14
1 Experiment 1 Measuring “g” using the Kater Pendulum Goal: The free fall acceleration, “g”, is a quantity that varies by location around the surface of the earth. While everywhere on the surface it is 9.8 m/s 2 to two significant digits, for some experiments we will need to have more precision. Moreover, it will be important to know the uncertainty in the local value of g. The purpose of this experiment is to perform a careful measurement of the local value of g that can then be used in calculations in future experiments. Background: The experiment will involve the use of a physical pendulum. Recall that the difference between a simple pendulum and a physical pendulum is that a simple pendulum has all of its mass concentrated at the tip while a physical pendulum has mass distributed throughout its length. Consider an arbitrary pendulum, as indicated above. The key characteristics are the distance between the center of mass and the pivot point (“d” in the above diagram), the moment of inertia (I) about the pivot point, and the total mass of the pendulum, M. If you consult an introductory physics textbook or Analytical Mechanics by Fowles and Cassiday, you will find that the period for such a pendulum is given by (1) This equation applies provided the amplitude of oscillation is sufficiently small. T = 2π I Mgd pivot cm d

Experiment 1 Measuring “g” using the Kater Pendulum

Embed Size (px)

Citation preview

Page 1: Experiment 1 Measuring “g” using the Kater Pendulum

1

Experiment1Measuring“g”usingtheKaterPendulum

Goal:Thefreefallacceleration,“g”,isaquantitythatvariesbylocationaroundthesurfaceoftheearth. While everywhereon the surface it is9.8m/s2 to two significantdigits, for someexperimentswewillneedtohavemoreprecision.Moreover,itwillbeimportanttoknowthe uncertainty in the local value of g. The purpose of this experiment is to perform acarefulmeasurementofthelocalvalueofgthatcanthenbeusedincalculationsinfutureexperiments.Background:The experiment will involve the use of a physical pendulum. Recall that the differencebetweenasimplependulumandaphysicalpendulumisthatasimplependulumhasallofits mass concentrated at the tip while a physical pendulum has mass distributedthroughoutitslength.Consider an arbitrary pendulum, as indicated above. The key characteristics are thedistancebetween the centerofmass and thepivotpoint (“d” in the abovediagram), themomentofinertia(I)aboutthepivotpoint,andthetotalmassofthependulum,M.IfyouconsultanintroductoryphysicstextbookorAnalyticalMechanicsbyFowlesandCassiday,youwillfindthattheperiodforsuchapendulumisgivenby

(1)

Thisequationappliesprovidedtheamplitudeofoscillationissufficientlysmall.

T = 2π IMgd

pivot

cmd

Page 2: Experiment 1 Measuring “g” using the Kater Pendulum

2

Notethatinthecaseofasimplependulum,thestringorrodistakentobemasslesssothatI=Md2,reducing(1)to

T = 2π dg (2)

Thiscommonlyappears in textbookswith“d”replacedby“L”. These twovariableshavethesamemeaninginthecontextofthesimplependulum.Aquickwaytodetermineg,thenistomeasuretheperiodofasimplependulumandrearrange(2)toobtain:

g = 4π 2 dT 2 (3)

Thismethodwillbeexploredbrieflyinthisexperiment,longenoughtoconvinceyouthattheKaterpendulumapproachisbetter.Returningtothephysicalpendulumasdescribedbyequation(1),themomentofinertiaofanobjectdependson the locationof theaxisof rotation (or thepivotpoint inourcase).TheParallelAxisTheoremsaysthatthemomentofinertia,I,aboutanaxisparalleltoonethatpassesthroughthecenterofmassofanobjectisgivenby

(4)whereIcmisthemomentofinertiaaboutthecenterofmassanddisthedistancebetweenthecenterofmassandtheaxisofrotation.Itisconvenienttowritethemomentofinertiaaboutthecenterofmassintermsofk,aquantityknownastheradiusofgyration:

(5)

