19
EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage & conversion o environmental sensors o nuclear fuel & infrastructure o corrosion prevention o space & deep sea science o cancer microenvironments MASSACHUSETTS INSTITUTE OF TECHNOLOGY Krystyn J. Van Vliet artments of Materials Science & Engineering and Biological Engineeri MIT, Cambridge, MA 02139 FOSR PECASE: Reactive Nanocomposites for Tunable Energy Dissipation Workshop on Materials & Processes Far From Equilibrium -4, 2010

EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

Embed Size (px)

Citation preview

Page 1: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

EXTREME ENVIRONMENTS:o temperatureso ion concentrationso humiditieso stresseso transport rateso radiation fields

APPLICATIONS:o energy storage & conversiono environmental sensorso nuclear fuel & infrastructureo corrosion preventiono space & deep sea scienceo cancer microenvironments

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Krystyn J. Van VlietDepartments of Materials Science & Engineering and Biological Engineering

MIT, Cambridge, MA 02139AFOSR PECASE: Reactive Nanocomposites for Tunable Energy Dissipation

AFOSR Workshop on Materials & Processes Far From EquilibriumNov. 3-4, 2010

Page 2: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

EXTREME ENVIRONMENTS:o temperatureso ion concentrationso humiditieso stresseso transport rateso radiation fields

APPLICATIONS:o energy storage & conversiono environmental sensorso nuclear fuel & infrastructureo corrosion preventiono space & deep sea scienceo cancer microenvironments

The MIT Center for Scientific Investigation of Materials in Extreme Environments aims to:• Connect researchers working in this diverse application space• Identify experimental & computational synergies and needs• Create new research & funding opportunities for students and faculty• Communicate CeSIMEE strengths to MIT, industry, and government

CeSIMEE Fall Lunch Forums: October 25 * November 15 * December 6

Massachusetts Institute of Technology

Page 3: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

• Plasma Surface Interaction Science Center• Fusion energy & plasma thrusters• Whyte et al. (NSE)

• DOE Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI)• Battery and solid-oxide-fuel cell materials at high flux and temperature• Tuller, Chiang, Carter, Van Vliet (MSE); Shao-Horn (ME); Yildiz, Yip (NSE)

• BP-MIT-Manchester Corrosion Center• Metal oxidation & corrosion at high acidity and temperature• Thomas, Schuh, Demkovicz, Gradecak (MSE); Yip, Yildiz (NSE)

• MIT Concrete Sustainability Hub• Predictive design of cement under extreme physical & mechanical environments• Jennings, Ulm, Pellenq (CEE); Van Vliet, Grossman, Yip, Marzari (MSE) et al.

• DOE Energy Hub – Consortium for Advanced Simulation of Light Water Reactors• Design of materials for nuclear reactor fuel and fuel cladding• Kazimi, Yip, Buongiorno, Yildiz (NSE); Demkovicz, Grossman (MSE) et al.

• Institute for Soldier Nanotechnology• Materials for blast & ballistic protection, tissue surrogacy• Radovitzky (AAE), Boyce, Socrate (ME), Thomas, Van Vliet (MSE)

• Biological/Biomedical Centers-To-Be…• Cancer & wound healing; deep-sea & acidophilic organisms; space travel; NMR imaging• Van Vliet, Ortiz, Gibson (MSE); Newman (AAE); Jasanoff, Alm (BE); others?

Connecting interdisciplinary materials research10

.25

11.1

512

.06

http://cesimee.mit.edu * Supported jointly by MIT Department of Materials Science & Engineering and MIT Nuclear Science & Engineering

Page 4: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

• Plasma Surface Interaction Science Center• Fusion energy & plasma thrusters• Whyte et al. (NSE)

• DOE Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI)• Battery and solid-oxide-fuel cell materials at high flux and temperature• Tuller, Chiang, Carter, Van Vliet (MSE); Shao-Horn (ME); Yildiz, Yip (NSE)

• BP-MIT-Manchester Corrosion Center• Metal oxidation & corrosion at high acidity and temperature• Thomas, Schuh, Demkovicz, Gradecak (MSE); Yip, Yildiz (NSE)

• MIT Concrete Sustainability Hub• Predictive design of cement under extreme physical & mechanical environments• Jennings, Ulm, Pellenq (CEE); Van Vliet, Grossman, Yip, Marzari (MSE) et al.

