17
1 Electronic Supplementary Information Extremely High Arsenic Removal Capacity for Mesoporous Aluminium Magnesium Oxide Composites Wei Li,‡ a Dehong Chen, b Fang Xia, a,c Jeannie Z. Y. Tan, a,b Pei-Pei Huang, d Wei-Guo Song, d Natalita M. Nursam a,b and Rachel A. Caruso* a,b a CSIRO Manufacturing, Clayton South, Victoria, 3169, Australia. b Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia. c School of Engineering and Information Technology, Murdoch University, Murdoch, West Australia, 6150, Australia. d Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. Present address: International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal. Corresponding author email: [email protected] Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2015

Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

1

Electronic Supplementary Information

Extremely High Arsenic Removal Capacity for Mesoporous

Aluminium Magnesium Oxide Composites

Wei Li,‡a Dehong Chen,b Fang Xia,a,c Jeannie Z. Y. Tan,a,b Pei-Pei Huang,d Wei-Guo Song,d

Natalita M. Nursama,b and Rachel A. Caruso*a,b

a CSIRO Manufacturing, Clayton South, Victoria, 3169, Australia.

b Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne,

Melbourne, Victoria, 3010, Australia.

c School of Engineering and Information Technology, Murdoch University, Murdoch, West

Australia, 6150, Australia.

d Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese

Academy of Sciences, Beijing, 100190, P. R. China.

‡ Present address: International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José

Veiga, Braga, 4715-330, Portugal.

Corresponding author email: [email protected]

Electronic Supplementary Material (ESI) for Environmental Science: Nano.This journal is © The Royal Society of Chemistry 2015

Page 2: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

2

Table S1 Physical properties of the mesoporous aluminium magnesium oxide composites calcined at 900 °C.

Sample SBET

[m2 g-1]a

PSD

[nm]b

Vsp

[cm3 g-1]c

Phase

meso-Al-900 172.8 10.80 0.45 γ-Al2O3

meso-90Al10Mg-900 174.9 10.84 0.47 γ-Al2O3 & MgAl2O4 spinel

meso-80Al20Mg-900 144.1 12.08 0.41 γ-Al2O3 & MgAl2O4 spinel

meso-70Al30Mg-900 91.6 13.52 0.31 γ-Al2O3 & MgAl2O4 spinel

meso-50Al50Mg-900 121.9 13.41 0.36 MgAl2O4 spinel & cubic MgO

meso-30Al70Mg-900 101.4 8.57 0.27 MgAl2O4 spinel & cubic MgO

a SBET = BET specific surface area obtained from nitrogen adsorption data in the P/P0 range from 0.05 to 0.20. b PSD = pore size distribution determined by using the BJH method from the adsorption branch. c Vsp = single point pore volume calculated from the adsorption isotherm at P/P0 = 0.98.

Table S2 As(V) adsorption kinetic parameters of the mesoporous aluminium magnesium oxide composites calcined at 400 °C.

Samples Pesudo-second-order kinetic parameters

k [g mg-1 min-1] qe [mg g-1] R2

meso-Al-400 1.02×10-4 147.71 0.999

meso-90Al10Mg-400 9.25×10-5 125.63 0.996

meso-80Al20Mg-400 7.14×10-5 178.57 0.998

meso-70Al30Mg-400 5.20×10-5 181.82 0.996

meso-50Al50Mg-400 5.76×10-5 165.84 0.998

meso-30Al70Mg-400 2.67×10-4 74.52 0.998

meso-Mg-400 1.62×10-4 207.90 0.999

Al-400 1.35×10-4 17.30 0.897

Page 3: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

3

Table S3 As(V) adsorption isotherm parameters of the mesoporous aluminium magnesium oxide composites calcined at 400 °C.

