30
Exploratory Analysis of Light Curves G. Jogesh Babu Ashish Mahabol SaeNa Park

Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Exploratory  Analysis  of  Light  Curves    

G.  Jogesh  Babu  Ashish  Mahabol  SaeNa  Park  

Page 2: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

•  For  centuries,  astronomers  have  created  taxonomies  for  all  types  celesCal  populaCons  including  comets,  asteroids,  stars,  galaxies,  acCve  galacCc  nuclei,  and  supernovae.    

•  UnCl  recently,  nearly  all  classificaCons  were  based  on  heurisCc  and  subjecCve  procedures.    

•  Most  stellar  classificaCons  were  based  on  colors  and  spectral  properCes.  

•  Supernovae  have  a  complicated  classificaCon  scheme:  Type  I  with  subtypes  Ia,  Ib,  Ic,  Ib/c  pec  and  Type  II  with  subtypes  IIb,  IIL,  IIP  and  Iin.  

•  Rarely  have  staCsCcal  or  algorithmic  procedures  been  used  to  define  the  classes.  

 

Page 3: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Overview  

•  What  we  want  to  do  – Classify  lightcurves  of  mostly  non-­‐variable  sources  – Look  for  interesCng  aspects  in  the  outliers  

•  What  are  the  steps  we  are  taking  – Clustering  – Exploring  feature  space    – FuncConal  Data  Analysis  – Machine  Learning  

Page 4: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Clustering  versus  ClassificaCon  •  ClassificaCon:  –  There  are  M  known  populaCons  –  There  is  a  sample  from  each  populaCon  –  These  samples  are  the  training  data,  so  this  is  supervised  learning  –  The  training  data  is  used  to  develop  a  classifier  for  objects  whose  populaCon  membership  is  unknown.  

•  Clustering:  –  The  goal  is  to  parCCon  the  data  into  M  groups  –  Groups  are  not  defined  a  priori  –  No  training  data,  so  unsupervised  learning  –  There  is  no  “best”  M  

Page 5: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Most  groups  are  aVer  transients    (low  hanging  fruit)  

•  For  every  transient,  there  are  10^6  non-­‐transients  •  But  there  is  variability  at  all  levels  •  We  are  trying  to  make  the  most  of  the  non-­‐transients  

 

Page 6: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

LBV

AGNAsteroids

RotationEclipse

Microlensing Eruptive PulsationSecular

(DAV) H-WDs

Variability Tree

NovaeN

SymbioticZAND

Dwarf novae

UG

Eclipse

Asteroid occultation

Eclipsing binary

Planetary transits

EA

EB

EW

Rotation

ZZ CetiPG 1159

Solar-like

(PG1716+426, Betsy)long period sdB

V1093 Her

(W Vir)Type II Ceph.δ Cepheids

RR Lyrae

CW

Credit : L. Eyer & N. Mowlavi (03/2009)

(updated 04/2013) δ Scuti

γ Doradus

Slowlypulsating B stars

α Cygni

β Cephei

λ Eri

SX Phoenicis

Hot OB Supergiants

ACYG

BCEP

SPBe

GDOR

DST

PMSδ Scuti

roAp

Miras

Irregulars

Semi-regulars

M

SRL

RV

SARVSmall ampl. red var.

(DO,V GW Vir)He/C/O-WDs

PV TelHe star

Be stars

RCB

GCASFU

UV Ceti

Binary red giants

α2 Canes VenaticorumMS (B8-A7) withstrong B fields

SX ArietisMS (B0-A7) withstrong B fields

Red dwarfs(K-M stars)

ACV

BY Dra

ELL

FKCOMSingle red giants

WR

SXA

β Per, α Vir

RS CVn

PMS

S Dor

Eclipse

(DBV) He-WDs

V777 Her

(EC14026)short period sdB

V361 Hya

RV Tau

Photom. Period.FG SgeSakurai,V605 Aql

R Hya (Miras)δ Cep (Cepheid)

DY Per

Supernovae

SN II, Ib, IcSN Ia

Extrinsic

Radio quiet Radio loud

Seyfert I

Seyfert 2

LINER

RLQ

BLRG

NLRG

WLRG

RQQ

OVVBL Lac

Blazar

Stars Stars

Intrinsic

CEPRR

SXPHESPB

Cataclysmic

Characterize/Classify  as  much  as  possible  all  types  of  objects  

We  concentrate  here  on  lightcurves  (;me  series)  

Page 7: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Current  sample  is  from  Catalina  RealCme  Transient  Survey  (CRTS)  

500  M  lightcurves  available  for  analysis.  We  chose  a  few  hundred  for  the  exploratory  work.    

Page 8: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

CRTS  lightcurves    

•  Regions  with  a  radius  of  3’  have  been  chosen  with  centers  at  RA=(100,200,300),    Dec  =  (-­‐30,-­‐20,...,50)  

•  File  naming:  crtslc_200_p10.csv  etc.  for  the  region  centered  on  RA  =  200  deg,  Dec  =  10  deg  

•  Included  fields:  MasterID,  Mag,  Magerr,  RA,  Dec,  MJD  (in  days),  Blend  (flag  indicaCng  possible  confusion).    

