38
Experimental Beamlines of GSI Materials Research CARAT Workshop * GSI * 13. – 15.12.2009 Daniel Severin GSI Materials Research

Experimental Beamlines of GSI Materials Research

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Experimental Beamlines of GSI Materials Research

Experimental Beamlines of

GSI Materials Research

CARAT Workshop * GSI * 13. – 15.12.2009Daniel SeverinGSI Materials Research

Page 2: Experimental Beamlines of GSI Materials Research

GSI - Facility

Cave AHigh Energy

UNILAC3.6-11.4 MeV/uRange ~ 100µm

X0

SISup to

2 GeV/u

ERDAIon-Beam Analysis

Page 3: Experimental Beamlines of GSI Materials Research

Sample irradiation

Page 4: Experimental Beamlines of GSI Materials Research

Heavy ion irradiation

X0 Autosampler

single ionrandom

• Automatic load-lock system

• Defocused beam (5x5cm2)

• Random ion distribution

• Fluence regime: 1 – 1E13 ions/cm2

• Single ion irradiation

• 50 samples per hour(for 1E8 ions/cm2 per sample)

Page 5: Experimental Beamlines of GSI Materials Research

Ion track membranes

pores in mica

10 µm

etch pits in SiO2 perforated dead-end pores

pores in Kapton conical pores in Kapton

1 µm

cigar-shaped pores in PC funnel-shaped pores

Page 6: Experimental Beamlines of GSI Materials Research

Heavy-ion beam Microprobe

Page 7: Experimental Beamlines of GSI Materials Research

Heavy-ion beam Microprobe

3m

object aperture

lens

target

electronic

deflectorhit detector

beamswitch

Page 8: Experimental Beamlines of GSI Materials Research

Heavy-ion beam Microprobe

3m

object aperture

lens

target

electronic

hit detector

beamswitch

deflector

Page 9: Experimental Beamlines of GSI Materials Research

Biology Setup

Fast and perfect dose control

10 µm

ions

Unsurpassed targeting accuracy

Page 10: Experimental Beamlines of GSI Materials Research

Heavy-ion beam Microprobe

typ. 20µm

100µm

Page 11: Experimental Beamlines of GSI Materials Research

single-ion lithography

10 µm

• Single ion irradiation

• Accuracy:… in vacuum: below 1µm… into air: 1.5 µm

• Speed: ~ 100 Hz

10.000 ions in regular pattern etched PET

Page 12: Experimental Beamlines of GSI Materials Research

Sample characterization

Page 13: Experimental Beamlines of GSI Materials Research

Off-line techniques atMaterials Research

Spectroscopy

1400 1200 1000 8000

2

1117

cm

-1

abso

rptio

n / a

rb. u

nit

wavenumber / cm-1

virgin 1x1010

1x1011

4x1011

2x1012

725

cm-1

1169

cm

-1

1456

cm

-1

Phase TransitionPolymer Degradation

UV/Vis & Infrared RamanMicroscopy

Shape and Size of Nanopores and -wires

Surface Analysis

AFM / STM SEM

Swelling effects

LaserspectroscopyProfilometry Chemistry

Lab

Template etching

Photon relaxation

Page 14: Experimental Beamlines of GSI Materials Research

In-situ and On-linesample characterization

Page 15: Experimental Beamlines of GSI Materials Research

GSI - Facility

UNILAC3.6-11.4 MeV/u

X0

New M-Branch

Cave A

Page 16: Experimental Beamlines of GSI Materials Research

M - Branch

Page 17: Experimental Beamlines of GSI Materials Research

M1 – Electron Microscopy

Fixed beam spot size:diameter = 3mm

On-line beam diagnostic(aperture current)

Page 18: Experimental Beamlines of GSI Materials Research

M1 – In-situ SEM

2 µm2 µm

• Zeiss SUPRA 40 high-resolution scanning electron microscope (1.3 nm at 15 keV)

• 5-axes motorised eucentricsample stage

• In-situ imaging without exposing the irradiated sample to air

Page 19: Experimental Beamlines of GSI Materials Research

M2 – In-situ XRD

• Small beam spot

• Scanning ion beam system(extreme homogeneousirradiation with high flux)

• On-line beam diagnostic(aperture current)

Page 20: Experimental Beamlines of GSI Materials Research

• SEIFERT 4-circle x-ray diffractometer (Cu-Kα)

• Position sensitive detector

• Investigation under any angle of incidence enables the quantitative analysis of structural modifications

Page 21: Experimental Beamlines of GSI Materials Research

XRD - Application

10 20

inte

nsity

(a.u

.)