Herekrepresentsthedistancefromtheaxisallthemasscouldbeconcentratedsuchthatthegivenmomentofinertiaisreproduced.Combiningthepreviousequations(1),(4),and(5)givesus

(6)

Now let us ask, are there two different pivot points we could use to produce the sameperiod?Whenwechangethepivotpoint,onlythevalueofdintheaboveequationchanges(kisdeterminedexclusivelybythemomentofinertiaaboutthecenterofmass). Wewillusesubscripts1and2torefertothetwodifferentpivotpoints:

I = Icm +Md2

Icm =Mk2

T = 2π k2 + d 2

gd

Page 3: Experiment 1 Measuring “g” using the Kater Pendulum

3

Alittlebitofalgebrareducesthistotheconstraint

(7)Wewillcallthiscommonvalueoftheperiodweobtainwhentheaboverelationissatisfied,T*.UsingtheequationforT1,wefind

Ofcourseourgoalinthisexperimentistofindg:

(8)

Thusourvalueofgwilldependon

• ourabilitytofindtwodifferentpivotsonthesamependulumthatproducethesameperiod,

• ourabilitytomeasurepreciselythedistancebetweenthesetwopivotpoints,• ourabilitytomeasurepreciselythependulumperiod.

Hadwe instead elected toworkwith the original equation for the period (1),wewouldhave been faced with the need to determine the position of the center of mass withprecisionaswellasthemomentofinertiaaboutthepivotpointwithprecision.Whilethesecalculations are easy for idealized situations, getting precise values for a real pendulum(with,forinstance,aholepunchedintoittoallowforapivotpoint)isnottrivial.

T1 = 2πk2 + d1

2

gd1T2 = 2π

k2 + d22

gd2

T1 = T2 ⇒k2 + d1

2

gd1=k2 + d2

2

gd2

k2 = d1d2

T*= 2π k2 + d12

gd1= 2π d1d2 + d1

2

gd1= 2π d1 + d2

g

g =4π 2 d1 + d2( )

T *( )2

Page 4: Experiment 1 Measuring “g” using the Kater Pendulum

4

Procedure:Part1:Theapparatusforthispartconsistsofastopwatch,arubberstopper,somethread,andatall support stand. If you are careful not to bump the apparatus and only make theadjustmentsaskedfor,andifyourpredecessorshavelefttheequipmentfullyaligned,youmaysaveyourselfsometimeinPart2,wherealignmentiscritical.1.Yourfirsttaskistomakea50cmlongsimplependulum.Ifthereisalreadyathreadoftherightlengthattachedtoastopper,skiptostep2.Cutapieceofthreadapproximately75cm long. Threadoneendof it throughthehole ina freerubberstopperandtie itoffbyloopingitbackabovethestopper.Tiealargeloopintheotherendofthethreadsothatthependulum length—asmeasured from the point atwhich the pendulumwill pivot to thecenterofmassofthestopper—isabout50cm.2.Loosenthesetscrewonthethinhorizontalrod(onthelefthandsideofthestand)andslide the rod forward so that the rubber tippedendextendspast the frontof the table’sedge.Suspendthependulumfromthelargestandandthenmeasurethedistancefromthepivotpointtothecenterofmassofthestopper,ascarefullyasyoucan,withameterstick.Estimate the uncertainty in thismeasured length, noting that the uncertainty associatedwiththeprocedureislikelygreaterthantheuncertaintyassociatedwiththeinstrument.Tohelpunderstandsourcesofuncertaintyandwaystoreducethem,youwillnextmeasuretheperiod in twodifferentways. Please followtheprocedureasdescribed,even thoughyoumayrecognizethefirstapproachascrude.3.ApproachA:Pullthependulumback10cmorso(thisdistanceisnotcritical)andreleaseit. Using a stopwatch, time one cycle of the oscillation. You can, for instance, start thestopwatchwhenthependulumisonthefarleftandstopitwhenitreturnstothatside.DONOTstartthestopwatchwhenthependulumisreleased.Youaremorelikelytointroducesystematic error that way (see the discussion in the Data Analysis section below). Atechniquethatisprobablymoreaccurateistotimethependulumasitpassesthroughthemidpointof theoscillation. Start thewatchwhen itpasses throughcoming from the left,and stop it when it comes back through the midpoint from the left again. Since thispendulumismovingfastthroughthecenter,youhaveashorter“triggering”eventthanifyouweretousetheendpointofthecycle(whenthependulummovesslowly)totimetheperiod. Makeandrecordatotalof10separate,singlecyclemeasurementsoftheperiod.Youdonotneedtorestarttheoscillationeachtime.4. Approach B: This process is the same as the previous one except you will time 10consecutive cycles. That is, start the stopwatchwhen the pendulumpasses through themidpointcomingfromtheleft. Thefirstcycleiscompletethenexttimeitcomesthroughfromtheleft,andsoon. After10cycleshavebeencompleted,stopthewatchandrecordthetotaltime.Repeatthis10times,foratotaloftenmeasurementsoftencycles.

