Expansible Mineral Having High Rehydration Ability

Embed Size (px)

Citation preview

  • 7/24/2019 Expansible Mineral Having High Rehydration Ability

    1/2

    Clays and Clay M inerals

    Vol. 22 pp. 309-310. Pergamon Press 1974. Printe d in Great Britain

    R E P L Y T O : C O M M E N T S O N A N E X P A N S I B L E M I N E R A L

    H A V I N G H I G H R E H Y D R A T I O N A B IL IT Y

    R e c e i v e d 6 F e b r u a r y 1974)

    I n h i s C o m m e n t s , C o l e h a s p o i n t e d o u t t h a t h e a t i n g t i m e o f

    1 h r w as s ho r t . I n th i s r ega rd , t he in f luence o f pa r t i c l e s iz e

    s h o u l d b e c o n s id e r e d . O u r e x p e r i m e n t s u s ed a s a m p l e p a r -

    t ic le s iz e < 2 /~m and the hea t ing was d one on a ve ry th in

    f i lm on the g la ss sl ide . W e tho ugh t tha t I h r was long enou gh

    to expe l a l l i n t e r l aye r wa te r . We have reexamined the

    s ample and have found tha t i t ha s h igh capac i ty fo r

    rehy dra t ion even a f te r hea t ing to a t l e a s t 830~ fo r 5 h r .

    C o le s t a t e s tha t c e r t a in ve rm icu l i t es have a h igh capac i ty

    to rehydra te s o long a s they con ta in s ome hydroxy l wa te r .

    I ag ree w i th h im, bu t c e r t a in o the r ve rmicu l i t e s w i l l no t

    rehydra te . I won de r i f i t is c e r t a in tha t t he re i s a r e l a t ion

    be tween ex i s t ence o f hydroxy l wa te r and rehydra t ion .

    R ecen t s tud ie s have conf i rmed tha t c e r t a in regu la r ly in t e r -

    s t ra t i f i ed mine ra l s have h igh rehydra t ion ab i l i t y . Howeve r ,

    de s p i t e th i s h igh rehydra t ion capac i ty the dehydroxy la t ion

    p e a k s i n t h ei r D T A c u r v e s d o n o t o c c u r a t h i g h t e m p e r a t u r e

    (C o le and Hos k ing , 1957 ; B r ind ley and Sanda lak i , 1963 ;

    T o m i t a

    e t a l . ,

    1969 ; To mi ta an d Do zono , 1973 ; To mi ta

    e t

    a l . , 1 97 4) . M a n y m o n t m o r i l l o n i t e s a n d a l l h y d r a t e d h a l lo y -

    s i te s do no t r ehydra te a f t e r hea t ing to c e r t a in t emp e ra tu re s

    des p i t e r e t a in ing s ome hydroxy l wa te r . I s ve rmicu l i t e the

    on ly m ine ra l wh ich wi ll r ehydra te a f t e r hea t ing un t i l a l l hy -

    dro xyl wa ter is lost ?.

    Wa lke r and C o le (1957) and Wa lke r (1961) repor t ed tha t

    B a tav i t e does no t lo s e the l a s t t r a ce o f in t e r l aye r wa te r un t i l

    abou t 800~C . In h i s C omments , C o le exp la ins tha t i t migh t

    be expec ted tha t B a tav i t e wou ld rehydra te a f t e r hea t ing to

    800~ Al th oug h in the i r fo rmer pub l i c a t io ns i t was no t

    c l ea r ly me n t ione d tha t B a tav i t e pos s e s s ed s uch capac i ty , i n

    the C om me nts i t is s t a t ed tha t B a tav i t e does pos s e ss a h igh

    r e h y d r a t i o n c a p a c i t y . W h e n t h e m i n e r a l w a s a l l o w e d t o

    rehyd ra te in a i r af t e r hea t ing to 800~ a 14 .2A re f l e c tion

    typ ica l o f the un hea te d min e ra l was pa r t i a lly recove red . An

    in te r s t ra t if i ed mine ra l f rom Iw a to inves t iga ted by Tom i ta

    and Dozono (1973) comple te ly rehydra ted a f t e r hea t ing to

    800~

    S o m e r e a s o n s a r e c o n s i d e r e d f o r h i g h r e h y d r a t i o n c a p a -

    c ity. As po in ted ou t by Gr anq u i s t an d Ken nedy (1967) , f luo r -

    ide in hydroxy l s i t e s enhances the wa te r s o rp t ion capac i ty .