Sample Highest adsorptioncapacity [mg g-1]a

Langmuir isotherm Freundlich isotherm

qm [mg g-1] b R2 KF 1/n R2

meso-Al-400 299.03 271.83 0.4057 0.9716 94.55 0.1806 0.8621

meso-90Al10Mg-400 430.92 333.29 0.2536 0.8485 100.43 0.2100 0.9437

meso-80Al20Mg-400 502.97 422.09 0.0590 0.8902 95.85 0.2456 0.9795

meso-70Al30Mg-400 487.56 438.80 0.0321 0.8916 89.69 0.2531 0.9838

meso-50Al50Mg-400 466.02 416.25 0.0292 0.8778 86.18 0.2486 0.9730

meso-30Al70Mg-400 396.06 587.45 0.0022 0.8630 18.33 0.4482 0.9212

meso-Mg-400 912.32 928.95 0.1296 0.9692 242.32 0.2346 0.8059

Al-400 72.20 72.48 0.0259 0.9120 15.42 0.2362 0.9635

a The highest adsorption capacity was achieved using an initial arsenic concentration of 1020 mg L-1.

Table S4 As(V) adsorption isotherm parameters of the mesoporous aluminium magnesium oxide composites calcined at 900 °C.

Sample Highest adsorption capacity [mg g-1]a

Langmuir isotherm Freundlich isotherm

qm [mg g-1] b R2 KF 1/n R2

meso-Al-900 79.21 76.36 0.5496 0.9748 38.29 0.1203 0.8421

meso-90Al10Mg-900 92.61 87.76 1.9477 0.9732 46.58 0.1134 0.8331

meso-80Al20Mg-900 70.94 58.45 1.4830 0.9254 32.65 0.1090 0.9206

meso-70Al30Mg-900 43.78 35.42 0.7144 0.8900 20.10 0.1036 0.8942

meso-50Al50Mg-900 97.56 91.32 0.5279 0.8189 46.71 0.1163 0.7739

meso-30Al70Mg-900 165.85 159.01 1.079 0.9087 71.23 0.1397 0.7750

a The highest adsorption capacity was achieved using an initial arsenic concentration of 1020 mg L-1.

Table S5 As(III) adsorption isotherm parameters of the mesoporous aluminium magnesium oxide composites calcined at 400 °C.

Page 4: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

4

Sample Highest adsorptioncapacity [mg g-1]a

Langmuir isotherm Freundlich isotherm

qm [mg g-1] b R2 KF 1/n R2

meso-Al-400 114.85 120.49 0.1091 0.9815 15.37 0.3171 0.9497

meso-90Al10Mg-400 143.12 157.58 0.0192 0.9901 18.10 0.3336 0.8784

meso-80Al20Mg-400 390.59 424.26 0.0011 0.9320 2.19 0.8137 0.9861

meso-70Al30Mg-400 330.58 416.24 0.0018 0.9452 3.21 0.7288 0.9720

meso-50Al50Mg-400 240.78 394.71 0.0022 0.9919 4.18 0.6243 0.9918

meso-30Al70Mg-400 120.39 196.06 0.0019 0.9731 1.91 0.6264 0.9694

meso-Mg-400 812.84 848.72 0.1007 0.9214 162.8 0.2945 0.7509

a The highest adsorption capacity was achieved using an initial arsenic concentration of 820 mg L-1.

Table S6 Atomic ratios of the mesoporous aluminium magnesium oxide composites calcined at 400 °C before and after adsorption of 400 mg L-1 of As(V) at pH 3.0 or As(III) at pH 7.0 obtained from XPS analysis.

Sample Atomic ratio

Al Mg Al/Mg As

meso-Al-400 16.07 0 0

As(V)-meso-Al-400 25.85 0 4.61

As(III)-meso-Al-400 17.27 0 2.23

Meso-80Al20Mg-400 1.37 6.22 4.54 0

As(V)-meso-80Al20Mg-400 10.31 1.11 9.29 3.07

As(III)-meso-80Al20Mg-400 17.06 1.72 9.92 4.41

meso-Mg-400 0 10.39 0

As(V)-meso-Mg-400 0 20.6 5.9

As(III)-meso-Mg-400 0 13.86 3.38

Page 5: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

Figure at 400 °C

S1 A photoC.

ograph of thhe as-preparred mesoporrous aluminnium magneesium oxide

5

es calcined

Page 6: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

FPT7a

Figure S2 TParticle sizeTEM image70Al30Mg-9analyzed for

TEM imagee distributioes of (g) 900 and parr particle siz

es of (a) mon of (d) m

meso-Al-90rticle size dze distributio

meso-50Al50meso-50Al50

00, (h) medistribution on statistics

0Mg-400, (b0Mg-400, (eso-90Al10of (k) mesoby using so

b) meso-30e) meso-30

0Mg-900, (o-70Al30Moftware Nan

Al70Mg-400Al70Mg-40i) meso-80

Mg-900. Ovenomeasure 1

00 and (c) m00 and (f) m0Al20Mg-90er 150 nano1.25 and Ori

6

meso-Mg-4meso-Mg-400, (j) meoparticles wigin 9.0.

