19
Experimental Study of Boiling Crisis Experimental Study of Boiling Crisis Phenomena in Nanofluids Phenomena in Nanofluids Advisors/Contributors: Advisors/Contributors: Professor Jacopo Buongiorno Professor Jacopo Buongiorno Dr. Lin-Wen Hu Dr. Lin-Wen Hu Dr. In Cheol Bang Dr. In Cheol Bang Massachusetts Institute of Technology Massachusetts Institute of Technology, Nuclear Science & Engineering Department Nuclear Science & Engineering Department March 30, 2007 March 30, 2007 American Nuclear Society Student American Nuclear Society Student Conference Conference Craig Gerardi Craig Gerardi

Experimental Study of Boiling Crisis Phenomena in Nanofluidsweb.Mit.edu/nse/pdf/news/2007/07_ansstudentawards/Gerardi_ans.pdf[4] D. W. Zhou and D. Y. Liu, 2004, “Heat Transfer Characteristics

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Experimental Study of Boiling CrisisExperimental Study of Boiling CrisisPhenomena in NanofluidsPhenomena in Nanofluids

Advisors/Contributors:Advisors/Contributors:Professor Jacopo BuongiornoProfessor Jacopo Buongiorno

Dr. Lin-Wen HuDr. Lin-Wen HuDr. In Cheol BangDr. In Cheol Bang

Massachusetts Institute of TechnologyMassachusetts Institute of Technology,,Nuclear Science & Engineering DepartmentNuclear Science & Engineering Department

March 30, 2007March 30, 2007American Nuclear Society StudentAmerican Nuclear Society Student

ConferenceConference

Craig GerardiCraig Gerardi

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 22

OverviewOverview

What are nanofluids and why What are nanofluids and why nuclearnuclear?? Pool boiling facility (PBF) descriptionPool boiling facility (PBF) description Boiling Crisis, Critical Heat Flux (CHF)Boiling Crisis, Critical Heat Flux (CHF) Recent workRecent work Summary/Future WorkSummary/Future Work

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 33

What are Nanofluids?What are Nanofluids? Nanofluids are engineered sol colloidsNanofluids are engineered sol colloids

composed of a base fluid with a stablecomposed of a base fluid with a stablenanometer sized particle dispersionnanometer sized particle dispersion Base fluids: water, organic fluid (ethylene glycolBase fluids: water, organic fluid (ethylene glycol

and ethanol), refrigerantand ethanol), refrigerant Particle size 1-100nmParticle size 1-100nm Nanoparticle materials: oxide (AlNanoparticle materials: oxide (Al22OO33, ZrO, ZrO22),),

metals (Cu, Au), carbon (diamond, metals (Cu, Au), carbon (diamond, nanotubenanotube)) Key points: Brownian Motion preventsKey points: Brownian Motion prevents

gravity settling and particles dongravity settling and particles don’’ttagglomerate (stabilized)agglomerate (stabilized)

Used in this discussion:Used in this discussion: Ethanol + 0.01 % vol Alumina; DEthanol + 0.01 % vol Alumina; Dpp~161nm (DLS)~161nm (DLS)

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 44

WhatWhat’’s so interesting?s so interesting?

Thermal Performance!Thermal Performance! Increased thermal conductivityIncreased thermal conductivity Increased single-phase heat transferIncreased single-phase heat transfer

coefficientcoefficient Increased critical heat fluxIncreased critical heat flux

Potential problems:Potential problems: Higher viscosity, materials compatibility,Higher viscosity, materials compatibility,

reactor physicsreactor physics

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 55

Nanofluid CHF EnhancementNanofluid CHF EnhancementRef Nanofluid (s) Heater type

Max CHF

enhancement

1 Al2O3 in water, 0.001 -0.025 g/L Cu plate 200%

3 SiO 2 (15 -50 nm) in water, 0.5 v% NiCr wire 60%

5 Al2O3 (38 nm) in water, 0.037 g/L Ti layer on glass substrate 67%

7 TiO2 (27-85 nm) in water, 0.01 -3 v% Cu plate 50%

8 Al2O3 (70-260 nm) and ZnO in water Al

2O

3 in ethylene glycol

Cu plate 200%

9 Al2O

3 (10-100 nm) in water, 0.5 -4 v% Stainless steel plate 50%

12 TiO2 (85 nm) in water, 10

-5-10

-1 v% NiCr wire 200%

15 SiO2, CeO

2, Al

2O

3 (10-20 nm) in water, 0.5 v% NiCr wire 170%

16 Au (4 nm) in water Cu plate 175%

17 SiO2 (20-40 nm), ZrO

2 (110-250 nm), Al

2O

3

(110-210 nm ) in water, 0.001 -0.1 v% Stainless steel wire 80%

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 66

Nuclear Reactors & Nanofluids?Nuclear Reactors & Nanofluids?

