28
General Kinetics and Reverse Dosimetry AXLR8-3 Meeting June 11 2012 Harvey Clewell & Mel Andersen The Hamner Institutes for Health Sciences -5 -4 -3 -2 -1 0 1 2 3 0 50 100 150 Ln Conc (uM) Time (min) Hepatic Clearance Plasma Protein Binding Estimated Renal Clearance Reverse Dosimetry Exposure Tissue Dose

Exxon Mobil Value Added Proposition - AXLR8

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

General Kinetics and Reverse Dosimetry

AXLR8-3 Meeting June 11 2012

Harvey Clewell & Mel Andersen

The Hamner Institutes for Health Sciences

-5-4-3-2-10123

0 50 100 150

Ln C

onc

(uM

)

Time (min)

Hepatic Clearance

Plasma Protein Binding

Estimated Renal Clearance

Reverse Dosimetry

Exposure Tissue Dose

ACC-LRI program had interests in tools to interpret human biomarkers. Hamner hired Harvey Clewell in 2005 to lead a PBPK based approach, led to a short course at Hamner and research publications, including a review paper.

http://www.thehamner.org/pbpk-course-2006

Relationship of Human Biomonitoring Data to Animal Toxicity Data

Chemical concentrations in human blood from biomonitoring studies

Human exposures (Chemical concentrations in

environment)

Chemical concentrations in animal blood in

toxicity studies

Animal exposures (Administered doses in

toxicity studies)

Pharmacokinetic modeling

Pharmacokinetic Modeling

Traditional risk assessment

Margin of safety

Forward dosim

etry

Reverse dosim

etry

Using Reverse Dosimetry to Interpret Human Biomonitoring Data

• Issue: – Detection of chemicals in human blood (“chemical trespass”) – Uncertain relationship to doses in animal toxicity studies

• Goal: – Reconstruct exposures – Compare to regulatory guidelines

(MCL, RfD, etc) • Tools:

– Pharmacokinetic (PBPK) models – Monte Carlo analysis of exposure variability and sampling

uncertainty • Products:

– Margins of safety – Objective interpretation of biomonitoring data

Example of Reverse Dosimetry for an Individual (Clewell et al, 1999)

• A PBPK model estimated an Iraqi woman’s exposure to methyl mercury (MeHg) through consumption of contaminated bread during pregnancy. – The exposure was estimated based on the concentrations of MeHg in

her hair

• Using the estimated ingestion rate, the model simulated:

– MeHg concentrations measured in the mother’s blood after she was admitted to the hospital

– MeHg concentration in the blood of the infant at birth

• The model then estimated fetal exposures, e.g.:

– The peak fetal blood concentration during gestation

– The average fetal brain concentration during the third trimester

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

Days

MeHg

in Ha

ir (ppm

)

0

1

2

3

4

5

6

MeHg

in Blo

od (pp

m)

Maternal hairMaternal bloodInfant blood

MaternalExposure

Pregnancy

42 µg/kg/day108 days

Example of Reverse Dosimetry with a PBPK Model Iraqi woman exposed during pregnancy

to grain contaminated with methylmercury

(Clewell et al. 1999)

Reverse Dosimetry with QSAR-Estimated Partition Coefficients and Metabolism Parameters

Exposure Parameters

Partition Coefficients

Kinetic Parameters

Physiological Parameters KTSD

CI

Fat TissuePF CF VF

Rapidly Perfused TissuesPR CR VR

Slowly Perfused TissuesPS CS VS

Skin

Gut TissuePG CG VG

QCLung CAQP CX

QF

QR

QS

QSkn

Liver TissuePL CL VL

StomachDuodenum PDOSE

Surface

P

KTD

KASKAD

VMAX, KMKF

CVGCVL

CVSkn

CVS

CVR

CVF

CVQC

QG

QL

KTSD

CI

Fat TissuePF CF VF

Rapidly Perfused TissuesPR CR VR

Slowly Perfused TissuesPS CS VS

Skin

Gut TissuePG CG VG

QCLung CAQP CX

QF

QR

QS

QSkn

Liver TissuePL CL VL

StomachDuodenum PDOSE

Surface

P

KTD

KASKAD

VMAX, KMKF

CVGCVL

CVSkn

CVS

CVR

CVF

CVQC

QG

QL

Time of the day

Blood Levels

QSAR

Bounding

(Liao et al. 2007)