Page 5: Experiment 1 Measuring “g” using the Kater Pendulum

5

5.Whenyouarefinished,removethependulumfromthethinrodandplaceitonthetableforthenextgroup.Thenforeyesafety,loosenthesetscrewonthethinrodandslidetherodbackawayfromtheedgeofthetable.Part2:Theapparatusforthispartconsistsofabrassrod(thependulum)withtwoholesdrilledinit(forthetwodifferentpivotpoints),aplasticslidethatcanbemovedupanddowntherod(allowing you to change the pendulum’s mass distribution), and a precision electronictimer.Iwillrefertotheholeneartheendoftherodasthe“endhole”andtheoneclosertothecenterasthe“midhole”.Therodhaslinesetchedinitat1cmintervals,exceptwherethelinewouldbeobscuredbyahole.Iwillrefertotheendoppositetotheendholeasthezeropointonthesliderpositionscale.Thediagrambelowshouldclarifythis:

1.Placetheslideratthe8cmmark.Thisisaprecisionexperiment.Donotplacetapeoranyother typeofmarkingson thebrasspendulum. Notethattherearenotmanyadjustmentstomakeinthisexperiment,buteachonemustbemadewithcareinordertoproduceaccurateresults.ALIGNMENT:Mountthependulumontherightsideofthestand,onthe“knife-edge”,whichisactuallyashortrodwithasquarecrosssection,orientedsothatonecornerofthesquareisatthetop.Startbymountingthependulumfromtheendhole. Donotmountthependulumall thewayatthetipoftheknifeedge;rathermoveittowardsthesupportrodbyacentimeterorso,becauselateryouwillneedsomeroomtoslide itout towards the tip.Make sure that the knife-edge is centered in the hole ascloselyaspossible.Thisturnsouttobeacriticalstepinordertogetreproducibleresults.You can use the providedmagnifying glass tomake sure the contact point between theknife-edgeandthetopoftheholeisinlinewiththeengraveddotsthatrundownthecenterofthependulum.Thiscenteringcheckneedstobeperformedeachtimeyouremountthependulum.2.Testtheswingforstabilitybysettingupaswingwitharoughly0.5cmamplitude(i.e.,atotalswingofabout1cm).Notethattheactualvalueoftheamplitudeisnotrelevant,butbeingrelativelycloseto0.5cmwillbenecessarytogetthephotogatetofunctionproperly.If the pendulum is mounted correctly, the oscillations should settle down into a planarmode.Iftherodneverstopstwistingorcircling,theneithertheknife-edgeisnotcenteredintheholeorthesupportmechanismisnotlevel(inthelattercase,youmayneedtoadjustthesetscrewsatthebaseofthetripod).

midhole endhole

01234….