400. 400. eso-

were

Page 7: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

Figure control s

Figure magnesi

0.0

Inte

ns

ity

(a.u

.)

a

S3 TEM imsample Al-4

S4 (a) Syncium oxide s

0.1

mage (a), X400 synthesi

chrotron SAamples with

0q (Å )-1

meso-Ameso-9meso-8meso-7meso-5meso-3meso-M

XRD patternized in the a

AXS and (bh varying M

0.2

Al-90090Al10Mg-90080Al20Mg-90070Al30Mg-90050Al50Mg-90030Al70Mg-900Mg-900

n (b) and thabsence of t

b) wide angMg/Al molar

10

Inte

ns

ity

(a.u

.)

b

0.3

00000

he nitrogen the P123 sof

le XRD patr ratios calci

20 302

gas sorptioft template.

tterns of meined at 900 °

0 40 502-Theta (deg

n isotherm

esoporous a°C.

0 60 70

meso-Al-900meso-90Al10meso-80Al20meso-70Al30meso-50Al50meso-30Al70meso-Mg-90

gree)

7

(c) of the

aluminium

0 80

00Mg-9000Mg-9000Mg-9000Mg-9000Mg-900

00

Page 8: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

8

Figure S5 The full XPS survey of meso-Al-400, meso-80Al20Mg-400 and meso-Mg-400.

0 200 400 600 800 1000 1200 1400

meso-Al-400

meso-80Al20Mg-400

meso-Mg-400Mg 1s

O 1s

C 1s

Al 2p

Mg 2p

Al 2s

Mg 2s Mg 1s

Mg

Aug

er

O 2

s

Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

Page 9: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

9

Figure S6 Nitrogen gas sorption isotherms of the mesoporous aluminium magnesium oxides with varying Mg/Al molar ratios calcined at 900 °C and (b) the corresponding pore size distribution derived from the adsorption branches based on the BJH model. Each subsequent curve is shifted up the y axis by 30 cm3 g-1 in (a) and 0.01 cm3 g-1 nm-1 in (b), for clarity.

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

meso-Mg-900meso-30Al70Mg-900meso-50Al50Mg-900meso-70Al30Mg-900

meso-80Al20Mg-900

meso-90Al10Mg-900meso-Al-900

Pore Diameter (nm)

dV

/dD

(cm

g n

m )

3-1

-1

b

Relative Pressure (P/P )0

Vo

lum

eA

dso

rbed

(cm

g

)3

-1

a

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

400

500meso-Mg-900meso-30Al70Mg-900meso-50Al50Mg-400meso-70Al30Mg-900meso-80Al20Mg-900meso-90Al10Mg-900meso-Al-900

Page 10: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

Figure varying pH = 3.0

Figure SpermissiWiley-B

2A

s(V

) u

pta

ke (

mg

g

)-1

S7 AdsorptMg/Al mol

0, the initial

S8 Distribution [P. Rav

Blackwell, U

0

0

50

100

150

200

Eq

tion isotherlar ratios cal As(V) con

tion of As(Vvenscroft, HUSA 2009, p

200

uilibrium

rms of As(Valcined at 90centration r

V) and As(IH. Brammerpp. 25]. Cop

400

concentr

V) on meso00 °C. Experanged from

III) species r, K. Richarpyright 200

600 80

ration of A

oporous alumerimental co

m 10 to 1000

under differrds, Arsenic

09, John Wil

00 1000

As(V) (mg

minium maonditions: do mg L-1.

rent pH valuc Pollution:ley & Sons.

