49
HARVARD International Center for Theoretical Sciences Bangalore June 20, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu Exploring quantum matter in the high temperature superconductors

Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

HARVARD

International Center for Theoretical SciencesBangalore

June 20, 2015

Subir Sachdev

Talk online: sachdev.physics.harvard.edu

Exploring quantum matter in the high temperature

superconductors

Page 2: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

YBa2Cu3O6+x

High temperature superconductors

CuO2 plane

Cu

O

Page 3: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

“Undoped”Anti-

ferromagnet

Page 4: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

FilledBand

Page 5: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

“Undoped”Anti-

ferromagnet

Page 6: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Anti-ferromagnetwith p holesper square

Page 7: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Anti-ferromagnetwith p holesper square

But relative to the band

insulator, there are 1+ p holesper square

Page 8: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

SM

FL

Figure: K. Fujita and J. C. Seamus Davis

Page 9: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

SM

Antiferromagnet

FL

Figure: K. Fujita and J. C. Seamus Davis

Page 10: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

SM

High temperature Superconductor

FL

Figure: K. Fujita and J. C. Seamus Davis

Page 11: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Conventional metal

Area enclosed by Fermi surface =1+p

M. Plate, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)

SM

FL

SM

FL

Figure: K. Fujita and J. C. Seamus Davis

Page 12: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Pseudogap

“Fermi arcs” at

low p

Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana,Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.-X. Shen, Science 307, 901 (2005)

SM

FL

Page 13: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Strange metal

Metal(gapless,

compressible state)

without quasi-

particles

SM

FL

Page 14: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

1. The pseudogap metal

Fermi liquid co-existening with topological order

2. The strange metal

Metal without quasiparticles

Infinite-range model: dual to extremal charged

black holes and yields

Bekenstein-Hawking entropy

Outline

Page 15: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Pseudogap

“Fermi arcs” at

low p

Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana,Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.-X. Shen, Science 307, 901 (2005)

SM

FL

Page 16: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

A new metal — a fractionalized

Fermi liquid (FL*) — with electron-like quasiparticles on a Fermi surface of size p coexisting

with topological order

Y. Qi and S. Sachdev, Phys. Rev. B 81, 115129 (2010)M. Punk, A. Allais, and S. Sachdev, arXiv:1501.00978

SM

FL

Pseudogap

Page 17: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 18: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 19: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 20: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

A fermionic “dimer” describing a “bonding” orbital between two sites

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 21: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 22: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 23: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 24: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 25: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 26: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 27: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 28: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Fractionalized Fermi liquid (FL*)

T. Senthil, S. S., M. Vojta Phys. Rev. Lett. 90, 216403 (2003) R. K. Kaul, A. Kolezhuk, M. Levin, S. S., and T. Senthil, Phys. Rev. B 75, 235122 (2007)

E. G. Moon and S. S. Phys. Rev. B 83, 224508 (2011); M. Punk, A. Allais, and S. S., arXiv:1501.00978.

= | ⇥⇤⌅ � | ⇤⇥⌅

Realizes a metal with a

Fermi surface of

area p co-existing

with “topological

order”

Page 29: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Place pseudogap metal on a

torus;

Topological order

Page 30: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Place pseudogap metal on a

torus;obtain

“topological” states nearly degenerate

with the ground state: change sign of every dimer

across red line

Topological order

Page 31: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

= | ⇥⇤⌅ � | ⇤⇥⌅

Topological order Place

pseudogap metal on a

torus;obtain

“topological” states nearly degenerate

with the ground state: change sign of every dimer

across red line

Page 32: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

= | ⇥⇤⌅ � | ⇤⇥⌅

-1 -1-1-1

Topological order Place

pseudogap metal on a

torus;obtain

“topological” states nearly degenerate

with the ground state: change sign of every dimer

across red line

Page 33: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

= | ⇥⇤⌅ � | ⇤⇥⌅

-1-1

Topological order Place

pseudogap metal on a

torus;obtain

“topological” states nearly degenerate

with the ground state: change sign of every dimer

across red line

Page 34: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

= | ⇥⇤⌅ � | ⇤⇥⌅

-1 -1-1-1

Topological order Place

pseudogap metal on a

torus;obtain

“topological” states nearly degenerate

with the ground state: change sign of every dimer

across red line

Page 35: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

A new metal — a fractionalized

Fermi liquid (FL*) — with electron-like quasiparticles on a Fermi surface of size p coexisting

with topological order

Y. Qi and S. Sachdev, Phys. Rev. B 81, 115129 (2010)M. Punk, A. Allais, and S. Sachdev, arXiv:1501.00978

SM

FL

Pseudogap

Page 36: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

1. The pseudogap metal

Fermi liquid co-existening with topological order

2. The strange metal

Metal without quasiparticles

Infinite-range model: dual to extremal charged

black holes and yields

Bekenstein-Hawking entropy

Outline

Page 37: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Strange metal

Metal(gapless,

compressible state)

