page 32: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Stochastic effects

Gillespie, 1976, J. Comp. Phys. 22, 403-434see also Bort,Kalos and Lebowitz, 1975, J. Comp. Phys. 17, 10-18

Numbers of active molecules are small !e.g. 1 Rh*, 1-10 G* & PLC*, 10-20 Trp*

Chemical kinetics

Master equation

Numerical simulation

Reaction “shot” noise.

Page 33: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Stochastic simulationEvent driven Monte-Carlo simulationa.k.a. Gillespie algorithm

Gillespie, 1976, J. Comp. Phys. 22, 403-434see also Bort,Kalos and Lebowitz, 1975, J. Comp. Phys. 17, 10-18

Numbers of molecules (of each flavor) #Xa(t) are updated

#Xa(t) #Xa(t) +/- 1 at times ta,i

distributed according to independent Poisson processes with transition rates Γa,+/− . Simulation picks the next “event” among all possible reactions.

Note: simulation becomes very slow if some of the Reactions are much faster then others. Use a “hybrid” method.

Page 34: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

The model is phenomenological…

Many (most?) details are unknown:

e.g. Trp activation may not be directly by DAG,but via its breakdown products;Molecular details of Ca-dependent feedback(s)are not known;etc, etc

there’s much to be explained on a qualitative andquantitative level…

BUT

Page 35: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Identifying “submodules”ddt

G* ...=

ddt

PLC* ...=

ddt

DAG[ ] ...=

ddt

Trp* ...=

ddt

Ca[ ] ...=

ddt

B[ *] ...= DelayedCa negative feedback

F+

F-

Feedback

Cascadeddt

Rh* ...=

Keydynamicalvariablesdefine“Submodules”

Page 36: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Rephrased in a “Modular” form: the “ABC model”

“Input” Channel

B

( Rh*, G*)

Activator(PLCβ∗, Dag)

(TRP)

(Ca-dependent inhibition)

Ca++

Ca++

Activator – Buffer – Ca-channel

Page 37: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Quantum Bump generation

0 200 400 600 800 10000

5

10

15

20

25

20

60

100

140

180

0 600200 400

TRP*

B*/10PLC*

A

Threshold for QB generation

A

High probabilityof TRP channelopening

“INTEGRATE & FIRE”process

B*

(A,B) - “phase” plane

Page 38: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

What about null-cline analysis?Problems:

• 3 variables A,B,C• Stochasticity

• DiscretenessC

B1 2 3 40

“Ghost”fixed point

dXdt

x x x x= → → + = → −0 1 1 Prob ( Prob () )

Generalized “Stochastic Null-cline”

Page 39: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Can one calculate anything?E.g. estimate the threshold for QB generation:

A-1 A A+1PLC*

C = 0 1 2

PLC*

Am Am f([Ca])Positive feedbackkicks in once channels open

Threshold A = AT such that

Prob (AT -> AT +1) = Prob (C=0 -> C=1)

NOTE: Better still to formulate as a “first passage” problem

Page 40: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Condition for QB generation

PLC*

[Ca]

12

3

4

0

[Ca]

A

Prob (C=1 C=2) > Prob (C=1 C=0)

Amax~ PLC*

*AT

AT > AQB ([Ca])

AQB ([Ca])

Bistable region/Bimodal response

Reliable QBgeneration

Page 41: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Quantum Bump theory versus reality

Model ExperimentLatencyhistogram

Average QBprofile

Page 42: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Fitting the data: QB wave-formTr

p*/T

rpto

t

Time (arbs)

There is a manifoldof parameter valuesproviding good fitfor < QB > shape !!

Page 43: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

So what ???“With 4 parameters I canfit an elephant and with 5 it will wiggle its trunk.”

E. Wigner

Page 44: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Non-trivial “architectural” constraints

Despite multiplicity of fits, certain constraints emerge:

• Trp activation must be cooperative• Activator intermediate must be relatively stable:

“integrate and fire” regime.• Negative feedback must be delayed• Multiple feedback loops are needed

Etc, …Furthermore:Fitting certain relation between parameters:

“phenotypic manifold”- the manifold in parameter space corresponding to the same quantitative phenotype.

Page 45: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Many more features to explain quantitatively!

Page 46: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Constraining the parameter regime…

Help from the data on G-protein hypomorph flies:

• # of G-proteins reduced by ~100• QB “yield” down by factor of 103

• Increased latency (5-fold)• Fully non-linear QB with amplitude

reduced about two-fold

Page 47: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

G-protein hypomorphModel: Experiment:

• Single G* and PLC* can evoke a QB !!• Reduced yield explained by PLC* deactivating

before A reaches the QB threshold• Relation between yield reduction and

increased latency. # PLC* ~ 5 for WT

Page 48: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

What happens in response to continuous activation ?e.g. if Rh* fails to deactivate

Page 49: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Persistent Rh* activityRelaxation Oscillator

20

60

100

140

180

100 500200 300 400

Trp*

B*

A

Unstable Fixed Point

(A,B*) phase plane

A

B*

Page 50: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

QB trains: theory versus experiment

Qualitative but not quantitative agreement so far…

Model:Arrestin mutant (deficient in Rh* inactivation):

Page 51: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Predicted [Caex] dependence

Page 52: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Observed external [Ca2+] dependence

[Caext] mM

Coe

ffof

var

iatio

n

Peak current

Henderson and Hardie, J.Physiol. (2000) 524.1, 179

Page 53: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

What does one learn from the model?

e.g. Mechanisms/parameters controlling:Threshold for QB generation.QB amplitude fluctuations.Latency.Yield (or response failure rate)Latency distribution.

Functional dependences:e.g. dependence of everything on [Ca++ ]ext

Page 54: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Modeling methodology questions

• Need an intelligent method of searching the parameter spaceand of characterizing the parameter manifold ??? How doesEvolution search the parameter space?

• Characterizing the “space of models”??

• “Convergence proof”?? Given a model that fits N measurements can we expect that it will fit N+1 (even with additional parameters)?

• How accurate should a prediction be for us to believe that the model is correct ?? Unique??

Page 55: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

Summary and ConclusionA phenomenological model can explain observations and make numerous falsifiable predictions (especially for the functional dependence on parameters).

Insight into HOW the system works from understandingthe most relevant parameters and processes.

?????Can one get any insight into WHY the system is constructed the way it is (e.g. vertebrate versus insect)

?????

Page 56: Eyes everywhere…boulderschool.yale.edu/sites/default/files/files/... · GTP GDP Gα GTP Trp* Na+, Ca++ DAG Cast: Rh = Rhodopsin; Gαβγ= G-protein PIP 2 = phosphatidyl inositol-bi-phosphate

AcknowledgementsAlain Pumir, (Inst Non-Lineare Nice, France)

Rama Ranganathan(U. Texas,SW Medical School)

Anirvan Sengupta, (Rutgers)

Peter Detwiler (U. Washington)

Sharad Ramanathan (Harvard)