• DOE Energy Hub – Consortium for Advanced Simulation of Light Water Reactors• Design of materials for nuclear reactor fuel and fuel cladding• Kazimi, Yip, Buongiorno, Yildiz (NSE); Demkovicz, Grossman (MSE) et al.

• Institute for Soldier Nanotechnology• Materials for blast & ballistic protection, tissue surrogacy• Radovitzky (AAE), Boyce, Socrate (ME), Thomas, Van Vliet (MSE)

• Biological/Biomedical Centers-To-Be…• Cancer & wound healing; deep-sea & acidophilic organisms; space travel; NMR imaging• Van Vliet, Ortiz, Gibson (MSE); Newman (AAE); Jasanoff, Alm (BE); others?

Connecting interdisciplinary materials research

http://cesimee.mit.edu * Supported jointly by MIT Department of Materials Science & Engineering and MIT Nuclear Science & Engineering

Page 5: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

COFFEI: Chemomechanics of Far-From-Equilibrium InterfacesW. Craig Carter, Yet-Ming Chiang, Yang Shao-Horn, Krystyn Van Vliet, Bilge Yildiz, Sidney Yip, Harry Tuller (PI)

Project Goal: To develop understanding of the electro-chemo-mechanical coupling of defect concentrations, ionic transport, and stored elastic energy in far-from-equilibrium conditions typical of energy device applications

Page 6: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

• Thermal expansion and mismatch:

• Thermal Shock:

We wouldn’t think of putting materials in service without considering their thermal-mechanical properties

εthermal = α LΔT

schenectady.k12.ny.us

frca.co.uk

Thermomechanical vs. Chemomechanical Properties

http://en.wikipedia.org/wiki/Liberty_Bell

RT =kσT (1 −ν )

αEk = thermal⋅ conductivity

σT = max imum⋅ tension

α = thermal⋅ exp ansion⋅ coeff .

E = Young 's⋅mod ulus

υ = Poisson⋅ ratio

think-aboutit.com

H2

O2

DLi

DO

Page 7: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

Fresh Cell

50 Cycles

Ion transport in battery & fuel cell nano-oxides:“Electrochemical shock”

Page 8: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

Critical combinati

ons of particle size and

rate

Now validated via our

nanoparticle & nanofilm fracture

toughness measurements

J. Electrochem. Soc., 157 [10] A1052-A1059 (2010)

New Electromechanical Shock Maps

Page 9: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

Unique experimental tools in FFE environments

f → mass

O2 (g)Vibrating substrate

V

L/L

Load

Thin film

Substrate

Nanoindentation at high temps (1000C) and controlled

gas environments

Scanning Tunneling Microscopy & XPS:Electrochemistry in situ

Page 10: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

Krystyn J. Van Vliet, Roland Pellenq, Jeff Grossman, Bilge Yildiz, Sid Yip, Franz Ulm

web.mit.edu/cshub

MIT Concrete Sustainability Hub:Redesign from first principles

Page 11: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

MotivationUnderstanding dehydration effects in cement & concrete is:• Key to minimizing shrinkage and cracking in slabs & pavements• Key to Air Force runway durability & repair

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

Water Content ( mass % )

p/ps

Powers and Brownyard (1946)

Wat

er C

onte

nt [%

mas

s]

Partial Pressure [p/ps]

Water adsorption dynamics poorly understood, widely studied

http://www.cement.org

Temperature, humidity, & drying Shrinkage, cracking, warping, reduced lifespan

Can molecular modeling shrink this problem?

Page 12: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

Unique FFE computational tools: atomistic modeling• How many H2O molecules occupy C-S-H atomistic model at

specific humidity, temperature, or pressure?

C-S-H (, V, T)

equilibrium

H2O (, V, T)

non-equilibrium

Page 13: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.81

2

3

4

5

6

7

8

Hardness (GPa)

Mole ratio of H2O/Si

Cement mechanical strength scales with H2O content

• Up to 30 vol% shrinkage as C-S-H fully dehydrated• Shear strength doubles as C-S-H density decreases

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

full dry

Pxz (GPa)

strain = angle change in radian

XZ shear

τmax

τmax

shear strain

she

ar

stre

ss [

GP

a]

max3 τ×=Hardness

tmax

fully hydrated C-S-H

fully dry C-S-H

H2O/Si [mol/mol]

Page 14: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

Plasma Surface Interaction Science CenterDennis Whyte et al.

