12
Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

  • View
    242

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Exposure to Zinc Oxideand Titanium Dioxide

Nanoparticles in Sunscreen

Heidi Nelson

December 9, 2011

CHEM 4101

Page 2: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Nanoparticles in SunscreenAs the field of nanotechnology develops, nanoparticles appear more frequently in consumer products. In sunscreen, zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles are used to scatter ultraviolet light. The advantage of these over larger particles is that sunscreen containing nanoparticles is transparent when applied. However, the potential health risks of exposure to nanoparticles are largely unknown.1

ZnO nanoparticles and sunscreen.Consumer Reports,www.consumerreports.org

Human subjects after application of sunscreen containing nanoparticles (left) and sunscreen containing larger particles (right). 1

Page 3: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

ProblemWhen sunscreen containing nanoparticles is used, do the particles penetrate into human skin? How far/how much?

HypothesisNanoparticles will only penetrate into the upper layers of skin, and not in significant amounts.

Cross section of pig skin labeled with TiO2 particle distribution.2

Page 4: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Experiment

• Apply sunscreen containing ZnO and TiO2 nanoparticles to human subjects

– Monitor penetration of ZnO and TiO2 over time

– Controls: sunscreen with larger particles of ZnO or TiO, sunscreen with no ZnO or TiO2

• Use an imaging technique to determine the depth of nanoparticle penetration

• Use a quantitation technique to determine how much ZnO/TiO2 is absorbed into skin

Page 5: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Imaging Techniques

References 3-4

Optical microscopy

Fluorescence confocal microscopy

Electron microscopy (SEM/TEM)

Resolution ~100 nm ~100 nm ~1 nm

Background UV scattering UV scattering and skin autofluorescence

No significant interference from skin

Instrumentation Simple, inexpensive

Intermediate cost and complexity

Complex, expensive

In vivo imaging Yes Yes No

Limitations Limited imaging depth

Restricted to fluorescent materials

Intensive, destructive sample preparation

Page 6: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Quantitative TechniquesInductively coupled plasma-Mass spectrometry (ICP-MS)

• Measures atomic Zn and Ti• Multiple peaks due to different isotopes• Low background• LOD: 0.1 to 10 ppb

Inductively coupled plasma-Atomic emission spectroscopy (ICP-AES)• Measures atomic Zn and Ti• Multiple peaks due to different energy transitions• Potential high background• LOD < 10 ppb

UV-vis absorbance

• Detects ZnO and TiO2 particles

• Optical properties depend on size/shape of particles• Need to remove intact particles from skin matrix• LOD is generally higher (can’t directly compare to atomic techniques)

References 5-6

Page 7: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Sample preparation

Fluorescence confocal microscopy3

•Virtually no preparation needed for non-invasive in vivo imaging

•Put drop of water, cover slip, immersion oil on skin

ICP-MS2,4

•Separate dermis and epidermis with dry heat (63 °C for two minutes)

•Combine samples with 4:1 HNO3:HF

•Microwave dissolution for 35 minutes: 300 W, 200 °C, 220 psi

•Dilute with 2% HNO3

•Add Sc or Y internal standard

No chromatography or additional purification is necessary.

Page 8: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Fluorescence Confocal Microscopy

The excitation of ZnO and TiO2 fluorescence by two IR photons (instead of one UV photon) reduces scattering background and increases imaging depth. Nanoparticle fluorescence and skin autofluorescence background are collected separately, using two detectors with different filters. The focal spot is scanned across the sample and the two signals are overlaid to create a contrast image.3

Nikon Microscopy U, www.microscopyu.com

Page 9: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

ICP-MS

The sample is atomized and ionized in an argon plasma. Ions are sorted by a quadrupole mass analyzer. Their concentrations are determined by comparing signal intensity to an internal standard.2,4

Agilent 7500aLOD ~10 pptLinear range 9 orders of magnitudeMass range 2-260 amu

Ar

Plasma containing Ti and Zn ions

detector

Ions sorted by mass and charge

Samplein aq. HNO3

http://www.chem.agilent.com/Library/Support/Documents/F05009.pdf

Page 10: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Expected Results

Above: Fluorescence images of ZnO nanoparticles, shown in red, in human skin at different depths (scale bar 20 μm).3

Right: Levels of Ti from different types of sunscreens measured by ICP-MS in the epidermis (top) and dermis of pig skin.2

Page 11: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

Conclusions

Fluorescence confocal microscopy is a suitable technique for imaging ZnO and TiO2 nanoparticles in skin and determining the depth of their penetration. Skin can be imaged in vivo at different depths, and two-photon excitation reduces background.

ICP-MS is a suitable technique for quantifying the levels of Zn and Ti present in skin. After microwave dissolution of skin samples, these elements can be detected at low levels with few interferences.

Previous papers with similar experiments showed results consistent with my hypothesis, that nanoparticles penetrate skin to relatively shallow depths and in relatively small amounts.

Page 12: Exposure to Zinc Oxide and Titanium Dioxide Nanoparticles in Sunscreen Heidi Nelson December 9, 2011 CHEM 4101

References

1. Wolf, L. K. Scrutinizing Sunscreens. Chem. Eng. News 2011, 89, 44-46.

2. Sadrieh, N. et al. Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano- and Submicron-Size TiO2 Particles. Toxicol. Sci. 2010, 115, 156-166.

3. Zvyagin, A. V. et al. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J. Biomed. Opt. 2008, 13, 064031.

4. Monteiro-Riviere, N. A. et al. Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An In Vitro and In Vivo Study. Toxicol. Sci. 2011, 123, 264-280.

5. Contado, C.; Pagnoni, A. TiO2 in Commercial Sunscreen Lotion: Flow Field-Flow Fractionation and ICP-AES Together for Size Analysis. Anal. Chem. 2008, 80, 7594-7608.

6. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, 6th ed., 2006.