Majority of systems that are heat-removalMajority of systems that are heat-removallimited could benefit from nanofluidlimited could benefit from nanofluidpropertiesproperties Light water reactor coolantLight water reactor coolant Standby safety systemsStandby safety systems In-vessel retentionIn-vessel retention Spent fuel storageSpent fuel storage Fusion divertersFusion diverters Accelerator targetsAccelerator targets

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 77

Nanofluid Pool Boiling Facility:Nanofluid Pool Boiling Facility:HeaterHeater

Transparent (IR & Visible) Indium-Tin-Oxide (ITO)Transparent (IR & Visible) Indium-Tin-Oxide (ITO) 0.70.7µm thickµm thick Heated area: 10x30 mmHeated area: 10x30 mm22

Vacuum deposited on 1mm sapphire glassVacuum deposited on 1mm sapphire glass Surface roughness ~20nm (AFM)Surface roughness ~20nm (AFM)

Silver electrode contactsSilver electrode contacts

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 88

Nanofluid Pool Boiling Facility:Nanofluid Pool Boiling Facility:CapabilitiesCapabilities

High speed Infrared (IR) CameraHigh speed Infrared (IR) Camera ~140 ~140 µm, 233 Hz spatial & time resolutionµm, 233 Hz spatial & time resolution Local temperature distribution as function timeLocal temperature distribution as function time

High speed optical cameraHigh speed optical camera ~100 µm, 500 Hz spatial & time resolution~100 µm, 500 Hz spatial & time resolution Contact line movement, Contact line movement, dryout dryout visualization,visualization,

bubble departurebubble departure Optical probeOptical probe

Void fraction, bubble diameter & velocity, liquidVoid fraction, bubble diameter & velocity, liquidmacrolayer macrolayer thicknessthickness

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 99

Boiling CurveBoiling Curve

Tsat(ethanol)=78.4°C

0 10 20 30 40 50 600

100

200

300

400

500

600

700

800

!Ts=(T

w-T

sat) (

oC)

q" (kW/m

2)

Pure Ethanol

Ethanol + 0.01% vol Alumina

CHF

CHF

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 1010

CHF - VideosCHF - Videos

Ethanol + 0.01%vol AluminaPure Ethanol

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 1111

Surface Characteristics (SEM)Surface Characteristics (SEM)

Electrode

ITO surfacew/ precipitate

Heater surface at boundary of ITO & Electrodeboiled in Ethanol + 0.01% vol Alumina nanofluid

ITO surface after being boiled in Ethanol +0.01% vol Alumina nanofluid

ITO surface after being boiled in Ethanol +0.01% vol Alumina nanofluid

ITO surface after being boiled in Ethanol

ITO surface

Electrode

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 1212

Nucleation Sites Nucleation Sites –– Temporal and Temporal andspatial evolutionspatial evolution

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.899

100

101

102

103

104

105

106

x (mm)

Temperature (

oC)

Spatial Temperature profile

0 ms

4 ms

9 ms

13 ms

17 ms

21 ms

0 100 200 300 400 500 600

102.5

103

103.5

104

104.5

105

Time (ms)

Temperature (oC)

Temperature history of single pixel

a)Spatial, b) temporal temperature plots and c)IR thermometry video of cold spot in ethanol +0.01vol% alumina at 200kW/m2

a) b)

c)

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 1313

Summary & Future WorkSummary & Future Work

Summary:Summary: See enhanced CHF in nanofluid boilingSee enhanced CHF in nanofluid boiling Likely due to a surface effect (better Likely due to a surface effect (better wettabilitywettability) as) as

opposed to hydrodynamic interference byopposed to hydrodynamic interference bynanoparticles, etc.nanoparticles, etc.