Predicted Population Distribution of Trichloroethylene Blood Concentrations

LOG10(TCE concentration in blood [mg/L])

-7.0 -6.0 -5.0 -4.0 -3.0

Freq

uenc

y

0

100

200

300

400

500

600

QSPR-based Monte CarloPublished model-based Monte Carlo

Variability

Variability + Uncertainty

Reverse Dosimetry Will Be Necessary to Relate Nominal/Actual Concentrations in In Vitro Assays to the

Equivalent In Vivo Human Exposure

In Vitro Toxicity Assays

EC50 or Data on Concentration-

Response Estimate of Human

Equivalent Dose

QIVIVE*

* Quantitative In Vitro to In Vivo Extrapolation

QIVIVE Approach

Potential Target Tissue

Biokinetic Model

In Vivo Human Toxicty Estimate

In vitro Dynamics

In Vitro Kinetics

QSAR QSPR

Metabolite ID

Metabolite ID

Metabolite ID

Nature of Toxicity

Hepatic clearance Intestinal uptake / metabolism

Renal clearance Partitioning

QIVIVE

Defining Dosimetry and Exposure in High Throughput Toxicity Screens - 1st Generation Approach

Provided by ToxCast

Data Generated In Vitro

398 In Vitro ToxCast Assays

ToxCast AC50 Values

Estimated Target Tissue Bioactivity

Concentration

Metabolic Stability Plasma Protein Binding

Toxicokinetic Parameters

Upper Level of Human

Exposure

Predicted Assay Oral Equivalent

Doses

Data Obtained from Registration Documents

In Vitro-to-In Vivo Extrapolation

Chemicals with Potential to Perturb Cellular Pathways at Relevant

Human Exposure Levels Computational Modeling

Rusty Thomas

Distribution of AC50 Values for the In Vitro ToxCast Assays (Rotroff et al. 2010)

Triclosan

Pyrithiobac-sodium

AC

50C

once

ntra

tion

(µM

)

Emam

ectin

Ben

zoat

eBu

prof

ezin

Pyra

clost

robi

nEt

oxaz

ole

Para

thio

nIso

xabe

nPr

yrith

ioba

c-so

dium

Bent

azon

e2,

4-D

Prop

etam

phos

Atra

zine

Brom

acil

Feno

xyca

rbRo

teno

neFo

rchl

orfe

nuro

nM

ethy

l Par

athi

onCy

prod

inil

Isoxa

fluto

leAc

etam

iprid

Tricl

osan

Zoxa

mid

eM

GKDi

uron

Bens

ulid

e Ox

ytet

racy

cline

DH

Dicr

otop

hos

Thia

zopy

rTr

iadi

mef

onM

etrib

uzin

Fena

mip

hos

Clot

hian

idin

Bisp

heno

l-AAl

achl

orAc

etoc

hlor

Diaz

oxon

Pyrit

hiob

ac-s

odiu

m

Reverse Dosimetry Exposure Modeling for Interpreting In Vitro Assay Results

-5-4-3-2-10123

0 50 100 150

Ln C

onc

(uM

)

Time (min)

Hepatocellular Clearance

Plasma Protein Binding

Estimated Renal

Clearance

Prediction of in vivo clearance

Reverse Dosimetry

Equivalent Exposure

Concentration from in vitro

assay

In Vitro Assays for Characterizing Steady-State Pharmacokinetics

Human Hepatocytes

(10 donor pool)

Human Plasma

(6 donor pool)

Add Chemical (1 and 10 uM)

Add Chemical (1 and 10 uM)

Remove Aliquots at 15, 30, 60,

120 min

Analytical Chemistry

Analytical Chemistry

-5-4-3-2-10123

0 50 100 150

Ln C

onc

(uM

)

Time (min)

Hepatic Clearance

Plasma Protein Binding

Equilibrium Dialysis

At Low Concentrations the Kinetics are Linear

[Conc]SS = DR * BW

ClExtrinsic

ClHepatic ClRenal

FU, BFPortal, MHepatic FU, GFR

*Assume 100% GI absorption.