• ITER Mission: – Exothermic “Burn” Q=10

• Reactor level fusion power– Pfusion ~ 400 MW for 500 s– Heating = 40 MW– 20% duty cycle

• Size R~6 m +Field B~6 T = 5 Billion dollars– 1000 m3 plasma– 1000 m2 plasma-facing wall

Page 15: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

The Multi-Scale, Synergistic Plasma-Surface Interface

Page 16: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

No materials currently exist to withstand high dpa, high temps, and plasma erosion resistance required

Issue / ParameterPresent

Tokamaks ITER DEMO Consequences

Quiescent energy exhaustGJ / day ~ 10 3,000 60,000

- active cooling- max. tile thickness ~ 10 mm

Transient energy exhaust from plasma instabilities T~ MJ / Awall(m2) / (1 ms)1/2

~ 2 15 60

- require high Tmelt/ablate

- limit? ~ 60 for C and W - surface distortion

Yearly neutron damage in plasma-facing materialsdisplacements per atom

~ 0 ~ 0.5 20

- evolving material properties: thermal conductivity & swelling

Max. gross material removal rate with 1% erosion yield(mm / operational-year)

< 1 300 3000

- must redeposit locally- limits lifetime- produces films

Tritium consumption(g / day) < 0.02 20 1000

- Tritium retention in materials and recovery

Page 17: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

Unique FFE experimental tools:MIT CLASS/DIONISOS facility has unique dynamic PSI capabilities:

Real-time, non-perturbing MeV ion-beam surface analysis simultaneous with cw, high intensity plasma exposure

• Real-time, depth-resolved, spatially dependent measurements of• Erosion• Film growth• Element/isotope mix• Fuel storage (H, He, Ar)

Page 18: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

PSI Science Center, leveraging world-class US university PSI capabilities

UC Berkeley / Tennessee Materials Modeling(Wirth)

MIT / DIONISOS(Director: Whyte)

UCSD / PISCES (Doerner)

Emphasizing multidisciplinary training of young scientists & strong, multi-institutional collaborations

Page 19: EXTREME ENVIRONMENTS: o temperatures o ion concentrations o humidities o stresses o transport rates o radiation fields APPLICATIONS: o energy storage &

• Plasma Surface Interaction Science Center• Fusion energy & plasma thrusters• Whyte et al. (NSE)

• DOE Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI)• Battery and solid-oxide-fuel cell materials at high flux and temperature• Tuller, Chiang, Carter, Van Vliet (MSE); Shao-Horn (ME); Yildiz, Yip (NSE)

• BP-MIT-Manchester Corrosion Center• Metal oxidation & corrosion at high acidity and temperature• Thomas, Schuh, Demkovicz, Gradecak (MSE); Yip, Yildiz (NSE)

• MIT Concrete Sustainability Hub• Predictive design of cement under extreme physical & mechanical environments• Jennings, Ulm, Pellenq (CEE); Van Vliet, Grossman, Yip, Marzari (MSE) et al.

• DOE Energy Hub – Consortium for Advanced Simulation of Light Water Reactors• Design of materials for nuclear reactor fuel and fuel cladding• Kazimi, Yip, Buongiorno, Yildiz (NSE); Demkovicz, Grossman (MSE) et al.

• Institute for Soldier Nanotechnology• Materials for blast & ballistic protection, tissue surrogacy• Radovitzky (AAE), Boyce, Socrate (ME), Thomas, Van Vliet (MSE)

• Biological/Biomedical Centers-To-Be…• Cancer & wound healing; deep-sea & acidophilic organisms; space travel; NMR imaging• Van Vliet, Ortiz, Gibson (MSE); Newman (AAE); Jasanoff, Alm (BE); others?

Connecting interdisciplinary materials research

http://cesimee.mit.edu * Supported jointly by MIT Department of Materials Science & Engineering and MIT Nuclear Science & Engineering