Page 6: Experiment 1 Measuring “g” using the Kater Pendulum

6

3.Nextmount thephotogateso that the“U” isparallel to theplaneof the tableandsuchthatthependulumswingsthoughtheU,paralleltothesidesoftheUandperpendiculartothebaseoftheU.Letthependulumhangvertically,justbarelytouchingtheinneredgeofthefarsideoftheU.YouwillnoticethatontheinnersurfaceneareachtipoftheUthereisa small circular hole. These holes comprise the photogate. The photogate detectsinterruption of the light signal between these two points. Your goal is to line up thephotogatewiththepointmarkedAonthediagrambelow:

It seems tobeeasier tomake thisadjustmentwhen thependulum is restingagainstoneside of the U. Once you have the photogate correctly positioned, carefully slide thependulumalongtheknife-edgeawayfromthephotogatesothatwhenitswings,itwillnotrubthephotogate.Youwillneedabouta1cmgapbetweentherodandthephotogate,sothat later on in the experiment there is room for the slider at the photogate height. Asalways, make sure that the knife-edge remains centered in the pivot hole following theprocedureinstep1.Makeafinalchecktoensurethependulumswingsfreelyandwithoutanytwistingmotion.4.Thereshouldbeacablerunningfromthephotogatetothebackoftheelectronictimer,pluggedintotheΔTport.Turntheelectronictimeron.TheModeswitchshouldbeslidtotheright,sothattheLEDnexttothePeriodlabel(actuallyslightlyaboveit)islit.Oncethependulumissetinmotion,thereadoutwilldisplaytheperiod,updatingitaboutevery10s.Displace the pendulum about 0.5 cm to one side and release it. (Remember, 0.5 cm issmall—lookatametersticktorefreshyourmemory.) Ifthealignmentiscorrectandtheamplitude is correct, the pendulum will swing so that point B momentarily blocks thephotogate, but pointB does not continue onpast the photogate.When the swing settlesdown,youshouldgetaperiodverycloseto(i.e.,withinahundredthsofasecond),butnotexactlyequalto,onesecond.Troubleshootingtips:

• Thependulumcontinues towobble:Tryshifting toa slightlydifferentpositionontheknife-edge,checktomakesuretheknifeedgeiscenteredinthehole,makesureyouramplitudeisnottoolarge,orbemorecarefulhowyoureleasethependulum.

A B

midholeçClosedendofU

Page 7: Experiment 1 Measuring “g” using the Kater Pendulum

7

• Theperiodreadscloseto2sratherthan1s.Mostlikely,eithertheamplitudeistoo

smallortheelectriceyehasbeenlinedupwiththeholeinsteadofatpointA.

• The period is too small: Try using a smaller amplitude or waiting longer for thewobblestodieout.

• Oscillationsdieouttorapidly: thiscanhappenif there is toomuchtwisting inthe

initialswingofthependulum—tryamorecarefulrelease;ifthatdoesnotwork,tryusingadifferentspotontheknifeedge

• The timewillnot settledown:view the swing fromdifferent angles tomake sure

thereisnotwistingandtomakesurethependulumtipisnotmovinginanellipse;sometimes,though,youjustneedtobepatientandtryagainseveraltimes