Dis

trib

utio

n of

Ora

l Equ

ival

ent

Valu

es a

nd

Esti

mat

ed E

xpos

ures

(m

g/kg

/day

)

Distribution of Oral Equivalent Values for the ToxCast Assays and Comparison with Exposures

Triclosan

Pyrithiobac-sodiumEm

amec

tin B

enzo

ate

Bupr

ofez

inPy

raclo

stro

bin

Etox

azol

ePa

rath

ion

Isoxa

ben

Pryr

ithio

bac-

sodi

umBe

ntaz

one

2,4-

DPr

opet

amph

osAt

razin

e Br

omac

ilFe

noxy

carb

Rote

none

Forc

hlor

fenu

ron

Met

hyl P

arat

hion

Cypr

odin

ilIso

xaflu

tole

Acet

amip

ridTr

iclos

anZo

xam

ide

MGK

Diur

onBe

nsul

ide

Oxyt

etra

cycli

ne D

HDi

crot

opho

sTh

iazo

pyr

Tria

dim

efon

Met

ribuz

inFe

nam

ipho

sCl

othi

anid

inBi

sphe

nol-A

Alac

hlor

Acet

ochl

orDi

azox

on

Pyrit

hiob

ac-s

odiu

m

(Rotroff et al., Toxicol. Sci., 2010)

Comparing In Vitro Bioactive Doses with Exposure

Fent

in H

ydro

xide

Clo

prop

Qui

noxy

fen

Spiro

xam

ine

Endo

sulfa

nIp

rodi

one

Nic

losa

mid

eH

alos

ulfu

ron-

met

hyl

Cyp

rodi

nil

Prom

eton

Emam

ectin

ben

zoat

eA

ciflu

orfe

nPa

rath

ion

Etox

azol

eFe

noxy

carb

Lind

ane

Etha

lflur

alin

2,4-

DB

Tri-a

llate

Fenb

ucon

azol

eC

hlor

pyrif

os-m

ethy

lB

ensu

lfuro

n-m

ethy

lC

hlor

etho

xyfo

sIs

oxab

enD

iclo

fop-

met

hyl

Prop

etam

phos

Trifl

oxys

ulfu

ron-

sodi

umIn

doxa

carb

Dic

hlor

prop

MC

PAB

enta

zone

Qui

nclo

rac

Dic

ofol

Pros

ulfu

ron

Iodo

sulfu

ron-

met

hyl-s

odiu

mPy

rithi

obac

-sod

ium

Esfe

nval

erat

e2,

4-D

Dic

hlor

anIm

azal

ilC

lofe

ntez

ine

Prod

iam

ine

PFO

SN

apro

pam

ide

Bife

nthr

inPr

omet

ryn

Din

icon

azol

eTh

idia

zuro

nPi

clor

amFi

pron

ilPr

opaz

ine

Nitr

apyr

inTe

bufe

npyr

adR

oten

one

Bro

mac

ilFe

narim

olD

iclo

sula

mPi

rimip

hos-

met

hyl

Etha

met

sulfu

ron-

met

hyl

Forc

hlor

fenu

ron

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000O

ral E

quiv

alen

t Dos

e or

Est

imat

ed E

xpos

ure

(mg/

kg/d

ay)