0 1200

L )-1

agnesium oxose = 0.5 g

ues. Reprod: A Global

meso-Al-900meso-90Al10meso-80Al20meso-70Al30meso-50Al50meso-30Al70

10

xides with L-1, initial

duced with Synthesis,

Mg-900Mg-900Mg-900Mg-900Mg-900

Page 11: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

11

Figure S9 Effect of co-existing anions on the adsorption capacities of meso-Al-400, meso-80Al20Mg-400, meso-70Al30Mg-400 and meso-Mg-400 for As(V). Experimental conditions: dose = 0.5 g L-1, initial pH = 6.0, initial As(V) concentration = 50 mg L-1; initial concentration of co-existing anions: 10 mg L-1 of NO3

-, 200 mg L-1 of Cl-, 200 mg L-1 of SO42-, 50 mg L-1 of CO3

2-, 50 mg L-1 of SiO3

2- or 50 mg L-1 of PO43-.

0

20

40

60

80

100

120

meso-Al-400meso-80Al20Mg-400meso-70Al30Mg-400meso-Mg-400

0

20

40

60

80

100

As(V

) u

pta

ke (

mg

g )

As(V

) rem

oval p

erc

en

tag

e (%

)

As(V) only NO Cl SO CO SiO PO3- -

42-

32-

32-

43-

Co-existing anions

&&&&

-1

Page 12: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

Figure 400 afte

Figure and As(400 and

20

Inte

nsi

ty (

a.u

.)

a

S10 TEM ier adsorption

S11 XRD pIII) at the in

d (c) meso-M

0 40

2-Theta (d

After ads

After ads

images of (n of 400 mg

patterns of tnitial pH of

Mg-400.

60 8

egree)

meso-Al-400

sorption of As(V)

sorption of As(III)

(a) meso-Alg L-1 of As(V

the adsorbenf 3.0 and 7.0

80 20

Inte

nsi

ty (

a.u

.)

b

l-400, (b) mV) solution

nts before a0, respectiv

40

2-Theta (degre

meso-8

After adsorp

After adsorp

meso-80Al20at an initial

and after advely: (a) me

60 80

ee)

0Al20Mg-400

ption of As(V)

ption of As(III)

Inte

nsi

ty (

a.u

.)

0Mg-400, (pH of 3.0.

sorption of so-Al-400,

20

2-T

c

(c) and (d) m

400 mg L-1

(b) meso-80

40 60

mes

After adsorption

After adsorption

Theta (degree)

MgOMg(OH)2

Unindexed p

12

meso-Mg-

1 of As(V) 0Al20Mg-

80

so-Mg-400

n of As(V)

of As(III)

phase

Page 13: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

13

Figure S12 The full XPS survey of meso-Al-400, meso-80Al20Mg-400 and meso-Mg-400 after adsorption of 400 mg L-1 of (a) As(V) and (b) As(III). Experimental conditions: dose = 0.5 g L-1, initial pH for As(V) and As(III) adsorption is 3.0 and 7.0, respectively.

0 200 400 600 800 1000 1200 1400

meso-Al-400

meso-80Al20Mg-400

meso-Mg-400

O 1sC 1s

Mg 1s

Al 2p

As 3d

Al 2s

As Auger

Mg 2p N 1s

As 2p

Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

0 200 400 600 800 1000 1200 1400

meso-Al-400

meso-80Al20Mg-400

meso-Mg-400

O 1sC 1s

Mg 1s

Al 2p

As 3d

As Auger

Mg 2p

As 2p

Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

Mg 2s

Mg

Aug

er

a b

Page 14: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

14

Figure S13 (a) Al 2p XPS peak of meso-Al-400 before and adsorption of As(V) and As(III), (b) As 3d peak of meso-Al-400 after adsorption of As(V), (c) As 3d peak of meso-Al-400 after adsorption of As(III), (d) Al 2p XPS peak of meso-80Al20Mg-400 before and after adsorption of As(V) and As(III), (e) As 3d and Mg 2p peak of meso-80Al20Mg-400 after adsorption of As(V), (f) As 3d and Mg 2p peak of meso-80Al20Mg-400 after adsorption of As(III), (g) and (h) As 3d and Mg 2p peak of meso-Mg-400 after adsorption of As(V) and As(III), respectively. Experimental conditions: dose = 0.5 g L-1, initial concentration of As(V) or As(III) = 400 mg L-1; initial pH for As(V) and As(III) adsorption is 3.0 and 7.0, respectively.