• Thetimeisnotupdatingeverytenseconds(i.e.,aboutevery10cycles):oftenthisis

becausethephotogateisnotproperlyaligned(seestep3)If the period is right around one second and you have a nice stable swing, then thealignmentiscomplete.Remainingadjustmentsshouldbeeasyandminimal,providedyoudonotbumptheapparatus.5.Totakedata, letthependulumswinguntiltheperiodsettlesdown.Avoidtouchingthetableduringthistime.WatchthePeriodreadoutas itupdatesevery10seconds. If thereare four consecutive readings all within 0.0004 s of each other, then the oscillation issufficientlystable,soyoucanrecordtheaverageofthose4times(tothenearest0.0001s)andthevariation(i.e.,uncertainty).Youdonotneedtorecordallfourindividualtimes.Ihave found that this stability criterion is sufficient to generate reproducible results onalmostall ofmy trials.Patience is required—evenon thebestof swings Iusuallyhad towait for about a dozen period updates before I had reached this level of stability. Thisperiodyouhavejustmeasuredcorrespondstopivotingabouttheendholewiththeslideratthe8cmposition.6.Nowcarefullyremovethependulumfromtheknife-edgeandflipitover,remountingitinthemidhole.Donotrepositiontheslider.Checkforcenteringfollowingtheprocedureinstep1.Measuretheperiodasyoudidinstep5.Thiswillbetheperiodfortheslideratthe8cmpositionwiththepivotatthemidhole.7.Movetheslidertothe10cmmark,returnthependulumtotheknife-edge,andmeasuretheperiodsonceagainforbothmountingholes.Repeatforthesliderat12cm,14cm,and16cm,so thatyouwillhave fivepositionsaltogether,eachwithperiodmeasurementsatbothsuspensionholes.Thelasttwosliderpositionsareontheothersideofthemidhole.Rememberthatoneofthemarksontherodismissing,duetothepresenceofthemidhole(i.e.,thatholecountsasaline). Eachoftheperiodsshouldbedifferent,butallshouldbe

Page 8: Experiment 1 Measuring “g” using the Kater Pendulum

8

within0.01sof1.0000s.Inall,youshouldhaverecordedthevalueof10differentperiods.Becarefulwhenthesliderisatthe12cmmarkthatitdoesnotrubintothephotogate(thisaddednoisetomydatauntilIspottedtheproblem).8.When you have completed yourmeasurements, take the pendulum off the knife-edgeandplaceitonthetablewhereitisvisibleforthenextgroupbutwhereitwillnoteasilybeknockedoff. Makesuretoturnoff thetimer. Theonlydatayouneedtoacquire for thispartoftheexperimentaretheseperiods(twosetsofperiods,eachwithfivetimes).

Page 9: Experiment 1 Measuring “g” using the Kater Pendulum

9

DataAnalysis:Part1ApproachA:Determinetheaveragevalueofthetensingle-cyclemeasurements,andthendetermine themaximumvalue and theminimumvalue. Whilewith large data sets it isappropriatetocalculatetheuncertaintyusingthestandarddeviationorthesquarerootofthe variance, it is not clear that this approach is appropriate when a small number ofmeasurementsaremade.Formostexperimentsinthiscourse,wewillnotberepeatingourmeasurements often enough to make it worthwhile calculating the standard deviation(althoughyoushouldfeelfreetodosoifyouwish).Instead,wewilluseacruderapproachthatgetstheorderofmagnituderight.Theuncertainty,δT,inourmeasuredvalueofTisthesmallestnumbersuchthatT+δT incorporatesallof thedata. In the followingsimplecase,Trial 1 2 3 4 5Time(s) 1.10 1.13 1.04 1.25 1.08wewouldcalculateT=1.12+/-0.13ssincetheaveragetimeis1.12sandallofthedataliesin the interval of (0.99s, 1.25s). Therewill never be any case in this coursewhere youshouldusemorethan2significantdigitsinyouruncertainty,andusually1significantdigitis fine. Onceyouhavedeterminedthenumberofsignificantdigitsyouwillreport in theuncertainty, theprecisionof thecomputedvaluewouldberoundedoff tothesamelevel.Thatis,wecouldalsoreporttheaboveresultas1.1+/-0.1s(thefinalresultgiventothenearesttenthofasecondinthiscase).ApproachB:Inthisapproachyoumeasuredatimeintervalfor10fullcycles.DenotethisasT10. Divideeachof thevaluesofT10by10 toget the time foroneperiod. Thenanalyzethose times as you did above. You should notice that the uncertainty is smaller in thisapproachbyaboutafactorof10.Infact,ifyoureviewyourcalculations,youwillseehowtheuncertaintyeffectivelygetsreducedbyafactorof10.Noticethatwhenwemeasurethetimefortencyclestothenearesthundredthofasecondandthendividebytentogettheperiod,thisgivesusinformationabouttheperiodpotentiallytothenearestthousandthofasecond. Keep this thousandths digit in your calculations until you see if, based on youruncertainty,itissignificant.Why is there uncertainty in this data? The primary reason is that your timing intervaldependsonyourobservingthestartingpointsandstoppingpointscorrectlyandonyourability tophysically respond toyourobservations. We loosely refer to thisasa reactiontimeissue. Ifyourreactiontimewerealwaysthesame,thenitwoulddelaythestartandstopofthewatchinthesameway,resultinginnoerrorintroducedintothetimeinterval.Itis the fact that the reaction time varies some that introduces some uncertainty into thedata.