Lact

ofen

Dith

iopy

rA

nila

zine

Chl

orpr

opha

mD

iazi

non

Flum

etra

linPy

racl

ostr

obin

Pyrid

aben

Clo

roph

ene

Oxa

diaz

onC

oum

apho

sTe

trac

onaz

ole

Thio

benc

arb

Flum

etsu

lam

Prop

yzam

ide

Mon

o-n-

buty

l Pht

hala

teM

esos

ulfu

ron-

met

hyl

Am

etry

nC

yclo

ate

Feni

trot

hion

Hex

ythi

azox

Triti

cona

zole

Met

hoxy

feno

zide

Fent

hion

Peno

xsul

amC

yrom

azin

eA

traz

ine

Prop

anil

Tria

dim

enol

Flud

ioxo

nil

Milb

emec

tinFl

uoxa

stro

bin

Pipe

rony

l but

oxid

eTr

iclo

pyr

Imaz

apyr

Cyp

roco

nazo

leB

utac

hlor

Nov

alur

onIm

azaq

uin

But

ylat

ePe

ndim

etha

linO

xasu

lfuro

nPh

osal

one

Perm

ethr

inFl

urox

ypyr

Terb

acil

Sim

azin

eB

utra

linR

esm

ethr

inB

upro

fezi

nM

ethy

l Par

athi

onFl

uom

etur

onB

enflu

ralin

Bos

calid

Ace

tam

iprid

Flut

olan

ilC

inm

ethy

linPr

ochl

oraz

Trifl

ural

inN

orflu

razo

n

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

Ora

l Equ

ival

ent D

ose

or E

stim

ated

Exp

osur

e(m

g/kg

/day

)

Tebu

pirim

fos

Trifl

umiz

ole

Tric

losa

nFo

sthi

azat

ePy

rimet

hani

lA

mitr

azH

PTE

MG

KD

iuro

nM

etho

xych

lor

Tria

sulfu

ron

Qui

ntoz

ene

Fora

msu

lfuro

nFl

uazi

nam

Rim

sulfu

ron

Dife

noco

nazo

leB

enom

ylPr

opox

urM

etsu

lfuro

n-m

ethy

lTh

iabe

ndaz

ole

Isaz

ofos

Myc

lobu

tani

lM

alat

hion

PFO

ATe

fluth

rinTe

bufe

nozi

deIs

oxaf

luto

leEP

TCFl

usila

zole

Hex

acon

azol

eZo

xam

ide

Fena

mid

one

Ald

icar

bD

isul

foto

nFl

umio

xazi

nEt

ridia

zole

Dic

hlob

enil

Tepr

alox

ydim

2-Ph

enyl

phen

olD

imet

hoat

eTh

iazo

pyr

Dife

nzoq

uat m

ethy

l sul

fate

Dic

roto

phos

Aba

mec

tinM

olin

ate

Ben

sulid

eD

imet

hom

orph

6-D

esis

opro

pyla

traz

ine

Oxy

tetr

acyc

line

dihy

drat

eTh

iam

etho

xam

Imaz

etha

pyr

Clo

thia

nidi

nD

iphe

nyla

min

eFe

noxa

prop

-eth

ylA

zoxy

stro

bin

Ory

zalin

Clo

maz

one

Seth

oxyd

imM

etrib

uzin

Die

thyl

tolu

amid

e

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

Ora

l Equ

ival

ent D

ose

or E

stim

ated

Exp

osur

e(m

g/kg

/day

)

Chl

oron

ebPa

clob

utra

zol

Pyrip

roxy

fen

Mes

otrio

neD

icam

baO

xyflu

orfe

nC

acod

ylic

aci

dA

ceph

ate

Chl

orid

azon

Linu

ron

Imaz

amox

Met

hida

thio

nC

arbo

xin

Imaz

apic

Pirim

icar

bO

xam

ylEt

hopr

opC

yana

zine

Fena

mip

hos

Tria

dim

efon

Cyc

lani

lide

Thia

clop

ridFl

urox

ypyr

-mep

tyl

Phen

oxye

than

olB

isph

enol

-ATe

tram

ethr

inM

etal

axyl

Die

thyh

exyl

pht

hala

teFe

nhex

amid

Icar

idin

Trifl

usul

furo

nPr

opam

ocar

b H

Cl

Ben

dioc

arb

Tebu

thiu

ron

Vinc

lozo

linTr

ibuf

osB

ifena

zate

Imid

aclo

prid

Met

olac

hlor

Etho

fum

esat

eTh

ioph

anat

e m

ethy

lFl

ufen

acet

Daz

omet

Bro

mox

ynil

Sulfe

ntra

zone

Dim

ethe

nam

idS-

Bio

alle

thrin

Car

bary

lA

lach

lor

Hex

azin

one

Azi

npho

s-m

ethy

lA

ceto

chlo

rd-

cis,

tran

s- A

lleth

rinPy

met

rozi

neFo

rmet

anat

e H

Cl

Flua

zifo

p-P-

buty

lD

ibut

yl p

htha

late

Dim

ethy

l pht

hala

teD

iazo

xon

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

Ora

l Equ

ival

ent D

ose

or E

stim

ated

Exp

osur

e(m

g/kg

/day

)