Set  of  objects  around  random  locaCons  (mostly  non-­‐variable    

Page 9: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Look  at  the  random  regions  

•  Next  few  slides  show  how  these  random  regions  look  •  Though  we  use  CRTS  data,  we  deliberately  chose  SDSS  cutouts  so  that  we  can  also  highlight  how  the  same  region  can  look  very  different  in  different  surveys,  something  that  will  be  crucial  when  federaCng  varied  datasets.  

•  The  RA/Dec  can  be  seen  on  the  leV  panels.  •  Circles  indicate  photometric  objects,  squares  indicate  objects  with  spectra.  

•  The  informaCon  will  be  useful  in  characterizing  outliers  independently.  

Page 10: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae
Page 11: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae
Page 12: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae
Page 13: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae
Page 14: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Mul;ple  epochs  from  CRTS  (8  years  of  data)  

•  The  large  symbols  somewhat  exaggerate  any  possible  moCons  here    

•  An  advantage  of  picking  sets  of  objects  near  each  other  is  that  they  have  roughly  the  same  epochs  of  observaCon,  thus  allowing  for  registraCon  when  needed  

Page 15: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Registra;on  of  lightcurves  is  possible.  Gaps  indicate  missing  data  (upper  limits  can  be  assumed)  

Page 16: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

A  zoom  in  to  indicate  that  each  column  in  previous  plot  is  actually  4  columns  just  10  minutes  apart  (x-­‐axis,  MJD  is  in  days)    

Page 17: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Derived  staCsCcs  

•  StaCsCcs  for  each  object  in  each  region  is  available.  Note:  many  calculaCons  done  using  fluxes  (linear)  instead  of  magnitudes  (log).  

•   A  few  discriminaCng  stats  are:  amplitude,  linear  trend,  median  buffer  range,  standard  deviaCon,  beyond1std.  

•  Lightcurves  with  less  than  5  points  were  ignored  •  Stats  based  on  Richards  et  al.  2011  and  calculated  using  the  Caltech  Time  Series  CharacterizaCon  Service:  hip://nirgun.caltech.edu:8000/scripts/descripCon.html      

Page 18: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

•  Amplitude:  Half  the  difference  between  the  maximum  and  minimum  magnitudes  

•  Beyond  1  std:  Percentage  of  points  beyond  one  standard  deviaCon  from  the  weighted  mean  

•  Flux  percenCle  raCo  (90  -­‐  10  :  95  –  5)[mid80]:  RaCo  of  flux  percenCles  (90th  -­‐  10th)  over  (95th  -­‐  5th)  

•  Linear  Trend:  Slope  of  a  linear  fit  to  the  light  curve  •  Maximum  slope:  Maximum  absolute  flux  slope  between  two  consecuCve  observaCons  

•  Median  buffer  range  percentage:  Percentage  of  fluxes  within  10%  of  the  amplitude  from  the  median  

Page 19: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Lightcurves  

•  Mostly  constant  •  Some  variables  – Some  rapid  – Some  slow  – Some  periodic  

•  Errors  can  vary  as  a  funcCon  of  Cme  

Page 20: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Examples  from  CRTS  

●●

●●

●●

●●●●

●●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●●

●●

●●● ●●●●●

●●

●●●

●●

●●●●●●

●●

54000 54500 55000 55500 56000

2019

1817

16

ID=1021068061186

MJD

Mag

●●

●●

●●

●●●●

●●●●

●●

●●●

●●●

●●

●●●

●●

●●

●●●●

●●

●●● ●●●●●

●●

●●●

●●

●●●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●

●●

●●● ●●

●●

●●

●●

●●

●●●

54000 54500 55000 55500 56000

18.5

18.0

17.5

17.0

16.5

16.0

ID=1021068061186

MJD

Mag

●●

●●

●●●●

●●

●●

●●

●●●●

●●

●●● ●●

●●

●●

●●

●●

●●●

Page 21: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Examples  from  CRTS  