Page 10: Experiment 1 Measuring “g” using the Kater Pendulum

10

Systematicerrorvs.randomerror:Itisnothardtoimaginethepossibilitythatthereactiontimeforstartingthewatchandstoppingthewatchcouldbeslightlydifferent,dependingonhowtheexperimentisperformed.Ifthereactiontimeforstartingwerealwayslongerthanforstopping,thatwouldleadtoasystematicerror,inthiscaseallofyourmeasuredtimesbeing too short. This systematic error would not show up in the uncertainty analysisabove.Thatanalysisassumedthatthetimingerrorwasuniformlydistributedaroundtheactual time. A careful experimental procedure will minimize systematic error (seeProcedurePart1,Step3). Insomecases,theremayberemaining,identifiablesystematicerror. For instance, equation (3),which isused toanalyze thisdata, isbasedona smallangleapproximation. Theapproximationusedthereforeintroducessystematicerrorintocalculatedresults. Ideally,anexperimentalistcan identifyall sourcesofsystematicerroranddemonstratethatanyresultingcorrectionswouldbesmallerthanthoseintroducedbyrandomerrors,andhencetheydonotneedtobe includedintheanalysis. Thereality is,though,thatsystematicerroroftencreepsinthroughpoorexperimentaldesignandhencemayonlybespottedbyanoutsideobserver.Thebottomlineisthatyourgoalshouldbetoreduceanysourcesofsystematicerrortoalevellessthanthatoftherandomerror,sothatsystematicsourcesnolongerbecomerelevant.Sowewillassumethatthetiminguncertaintyisalltheproductofrandom,notsystematic,error.Nextweturntothelengthmeasurement(“d”inequation3).Therearetwoissuestoconsiderhere.First,howpreciselycanyoumeasurewithameterstick?Thesmallestunitmarked is1mm. Somewouldargue thatyoucan thereforeonlymeasure to thenearestmm,otherswillarguethatyoucanvisuallydetecttothenearest0.5mm.Myperspectiveisthateitherpositionisjustifiableanddependsonthepersonmakingthemeasurement.Thisillustratesthepointthatthereisaroleforscientificjudgmentinperformingandanalyzingexperiments.Wearemorethanmachinesfollowingrules.Thesecondissueindeterminingtheuncertaintyindisourabilitytoaccuratelylocatethepivot point and the center of mass of the stopper. The latter is generally based on aneducatedguess.Itseemslikelythattheuncertaintyinitspositionexceedstheuncertaintyintroduced due to the measuring limit of the meter stick. I would estimate thiscontributiontotheuncertaintytobe3-5mm.Insum,itwouldbereasonabletoattributeanuncertaintyof5mmtothelengthmeasurement.Notice that in both the time and distance measurements, the uncertainty for the datasignificantlyexceeded themeasurement limitationof thedevice. Thatwillbea commonoccurrenceinthiscourse.