Future work:Future work: Nucleation site densityNucleation site density Simultaneous IR/Optical high speed imagingSimultaneous IR/Optical high speed imaging ModelModel

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 1414

CHF TheoryCHF Theory Hot/dry spotHot/dry spot

CHF occurs due to irreversible temperature excursion withCHF occurs due to irreversible temperature excursion withlocalized dry/hot spots (localized dry/hot spots (Theofanous Theofanous et al, 2002 & 2006)et al, 2002 & 2006)

Only difference from original Only difference from original Kutateladze-Zuber Kutateladze-Zuber equation is theequation is theparameter k which is surface/fluid interaction termparameter k which is surface/fluid interaction term((wettability/contact wettability/contact line micro-hydrodynamics)line micro-hydrodynamics)

Well-wetting surface Well-wetting surface –– lower k, higher CHF value lower k, higher CHF value

1/ 2 1/ 2 1/ 4 1/ 4 1/ 4" ( )CHF LV V L V

q k h g! " ! !# $ %= #& '

è

l è

l

è

l

v è

l

v

v

v

Non-Wetting Wetting

Droplet

Bubble

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 1515

Nanofluid Pool Boiling FacilityNanofluid Pool Boiling Facility

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 1616

Alumina Particle Size DistributionAlumina Particle Size Distribution(DLS)(DLS)

March 30March 30thth, 2007, 2007 ANS Student Conference 2007ANS Student Conference 2007 MIT MIT 1717

Boiling CurveBoiling Curve

80 85 90 95 100 105 110 115 120

0

100k

200k

300k

400k

500k

600k

0.01 v% alumina-ethanol nanofluid

pure ethanol nanofluid

Hea

t Flu

x [k

W/m2

]

Wall Average Temp[oC]

CHF

ReferencesReferences [1][1] S. M. You, J. Kim, K. H. Kim, 2003, S. M. You, J. Kim, K. H. Kim, 2003, ““Effect of nanoparticles on critical heat flux of water in pool boilingEffect of nanoparticles on critical heat flux of water in pool boiling

heat transferheat transfer””, Applied Physics Letters, 83, 16, 3374-3376., Applied Physics Letters, 83, 16, 3374-3376. [2][2] S. Das, N. Putra, W. S. Das, N. Putra, W. RoetzelRoetzel, 2003, , 2003, ““Pool boiling characteristics of Pool boiling characteristics of nano-fluidsnano-fluids””, Int. J. of Heat and Mass, Int. J. of Heat and Mass

Transfer, 46, 851-862.Transfer, 46, 851-862. [3][3] P. P. VassalloVassallo, R. Kumar, S. D, R. Kumar, S. D’’Amico, 2004, Amico, 2004, ““Pool boiling heat transfer experiments in silica-water Pool boiling heat transfer experiments in silica-water nano-nano-

fluidsfluids””, Int. J. of Heat and Mass Transfer, 47, 407-411., Int. J. of Heat and Mass Transfer, 47, 407-411. [4][4] D. W. Zhou and D. Y. Liu, 2004, D. W. Zhou and D. Y. Liu, 2004, ““Heat Transfer Characteristics of Nanofluids in an Acoustic Heat Transfer Characteristics of Nanofluids in an Acoustic CavitationCavitation

FieldField””, Heat Transfer Engineering, 25(6):54-61., Heat Transfer Engineering, 25(6):54-61. [5][5] Tu Tu J. P., N. J. P., N. DinhDinh, T. , T. TheofanousTheofanous, 2004, , 2004, ““An experimental study of nanofluid boiling heat transferAn experimental study of nanofluid boiling heat transfer”” in in

Proceedings of 6th International Symposium on Heat Transfer, Beijing, China.Proceedings of 6th International Symposium on Heat Transfer, Beijing, China. [6][6] J. H. Kim, K. H. Kim, S. M. You, 2004, J. H. Kim, K. H. Kim, S. M. You, 2004, ““Pool Boiling Heat Transfer in Saturated NanofluidsPool Boiling Heat Transfer in Saturated Nanofluids””, Proceedings, Proceedings

of IMECE 2004, Anaheim, California, November 13-19.of IMECE 2004, Anaheim, California, November 13-19. [7][7] H. D. Kim and M. H. Kim, 2004, H. D. Kim and M. H. Kim, 2004, ““Critical heat flux behavior in pool boiling of water-TiO2 Critical heat flux behavior in pool boiling of water-TiO2 nano-fluidsnano-fluids””,,

Proceedings of Fourth Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety, Sapporo, Japan,Proceedings of Fourth Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety, Sapporo, Japan,November 28-December 1.November 28-December 1.

[8][8] G. Moreno Jr., S. Oldenburg, S. M. You, J. H. Kim, 2005, G. Moreno Jr., S. Oldenburg, S. M. You, J. H. Kim, 2005, ““Pool Boiling Heat Transfer of Alumina-Water,Pool Boiling Heat Transfer of Alumina-Water,Zinc Oxide-Water and Alumina-Water Ethylene Glycol NanofluidsZinc Oxide-Water and Alumina-Water Ethylene Glycol Nanofluids””, Proceedings of HT2005, July 17-22, San, Proceedings of HT2005, July 17-22, SanFrancisco, California, USA.Francisco, California, USA.