without quasi-

particles

SM

FL

Page 38: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

cicj + cjci = 0

cic†j + c†jci = �ij

Jij;k` independent

random numbers

An infinite-range model of a strange metal

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)A. Kitaev, unpublished

S. Sachdev, arXiv:1506.05111

Page 39: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

cicj + cjci = 0

cic†j + c†jci = �ij

Jij;k` independent

random numbers

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Page 40: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Known ‘equation of state’

determines E as a function of Q

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

cicj + cjci = 0

cic†j + c†jci = �ij

Jij;k` independent

random numbers

A. Georges, O. Parcollet, and S. Sachdev Phys. Rev. B 63, 134406 (2001)

Q =1

4(3� tanh(2⇡E))� 1

⇡tan�1

�e2⇡E

Page 41: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Known ‘equation of state’

determines E as a function of Q

Microscopic zero temperature

entropy density, S, obeys@S@Q = 2⇡E

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

cicj + cjci = 0

cic†j + c†jci = �ij

Jij;k` independent

random numbers

O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta Phys. Rev. B 58, 3794 (1998)

A. Georges, O. Parcollet, and S. Sachdev Phys. Rev. B 63, 134406 (2001)

Page 42: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Known ‘equation of state’

determines E as a function of Q

Microscopic zero temperature

entropy density, S, obeys@S@Q = 2⇡E

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

Einstein-Maxwell theory

+ cosmological constant

Page 43: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Known ‘equation of state’

determines E as a function of Q

Microscopic zero temperature

entropy density, S, obeys@S@Q = 2⇡E

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

Einstein-Maxwell theory

+ cosmological constant

Boundary

area Ab;

charge

density Q

⇣~x

Horizon area Ah;AdS2 ⇥R

d

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

⇣ = 1

A. Chamblin, R. Emparan, C. V. Johnson, and R.C. Myers Phys. Rev. D 60, 064018 (1999)

Page 44: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Known ‘equation of state’

determines E as a function of Q

Microscopic zero temperature

entropy density, S, obeys@S@Q = 2⇡E

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

Einstein-Maxwell theory

+ cosmological constant

Boundary

area Ab;

charge

density Q

⇣~x

Horizon area Ah;AdS2 ⇥R

d

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

⇣ = 1

L = �↵D↵ +m

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

T. Faulkner, Hong Liu, J. McGreevy, and D. Vegh Phys. Rev. D 83, 125002 (2011)

Page 45: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Known ‘equation of state’

determines E as a function of Q

Microscopic zero temperature

entropy density, S, obeys@S@Q = 2⇡E

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

Einstein-Maxwell theory

+ cosmological constant

Boundary

area Ab;

charge

density Q

⇣~x

Horizon area Ah;AdS2 ⇥R

d

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

⇣ = 1

L = �↵D↵ +m

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

‘Equation of state’ relating Eand Q depends upon the geometry

of spacetime far from the AdS2

S. Sachdev, arXiv:1506.05111

Eliminate r0 between

Q =rd�10

p2d [(d� 1)R2 + (d+ 1)r20]

2gF

E =gF r0

p2d [(d� 1)R2 + (d+ 1)r20]

2 [(d� 1)2R2 + d(d+ 1)r20]

Page 46: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Known ‘equation of state’

determines E as a function of Q

Microscopic zero temperature

entropy density, S, obeys@S@Q = 2⇡E

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

Einstein-Maxwell theory

+ cosmological constant

Boundary

area Ab;

charge

density Q

⇣~x

Horizon area Ah;AdS2 ⇥R

d

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

⇣ = 1

L = �↵D↵ +m

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

‘Equation of state’ relating Eand Q depends upon the geometry

of spacetime far from the AdS2

S. Sachdev, arXiv:1506.05111

Black hole thermodynamics

(classical GR) yields

1

Ab

@Ah

@Q = 8⇡GNE

Page 47: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

Q =1

N

X

i

Dc†i ci

E.

H =1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c†i c

†jckc`

1 23 4

5 6

78

9

10

11 12

12 1314

J3,5,7,13J4,5,6,11

J8,9,12,14

Known ‘equation of state’

determines E as a function of Q

Microscopic zero temperature

entropy density, S, obeys@S@Q = 2⇡E

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

Einstein-Maxwell theory

+ cosmological constant

Boundary

area Ab;

charge

density Q

⇣~x

Horizon area Ah;AdS2 ⇥R

d

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

⇣ = 1

L = �↵D↵ +m

Local fermion density of states

⇢(!) ⇠⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

‘Equation of state’ relating Eand Q depends upon the geometry

of spacetime far from the AdS2

S. Sachdev, arXiv:1506.05111

Black hole thermodynamics

(classical GR) yields

1

Ab

@Ah

@Q = 8⇡GNE

Combination:

S =

Ah

4GNAb

Page 48: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

SM

FL

Figure: K. Fujita and J. C. Seamus Davis

Pseudogap Strange metal

Page 49: Exploring quantum matter in the high temperature superconductorsqpt.physics.harvard.edu/talks/icts15.pdf · 2015-06-21 · Exploring quantum matter in the high temperature superconductors

1. The pseudogap metal

Fermi liquid co-existening with topological order

2. The strange metal

Metal without quasiparticles

Infinite-range model: dual to extremal charged

black holes and yields

Bekenstein-Hawking entropy