Page 11: Experiment 1 Measuring “g” using the Kater Pendulum

11

CarryinguncertaintyanalysisthroughinyourcalculationsA word of caution: make sure to retain enough significant digits in your intermediatecalculationstosupportyourfinalresult.Forinstance,inPart2ofthisexperiment,youwillbecalculatinggtothreeorfoursignificantdigits,soyourintermediatecalculationsmustbegoodtoatleastfourdigits.Thismeans,forinstance,youcannotusethevalueof3.14forpi.Returningtoequation(3):

g = 4π 2 dT 2 ,

wehaveseenthereisuncertaintyinvaluesforbothdandT.Oncetheaverage(best)valuesandtheuncertaintieshavebeenestablished(asabove),then

gbest = 4π2 dbestTbest( )2

gmin = 4π2 dbest −δdTbest +δT( )2

gmax = 4π2 dbest +δdTbest −δT( )2

Noticethattogetthemaximumvalueofg,wemaximizethenumeratorandminimizethedenominator. Likewise, to get the minimum value of g possible, we minimize thenumeratorandmaximizethedenominator.Yourresultisthenreportedasg+/-δg,wheregis thebestvalueandδg is taken just largeenoughto incorporateboth theminimumandmaximumvaluesofg.Thiscrudeapproachtocalculatinguncertaintiesusuallyoverstatestheuncertainty and thus canbe viewed as a cautious estimate of the actual uncertainty.Makesuretofollowthisanalysisthroughforbothapproachesinpart1.Here isanalternateapproach tocalculating theuncertainty thatyou learned inPHY223andyouarewelcometousehere.Forafunction,f,oftheform

,wherexandyhaveuncertaintiesδxandδyrespectively,theuncertaintyinfisgivenby

. (9)

Applyingthistoourequationforg,

δg = g δdd

⎝⎜

⎠⎟2

+ −2δTT

⎝⎜

⎠⎟2⎡

⎣⎢⎢

⎦⎥⎥

12

= g δdd

⎝⎜

⎠⎟2

+ 2δTT

⎝⎜

⎠⎟2⎡

⎣⎢⎢

⎦⎥⎥

12

Page 12: Experiment 1 Measuring “g” using the Kater Pendulum

12

You should be careful in the future when using this technique since it only applies tofunctionsoftheform ; not all equations in this course will have that simple form.EVERY MEASURED VALUE IN THIS COURSE SHOULD HAVE AN UNCERTAINTYASSOCIATEDWITH IT. EVERY CALCULATEDVALUE IN THIS COURSE SHOULDHAVEACALCULATEDUNCERTAINTY.Itissurprisinghowmanystudentsseemtoforgetthisfactbetweenthefirstandsecondexperiments,resultinginthelossofmanypoints.Part2Everytimeyoumovedtheslider,youchangedthemassdistributionandeffectivelycreatedanewpendulum. Thequestionis,whichofthosependulumshadidenticalperiodswhenpivotedatbothpoints?Whenyouidentifythatpendulum,thenyoucanapplyequation(8)toit.Using Excel or a similar program, plot the period (vertical axis) as a function of sliderposition(horizontalaxis)foreachofthetwopivotpoints,onthesamegraph. Haveeachdatasetfittoapolynomialofdegree2anddisplaytheequationonyourplot. Makesureyouraxesareappropriately labeledandthat there isa legendthatmakessense(i.e.,onethatconveysmoreinformationthanthedefault“Series1”).Where those two linescross,youhave foundapendulumthatproduces thesameperiodwith twodifferenthangingpoints. Determine theperiodat thiscrossingpoint,eitherbyreading it off the graph directly or by using the fitting equations to seek the commonsolution.Sincethisfittingprocedureaccountsfortrendsinseveraldatapoints,itproducesamore accurate value thanmerely looking for the slider position in your raw data thatproduces nearly identical periods. The final step in the calculation is straightforward:Returningto

g = 4π 2 d1 + d2T *( )2

,

let’s set D=d1+d2. There is uncertainty in values for both D and T*. The value of, anduncertainty in, D has been given by the manufacturer: 0.2481 +/- 0.00005 m. In thisexperiment,theuncertaintyinT*isabithardtodeterminesinceitisextractedfromyourplot. You can use your own best judgment on this, but it will probably be somewherearound0.0001s,theprecisionlimitoftheelectronictimer.Oncetheuncertaintyhasbeenestablished,thenyoucanperformtheremaininganalysisoftheuncertaintyasdescribedinPart1.ThemuchsmalleruncertaintyingcalculatedusingtheKaterpendulumwillallowyoutodisplaymoresignificantdigitsinyourreportedresult.