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

54000 54500 55000 55500 56000

2221

2019

1817

ID=1021068061378

MJD

Mag

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

54000 54500 55000 55500 56000

20.0

19.5

19.0

18.5

18.0

ID=1021068061378

MJD

Mag

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

Page 22: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Examples  from  CRTS  

●●

●●●

●●●

●●●

●●

●●

●●

● ●●

●●

● ●● ●

●●

● ●

●●

●●

●●

●●

53500 54000 54500 55000 55500

2322

2120

1918

17

ID=2020262030178

MJD

Mag

●●

●●●

●●●

●●●

●●

●●

●●

● ●●

●●

● ●● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

53500 54000 54500 55000 55500

2221

2019

ID=2020262030178

MJD

Mag

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

Page 23: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Examples  from  CRTS  

●●●●

●●

●●●●

●●

●●

●●

● ●●●

●●

●● ●●●

●●●●● ●

●●●●

●●

● ●●●●

●●

53500 54000 54500 55000 55500

2322

2120

1918

17

ID=2020262030217

MJD

Mag ●

●●●●

●●

●●●●

●●

●●

●●

● ●●●

●●

●● ●●●

●●●●● ●

●●●●

●●

● ●●●●

●●

●●●●

●●

●●

●●

● ●●●

●●

●● ●

●●

●●●

●● ●●

●●

●●

●●

● ●

●●●

●●

53500 54000 54500 55000 55500

2120

1918

ID=2020262030217

MJD

Mag

●●●●

●●

●●

●●

● ●●●

●●

●● ●

●●

●●●

●● ●●

●●

●●

●●

● ●

●●●

●●

Page 24: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Examples  from  CRTS  

●●

●●●●

●●

●●

●●

●●

●●●

●●

●●●

●● ●

●●●

●●●●

●●

●●

●●

●●●●

●●

● ●

●●

53500 54000 54500 55000 55500

2322

2120

1918

17

ID=2020262030567

MJD

Mag

●●

●●●●

●●

●●

●●

●●

●●●

●●

●●●

●● ●

●●●

●●●●

●●

●●

●●

●●●●

●●

● ●

●●

●●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

53500 54000 54500 55000 55500

2120

1918

ID=2020262030567

MJD

Mag

●●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●

●●

Page 25: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Clustering  and  outliers  using  6  most  significant  variables  

Page 26: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Movie  using  6  significant  variables  

Page 27: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Outliers  

Page 28: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

outliers non−outliers

0.0

0.5

1.0

1.5

2.0

2.5

amplitude

outliers non−outliers

0.1

0.2

0.3

0.4

0.5

beyond1std

outliers non−outliers

0.00

0.10

0.20

0.30

fpr_mid20

outliers non−outliers

0.0

0.1

0.2

0.3

0.4

0.5

fpr_mid35

DistribuCon  (boxplots)  for  outliers  (and  non-­‐variables)  

Page 29: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

FuncConal  Data  Analysis  Staicu et al. test

• Suppose we want to test H0: µ(t) © µ, that is, that the meanfunction is constant

• for light curves, we are testing whether or not a star is variable

• Staicu, Li, Crainicanu, and Ruppert (2012) develop likelihoodratio tests about the mean of functional data

• The challenge is to take account of the correlation byestimating the correlation function

• The test can be applied to dense or sparsely observedfunctional data

• More general null hypotheses• µ(t) is a polynomial of degree p

• The means of two samples of functional data are equal

Page 30: Exploratory*Analysis*of*LightCurves*€¦ · LBV Asteroids AGN Rotation Eclipse Microlensing Eruptive Pulsation Secular (DAV) H-WDs Variability Tree Novae N Symbiotic ZAND Dwarf novae

Conclusions  •  CRTS  provides  a  rich  data  set  of  500  M  lightcurves  for  

exploraCon.  •  So  far  mostly  transients  have  been  looked  at  •  We  are  devising  ways  to  explore  all  lightcurves  with  

addiConal  informaCon  available  due  to  proximity  (e.g.  ability  to  register)  

•  ExisCng  parameters  have  redundancies  which  we  plan  to  eliminate  through  clustering  as  well  as  dimensional  reducCon  techniques  

•  Future  plans:  connect  CRTS  to  brighter  surveys  like  DASCH  (overlap  for  a  small  fracCon  of  sources,  but  large  Cme  sample),  and  with  fainter  surveys  like  LSST  (starCng  with    simulaCons  to  get  ready  for  the  actual  survey).  [DASCH  -­‐  Digital  Access  to  a  Sky  Century  @  Harvard]