Wetmore et al., Tox Sci., 2011

A total of 9.9% of ToxCast Phase I chemicals have in vitro bioactivity at oral equivalent doses that overlap with the most highly exposed subpopulation.

Comparison of in vitro-to-in vivo extrapolation results with estimates based on in vivo PK

Chemical

PK- or PBPK-Derived

Css (µM)

IVIVE

Cssa,b (uM)

IVIVE

Caco-2c Css

a,b uM)

IVIVE, Fub=0.99

Css (uM)

IVIVE Fub=0.99, Caco-2c

Css (uM)

2,4-dichlorophenoxyacetic acid 9.05-90.05 39.25 40.34 39.25 40.34

Bisphenol-A < 0.13d 0.35 0.40 0.06 0.07

Cacodylic acid 1.80 3.06 tbve 3.06 tbve

Carbaryl 0.03 0.04 0.04 0.03 0.03

Fenitrothion 0.03 17.91 --f 0.10 --f

Lindane 0.46 13.21 tbve 0.07 tbve Oxytetracycline dihydrate 0.36 2.00 0.44 2.00 0.44 Parathion 0.17 24.63 --f 0.14 --f Perfluorooctanoic acid

20,120 g 55.34 g 58.19 g 0.4 g 0.4 g

Picloram 0.27 57.63 32.01 0.37 0.19

Thiabendazole 0.45 13.76 15.20 13.76 15.20

Triclosan 2-10 1.56 1.59 0.01 0.01

Conclusions

• In vitro assays for hepatocyte clearance, plasma protein binding, and Caco-2 transport can reduce uncertainty regarding the chronic in vivo doses that are equivalent to in vitro toxicity assay concentrations from over 4 orders of magnitude to less than 2

• More complicated approaches are necessary for toxicity mediated by metabolites, for acute exposures, and for compounds with more varied physicochemical properties

Liver blood

Liver tissue

http://www.thehamner.org/pbpk-course-2010

Tools for QIVIVE explained:

Key research needed to support QIVIVE

In Vitro Liver Bioreactor for Metabolite Identification & Kinetics

Ed LeCluyse

Other Bioreactor Applications

• Assessing liver toxicity on repeat dosing • Establishing factors affecting clearance for

chemicals with broad ranges of physical chemical properties

• Modeling the platform to identify and modify liver micorenvironments

• Create an in vitro ADME platform for assessing kinetics and tissue responses

• Support human on a chip approaches

Microfluidic Human on a Chip

(Sung et al. 2010)

Considerations for scale-up to a human on a chip – based on physiological sizes of organs and flow characteristics

Building a Human ADME mimic for Human on a chip that may have broader applications

Research Area

Characterization of free concentration in cell-based assays - binding - metabolism - active transport

In vitro models - concurrent intestinal absorption/metabolism - dermal absorption - blood/brain barrier - hepatocyte clearance - pathway/metabolite ID/kinetics (organotypic) - renal clearance

Data collection to support QSPR modeling - metabolite identification - protein binding in cell-based assays - tissue partitions (some classes of compounds) - restricted vs unrestricted hepatic clearance - metabolism rates - gut absorption/metabolism (non-druglike cmpds) - transporter substrates/renal clearance

QIVIVE case studies - classes of physicochemical properties - different metabolism pathways - parent vs stable metabolite vs reactive metabolite - portal of entry vs liver vs remote toxicity

Development of generic PBPK modeling platforms - user friendly, open access - database for physiological parameters - inhalation, dermal, and oral exposure - multiple parallel metabolic pathways

Kinetic research needs to support in vitro based risk assessment

Thank you for your attention Questions