As shown in Figure S13a and d, for both meso-Al-400 and meso-80Al20Mg-400, the Al 2p peak shifts towards lower binding energy after adsorption of As(V), while the Al 2p peak moves slightly towards higher binding energy after As(III) adsorption. This difference in the Al 2p peak shift after adsorption of As(V) or As(III) over meso-Al-400 and meso-80Al20Mg-400 is likely to be due to the following reasons: 1. The initial pH is different for adsorption of As(V) or As(III) over the samples for the XPS measurement. In this work, the initial pH for As(V) and As(III) adsorption on both meso-Al-400

65 70 75 80 85

meso-Al-400

after adsorption of As(V)

after adsorption of As(III)

Al 2p

74.75 eV

74.81 eV

74.44 eV

Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

a

40 42 44 46 48 50 52Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

45.0 ev

As(V)-O45.9 eV

44.8 eVAs(III)-O

As 3db

40 42 44 46 48 50 52Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

As(V)-O

45.88 eV As 3dc

65 70 75 80 85

meso-80Al20Mg0-400

after adsorption of As(V)

after adsorption of AS(III)

74.83 eV

74.65 eV

74.51 eV

Al 2p

Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

d

40 42 44 46 48 50 52 54

Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

50.8 eVMg-O

44.7 eVAs(III)-O

45.6 eVAs(V)-O

44.96 eV

40 42 44 46 48 50 52 54Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

45.8 eVAs(V)-O

50.4 eVMg-O

e fAs 3d-Mg 2p

40 42 44 46 48 50 52 54Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

44.5 eVAs(III)-O

49.4 eV

Mg-O-H

50.3 eV

Mg-O

49.64 eV

40 42 44 46 48 50 52 54 56Binding Energy (eV)

Inte

nsi

ty (

a.u

.)

45.89 eVAs(V)-O

50.6 eVMg-O

g h

As 3d-Mg 2p

As 3d-Mg 2p As 3d-Mg 2p

Page 15: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

15

and meso-80Al20Mg-400 is 3.0 and 7.0, respectively. The initial pH affects the different dominant arsenic speciation, As(V) (H2AsO4

-) and As(III) (H3AsO30), which in turn caused the

different shift of the Al 2p peak when forming Al-O-As bonds during the XPS measurement. 2. There are various models of surface complexes for the arsenic (including As(V) and As(III)) immobilization on aluminium oxy-hydroxides and other metal hydroxides/oxides. Most publications proved that arsenic can be adsorbed onto variable-charge adsorbent surfaces by inner-sphere complexation (ligand exchange to form chemical bonding) and/or outer-sphere complexation (electrostatic interaction or hydrogen bonding)(Geoderma 2001, 100, 303–319). The type of sorption mechanism for a particular ion is greatly affected by environmental factors such as pH and ionic strength. For the inner-sphere surface complex, there are four molecular configurations including bidentate binuclear, bidentate mononuclear, monodentate binuclear and monodentate mononuclear (Geochimica et Cosmochimica Acta 2012, 83, 205–216; Geochimica et Cosmochimica Acta 2001, 65, 1211-1217). For each configuration, acid-base or non-dissociative sorption could be included (Journal of Molecular Structure: THEOCHEM 2006, 762, 17–23; Geochimica et Cosmochimica Acta 2012, 83, 205–216). The specific mechanism would be elucidated by X-ray absorption spectroscopy (XAS) including EXAFS and XANES. Generally, the adsorption mechanism is considered to be different for As(V) or As(III) immobilized on the aluminium oxides, although there is no consensus on the exact mechanism applied for either As(V) or As(III). Most publications reported that As(V) predominantly forms inner-sphere bidentate binuclear complexes with the surface of aluminium oxide (Chemosphere 2004, 55, 1259-1270; Journal of Colloid and Interface Science 2001, 234, 204–216; Environmental Science & Technology 2005, 39, 5481-5487; Environmental Toxicology and Chemistry 2006, 25, 3118-3124; Journal of Colloid and Interface Science 2001, 235, 80–88; Applied Geochemistry 2013, 31, 79–83; Environmental Science & Technology 2011, 45, 9687–9692), while some papers claimed the inner-sphere monodentate mononuclear complexes (Environmental Science & Technology 2009, 43, 2537–2543) and co-existing inner-sphere, hydrogen bond and electrostatic interactions would dominate depending on the pH (Journal of Hazardous Materials 254– 255 (2013) 301– 309; Environmental Science & Technology 2006, 40, 7784-7789; Environmental Science & Technology 2005, 39, 3571-3579; Microporous and Mesoporous Materials 2014, 198, 101–114; Geochimica et Cosmochimica Acta 2008, 72, 1986–2004). The dominant complexes debated for As(III)-aluminium oxide surface complexation including outer-sphere (Chemosphere 2003, 51, 1001-1013; Journal of Colloid and Interface Science 2001, 234, 204–216; Soil Science Society of America Journal 70:2017–2027; Environmental Chemistry Letters 2013, 11, 289–294), non-dissociative inner-sphere complexes (Journal of Molecular