[9][9] I. C. Bang and S. H. Chang, 2005, I. C. Bang and S. H. Chang, 2005, ““Boiling Heat Transfer Performance and Phenomena of Al2O3-WaterBoiling Heat Transfer Performance and Phenomena of Al2O3-WaterNano-fluids Nano-fluids from a Plain Surface in a Poolfrom a Plain Surface in a Pool””, Int. J. of Heat and Mass Transfer, 48, 2407-2419., Int. J. of Heat and Mass Transfer, 48, 2407-2419.

[10][10] D. D. Milanova Milanova and R. Kumar, 2005, and R. Kumar, 2005, ““Role of ions in pool boiling heat transfer of pure and silica nanofluidsRole of ions in pool boiling heat transfer of pure and silica nanofluids””,,Applied Physics Letters, 87, 233107.Applied Physics Letters, 87, 233107.

[11][11] D. D. Wen Wen and Y. Ding, 2005, and Y. Ding, 2005, ““Experimental investigation into the pool boiling heat transfer of aqueousExperimental investigation into the pool boiling heat transfer of aqueousbased based gg-alumina nanofluids-alumina nanofluids””, Journal of Nanoparticle Research, 7:265-274., Journal of Nanoparticle Research, 7:265-274.

[12][12] H. Kim, J. Kim, M. Kim, 2006, H. Kim, J. Kim, M. Kim, 2006, ““Experimental study on CHF characteristics of water-TiO2 Experimental study on CHF characteristics of water-TiO2 nano-fluidsnano-fluids””,,Nuclear Engineering and Technology, Vol. 38, No. 1.Nuclear Engineering and Technology, Vol. 38, No. 1.

[13][13] H. Kim, J. Kim, M. Kim, 2006, H. Kim, J. Kim, M. Kim, 2006, ““Experimental study on the characteristics and mechanism of pool boilingExperimental study on the characteristics and mechanism of pool boilingCHF enhancement using CHF enhancement using nano-fluidsnano-fluids””, ECI International Conference on Boiling Heat Transfer, Spoleto, 7-12 May., ECI International Conference on Boiling Heat Transfer, Spoleto, 7-12 May.

[14][14] S.J. Kim, B. Truong, J. Buongiorno, L. W. Hu, I. C. Bang, 2006, S.J. Kim, B. Truong, J. Buongiorno, L. W. Hu, I. C. Bang, 2006, ““Study of Two-Phase Heat Transfer inStudy of Two-Phase Heat Transfer inNanofluids for Nuclear ApplicationsNanofluids for Nuclear Applications””, Paper 6005, Proceedings of ICAPP , Paper 6005, Proceedings of ICAPP ’’06, Reno, Nevada, June 4-8.06, Reno, Nevada, June 4-8.

[15][15] D. D. MilanovaMilanova, R. Kumar, S. , R. Kumar, S. KuchibhatlaKuchibhatla, S. Seal, 2006, , S. Seal, 2006, ““Heat transfer behavior of oxide nanoparticles inHeat transfer behavior of oxide nanoparticles inpool boiling experimentpool boiling experiment””, Proc. of 4th International Conference on , Proc. of 4th International Conference on NanochannelsNanochannels, , Microchannels Microchannels andandMinichannelsMinichannels, Limerick, Ireland, June 19-21., Limerick, Ireland, June 19-21.

[16][16] J. E. Jackson, B. V. J. E. Jackson, B. V. BorgmeyerBorgmeyer, C. A. Wilson, P. Cheng, J. E. Bryan, 2006, , C. A. Wilson, P. Cheng, J. E. Bryan, 2006, ““Characteristics of nucleateCharacteristics of nucleateboiling with gold nanoparticles in waterboiling with gold nanoparticles in water””, Proceedings of IMECE 2006, Chicago, November 5-10., Proceedings of IMECE 2006, Chicago, November 5-10.

[17][17] S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, 2007, S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, 2007, ““Surface Surface Wettability Wettability Change during Pool Boiling ofChange during Pool Boiling ofNanofluids and its effect on Critical Heat FluxNanofluids and its effect on Critical Heat Flux””, International Journal of Heat and Mass Transfer (in press)., International Journal of Heat and Mass Transfer (in press).