Page 13: Experiment 1 Measuring “g” using the Kater Pendulum

13

A word on significant digits Recallthatthenumberofsignificantdigitsisthenumberofdigitsshownwhenthenumberiswritteninscientificnotation.Thatis,0.035=3.5x10-2hastwosignificantdigits.Notethatinthiscontextthat0.35≠0.350sincethelatterexpressioncontainsmoresignificantdigitsandrepresentsaclaimtoknowthevaluetothenearestthousandth,notmerelythenearesthundredth.Ingeneral,thenumberofsignificantdigitsyoushowwilldependonthelevelofuncertaintyinyourdata.Therearetwoprinciplestoremember:1.Weusuallyshowoneormaybetwosignificantdigitsintheuncertaintycalculation,butinthiscoursetherewillneverbeanypointinshowingmorethantwodigits. Thatis, ifyouareestimatingthenumberofpenniesinalargejar,itmaybereasonabletosayyourcountisgoodtothenearest100pennies,orperhapsthatyourcountisgoodto±110pennies,butit is unreasonable to write ±113 pennies because if you know your uncertainty to thenearestpenny,thenyouprobablycouldhavemadeamoreaccuratecountinthefirstplace!2.Make the level of precision in your best value consistentwith the uncertainty. If youcalculateaforcewhoseuncertaintyis0.3N,thenyoushouldshowtheforcetothenearesttenthofaNewton,sincethatiswheretheuncertaintylies.Thefollowingaresomesimpleexamples:Correct Incorrect23±4 23.1±423.2±1.2 23±1.23.50±0.03 3.5±0.033.55±0.12 3.552±0.123These rules imply that you will need to calculate your uncertainty first before youdeterminehowmany significant digits in your best value to use in your tables. If usingExceltosetupyourtables,rememberthat ithasatendencytotruncatetrailingzeros. Ifthesezeroesaresignificantdigits,youneedtoforceExceltoretainthembyusingaFormat:Numberprocess.

Page 14: Experiment 1 Measuring “g” using the Kater Pendulum

14

WhatyouwillturninforthisexperimentAllyouneedtosubmitforthislabisapartialResultssection:Youshouldhavetableswithyourrawdata,aproperlylabeledplotshowingtheintersectionbetweenthetwodifferentcurves, and your calculations of g from Part 1 and Part 2, including the uncertaintycalculation, as outlined above. I need to see the details of the calculations (i.e., whatnumbersyoupluggedinwhere),not justtheanswers. Irefertothisasa“partialResultssection”sinceinaregularreport,theResultssectionwillcontaintextaswellasdataandcalculations.You’lldothatforyournextexperiment.Addtotheendofyourcalculationaparagraphdiscussingthehighlightsoftheuncertaintyanalysis. In particular, discuss the role of the instrument and of the operator of theinstrumentinproducingbothsystematicandrandomerror,thewayinwhichdataanalysiscanintroducesystematicerror(evenifyoudonotmakemistakeswiththeequations!)andtowhatextenttheseeffectsareaccountedforinyourvaluesofg.Basedonyournumericalresults(notonyourprocedureandpriorexpectations)whichvalueofgshouldyouuseinyourfuturecalculations,1A,1B,or2?Finally,don’tforgettoindicateyourlabpartner.Infuturereports,thisinformationwillgoontheTitle/Abstractpage.