Page 16: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

16

Structure: THEOCHEM 2006, 762, 17–23), inner-sphere bidentate binuclear (Geochimica et Cosmochimica Acta 2012, 83, 205–216; Microporous and Mesoporous Materials 2014, 198, 101–114), a combination of inner-sphere bidentate binuclear and bidentate mononuclear (Chemosphere 2014, 113, 151–157), as well as co-existing mixtures of several surface inner-sphere complexes and outer-sphere complexes (Journal of Colloid and Interface Science 2001, 235, 80–88). Because of the different kinds of surface complexes obtained through chemical bonding (inner-sphere configurations) and possible discernable intervention from electrostatic outer-sphere complexes, the XPS peak shift is likely different between As(V) at pH 3.0 and As(III) at pH 7.0, even if the As(V) and As(III) species are chemisorbed onto the surface of meso-Al-400 and meso-80Al20Mg-400 forming As-O-M bonds. The different kinds of surface complexes have been reported to cause either a positive or negative Al 2p peak shift in the Fe/Al hydroxide when adsorbing different speciations of As(V), indicating that the Al 2p peak shift is not necessarily consistent even though an As-O-Al bond is formed. (Journal of Hazardous Materials 2015, 293, 97–104)

Figure S14 FTIR spectra of the vacuum-dried samples before and after adsorption of arsenic: (a) meso-Al-400, (b) meso-80Al20Mg-400 and (c) meso-Mg-400. Experimental conditions: dose = 0.5 g L-1, initial concentration of As(V) or As(III) = 400 mg L-1; initial pH for As(V) and As(III) adsorption is 3.0 and 7.0, respectively.

4000 3500 3000 2500 2000 1500 1000 500

meso-80Al20Mg-400

After adsorption of 400 ppm of As(V)

After adsorption of 400 ppm of As(III)

Wavelength Number (cm )

Tra

nsm

itta

nce

-1

4000 3500 3000 2500 2000 1500 1000 500

meso-Al-400

After adsorption of 400 ppm of As(V)

After adsorption of 400 ppm of As(III)

Wavelength Number (cm )

Tra

nsm

itta

nce

-1

4000 3500 3000 2500 2000 1500 1000 500

meso-Mg-400

After adsorption of 400 ppm of As(V)

After adsorption of 400 ppm of As(III)

Wavelength Number (cm )-1

Tra

nsm

itta

nce

3700 cm-1

841 cm-1

819 cm-1

a b c

Page 17: Extremely High Arsenic Removal Capacity for Mesoporous ... · magnesi 0.0 Intensity (a.u.) a S3 TEM im ample Al-4 S4 (a) Sync um oxide s 0.1 age (a), X 00 synthesi hrotron SA amples

17

Figure S15 Effect of the adsorbent dose on the As(V) adsorption capacity of meso-Al-400. The mass of meso-Al-400 was 0.02 g, the initial pH was 3.0 ± 0.1 and the initial As(V) concentration is 420 mg L-1. The volume of As(V) solution was varied from 10 to 100 mL, resulting in the dose ranging from 0.2 g L-1 to 2.0 g L-1.

Please note that the adsorbent dose was 0.5 g L-1 throughout the work. Figure S15 demonstrates that 0.5 g L-1 is the optimal adsorbent dose with the highest adsorption capacity (260 mg g-1) for As(V). When the dose was increased to 1.0 and 2.0 g L-1, the adsorption capacity was decreased by 25.4% and 42.3%, respectively.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20

50

100

150

200

250

300

A

s(V

) u

pta

ke (

mg

g-1)

Dose (g L-1)