[18][18] I. C. Bang, J. Buongiorno, L. W. Hu, H. Wang, 2007, I. C. Bang, J. Buongiorno, L. W. Hu, H. Wang, 2007, ““Measurement of Key Pool Boiling Parameters inMeasurement of Key Pool Boiling Parameters inNanofluids for Nuclear ApplicationsNanofluids for Nuclear Applications””, Paper 10030, Proceedings of ICONE 15, Nagoya, Japan, April 22-26., Paper 10030, Proceedings of ICONE 15, Nagoya, Japan, April 22-26.

[19][19] J. Eastman, S. U. S. J. Eastman, S. U. S. ChoiChoi, S. Li, W. Yu, L. J. Thompson, 2001, , S. Li, W. Yu, L. J. Thompson, 2001, ““Anomalously increased effective thermalAnomalously increased effective thermalconductivities of ethylene-glycol-based nanofluids containing copper nanoparticlesconductivities of ethylene-glycol-based nanofluids containing copper nanoparticles””, Applied Physics Letters,, Applied Physics Letters,78(6), 718-720.78(6), 718-720.

[20][20] W. C. Williams, 2007, Experimental and Theoretical Investigation of Transport Phenomena inW. C. Williams, 2007, Experimental and Theoretical Investigation of Transport Phenomena inNanoparticle Colloids (Nanofluids), Ph.D. Thesis, Massachusetts Institute of Technology.Nanoparticle Colloids (Nanofluids), Ph.D. Thesis, Massachusetts Institute of Technology.

[21][21] N. N. ZuberZuber, 1959, , 1959, ““Hydrodynamic Aspects of Boiling Heat TransferHydrodynamic Aspects of Boiling Heat Transfer””, AECU-4439., AECU-4439. [22][22] J. Lee and I. J. Lee and I. MudawarMudawar, 2006, , 2006, ““Assessment of the effectiveness of nanofluids for single-phase and two-Assessment of the effectiveness of nanofluids for single-phase and two-

phase heat transfer in micro-channelsphase heat transfer in micro-channels””, Int. J. Heat and Mass Transfer (in press)., Int. J. Heat and Mass Transfer (in press). [23][23] R. N. Wenzel, 1949, R. N. Wenzel, 1949, ““Surface roughness and contact angle (letter)Surface roughness and contact angle (letter)””, J. Physical Colloid Chemistry, 53, 9,, J. Physical Colloid Chemistry, 53, 9,

1466.1466. [24][24] S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, ““Effects of nanoparticle deposition on surface Effects of nanoparticle deposition on surface wettabilitywettability

influencing boiling heat transfer in nanofluidsinfluencing boiling heat transfer in nanofluids””, Applied Physics Letters Vol. 89, Issue 15, 2006., Applied Physics Letters Vol. 89, Issue 15, 2006. [25][25] K. K. SefianeSefiane, 2006, , 2006, ““On the role of structural disjoining pressure and contact line pinning in critical heat fluxOn the role of structural disjoining pressure and contact line pinning in critical heat flux

enhancement during boiling of nanofluidsenhancement during boiling of nanofluids””, Applied Physics Letters, Vol. 89, Issue 4., Applied Physics Letters, Vol. 89, Issue 4. [26][26] H. S. H. S. XueXue, J. R. Fan, Y. C. Hu, R. H. Hong, K. F. Chen, 2006, , J. R. Fan, Y. C. Hu, R. H. Hong, K. F. Chen, 2006, ““The interface effect of carbon The interface effect of carbon nanotubenanotube

suspension on the thermal performance of a two-phase closed suspension on the thermal performance of a two-phase closed thermosyphonthermosyphon””, Journal of Applied Physics, 100, Journal of Applied Physics, 100(104909).(104909).

[27][27] C. H. Wang and V. K. C. H. Wang and V. K. DhirDhir, 1993, , 1993, ““Effect of surface Effect of surface wettability wettability on active nucleation site density duringon active nucleation site density duringpool boiling of water on a vertical surfacepool boiling of water on a vertical surface””, J. Heat Transfer, vol. 115, 659-669., J. Heat Transfer, vol. 115, 659-669.

[28][28] T. G. T. G. TheofanousTheofanous, J. P. , J. P. TuTu, A. T. , A. T. DinhDinh, T. N. , T. N. DinhDinh, 2002, , 2002, ““The boiling crisis phenomenon. Parts I and IIThe boiling crisis phenomenon. Parts I and II””,,Experimental Thermal and Fluid Science, 26, 775-810.Experimental Thermal and Fluid Science, 26, 775-810.