two theta (degrees)

unirradiated

1×1013 cm-2

5×1012 cm-2

• Amorphization

• Formation of new ion-beaminduced phases

• Special orientationtexturing

Page 22: Experimental Beamlines of GSI Materials Research

M3 – On-line Spectroscopy

• Variable beam spot size (Slit system with max. 4x4cm2)• On-line beam monitoring by SETRAM• Extreme sensitive beam view monitor (down to 1E3 ions/cm2)

Page 23: Experimental Beamlines of GSI Materials Research

Sample curvature detection

Irradiation-induced material stress measured by sample curvature detection

University of Jena(Wesch, Steinbach)

Page 24: Experimental Beamlines of GSI Materials Research

Residual Gas Analyser

0 10 20 30 40 50 60 70 80 90 10010-9

10-8

10-7

10-6

C2F4

C2F3

CF3

CF2pres

sure

/ m

bar

m/z

without beam with beam

CF

11.4 MeV/u Xe --> PTFE

Irradiation-induced outgassing of PTFE

University of Sao Paulo(Delgado)

Page 25: Experimental Beamlines of GSI Materials Research

On-line FT/IR Spectroscopy

-0,16

-0,14

-0,12

-0,10

-0,08

-0,06

-0,04

-0,02

-0,00

0,02

Abso

rban

ce

2330 2335 2340 2345 Wavenumbers (cm-1)

Transmission FT/IR spectroscopy

• Real on-line measurement possible

• Elimination of errors by sample preparation

Page 26: Experimental Beamlines of GSI Materials Research

M3 – All-in-one chamber

Cryostat UV/Vis and fluorescence

QMS Gas flow controller

FT-IRLong-distancemicroscopy

Ion beam

Sample curvaturemeasurement

Control of irradiation conditions:

• Cryostat

• Gas flow controller and QMS

Page 27: Experimental Beamlines of GSI Materials Research

High temperature irradiation

Sample temperature up to 950 °C (area 4x4cm2)

Page 28: Experimental Beamlines of GSI Materials Research

Outlook for the next 3 years…

Within a second BMBF project starting 2010– On-line Raman spectroscopy– In-situ AFM in an UHV Chamber– High energetic ERDA (UHV)– Photoluminescence

Page 29: Experimental Beamlines of GSI Materials Research

Summary

Sample irradiation …at X0 (random ion distribution)…at µ-Probe (controlled single-ion irradiation)

Off-line techniques: Electron microscopy, AFM, STM,optical spectroscopy (Raman, IR, UV/Vis) etc.

On-line and in-situ beamlines at the new M-branchSEM, XRD, IR etc.

Surface modificationM1 and M3

Structural bulk modificationM2 and M3

!

!

!

!

!

Page 30: Experimental Beamlines of GSI Materials Research

Thanks to…

… GSI Materials Research group

… collaborating Universities of the M-Branch(Darmstadt, Dresden, Göttingen, Heidelberg, Jena, Stuttgart)

… and thanks for your attention!

Page 31: Experimental Beamlines of GSI Materials Research

END

Page 32: Experimental Beamlines of GSI Materials Research

Dose distribution of swift heavy ions

photons ions

Page 33: Experimental Beamlines of GSI Materials Research

Ion track membranes

10 nm

10-1000 µm

Page 34: Experimental Beamlines of GSI Materials Research

Track morphology

5.0 keV/nm

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

ener

gy lo

ss (k

eV/n

m)

energy (MeV/u)

O

Xe

Ar

Krhomogeneous

inhomogeneous

no etching

4.5 keV/nm

NIM B 116 (1996) 429

Page 35: Experimental Beamlines of GSI Materials Research

Track etching

PETpolycarbonate

Kapton

UV treatment

chemicaletching

(NaOH, NaOCl. HF)

Irradiation

Page 36: Experimental Beamlines of GSI Materials Research

Polymers / Pore size

2 µmTrack etchable POLYMERS

PET polyethylene terephthalate (Mylar, Hostaphan)PC polycarbonate (Lexan, Makrofol, CR39)PI polyimide (Kapton, Upilex)PP polypropylenePVDF polyvinyidene fluoride 30 µm Makrofol N

6M NaOH @ 50 °C

2 µm

Page 37: Experimental Beamlines of GSI Materials Research

SAXS

α = 15°

Characteristics: pattern is very sensitive to alignment due to large aspect ratio of pores

α = 0° coaxialq [Å-1]

ln(in

tens

ity)

polyarylate foil5×108 pores/cm2

∅ = 240 nm

Θα SAXSx-rays

Page 38: Experimental Beamlines of GSI Materials Research

Replica method

10 µmion track membrane

filling of pores in galvanic cell

free-standing metal needlesdissolution ofpolymer