    W r i g h t

    e t a l .

    (1972) sugges ted, for the same c lay s tudied by

    G r a n q u i s t a n d K e n n e d y , t h a t t h e t h e r m a l l y a c t i v a te d s u b -

    s t ance had p ro tons in the t e t rahe dra l vacanc ie s o f the oc ta -

    hed ra l l aye r . In h i s C omm ents , C o le conc luded th a t t he

    g r e a t e r r e h y d r a t i o n c a p a c i t y o f B a t a v it e a n d L l a n o v e r m i c u -

    l i te ove r the ma te r i a l f rom Wes t C hes te r m igh t be due to the

    fac t t ha t t he fo rm er con ta in no i ron in the oc tahedra l l aye r.

    I t h ink th i s l a ck o f i ron i s one o f the rea s ons . Fo r example ,

    t h e d e h y d r o x y l a t i o n p e a k o f n o n t r o n i t e o c c u r s a t a l o w e r

    temp e ra tu re t han in the ca s e o f i ron - f ree ana logs .

    T h e r e h y d r a t i o n o f m o n t m o r i l l o n i t e a f t e r h e a t i n g t o

    t emp e ra tu re s up to 1000~ has been inves t iga ted by Gr im

    and B rad ley (1948) and by Hi l l (1953) . They conc lud ed tha t

    a f t e r p rehe a t ing to 800~ d ioe tahed ra l s mec t it e s do n o t

    s how apprec iab le rehydra t ion . DTA curves o f s ome t r ioc ta -

    hed ra l s mec t i t e s g ive dehyd roxy la t ion peaks a t h igh t em-

    pe ra tu re s . Sapon i t e f rom Kruge rs dorp , Trans vaa l , Sou th

    Afr i ca dehydroxy la t e s be tween 800 and 900~ and C a l i fo r-

    n ia hec to r i t e a t abo u t 800~ (Schm id t and H eys tek , 1953).

    S o m e s m e c t i t e s h a v i n g h i g h a m o u n t s o f M g i o n s i n t h e

    oc tahedra l l aye r migh t be expec ted the re fo re to have h igh

    rehydra t ion capac i ty . Unfo r tuna te ly , I cou ld no t ob ta in

    pure s pec imens o f such k inds , and cou ld n o t inves t iga te

    the i r c apac i ty to rehydra te . The p rob lem s a re l e ft fo r fu tu re

    s tudy.

    I s uppos e tha t one o f the m a in rea s ons fo r h igh

    rehydra t ion capac i ty may be due to the mine ra l s t ruc tu re .

    B a tav i t e ha s an AI :S i r a t io o f 1 :3 in i t s t e t rahedra l l aye r

    (We is s and Hofmann , 1951) ; L lano ve rmicu l i t e a co r re -

    s pond ing AI : S i r a t io o f 1 :2 (va n O lphen , 1965). C e r t a in in -

    t e r s t ra t i f i ed mine ra l s w i th h igh rehydra t ion ab i l i t y have

    fa i rly h igh s ubs t i tu t ion o f AI fo r S i t e t rahedra l ly (Tom i ta

    e t

    a l . ,

    1 96 9; T o m i t a a n d D o z o n o , 1 97 3; T o m i t a a n d D 6 z o n o ,

    1974) . I have found tha t a Tos ud i t e inves t iga ted by

    Kanaoka (1968) ha s a h igh rehydra t ion capac i ty and a l s o

    has a fa i rly h igh s ubs t i tu t ion o f A l fo r S i. Thus , s pec imens

    hav ing h igh t e t rahedra l s ubs t i tu t ion o f AI fo r S i s eem to

    have th i s r ehyd ra t ion ab i l i t y .

    According to Tomita and Sudo (1968a, b) , a 2Mr ser ic i te ,

    w h i c h h a d b e e n h e a t e d t o d e h y d r o x y l a t i o n te m p e r a t u r e s

    (650-950~ was con verte d in to a regular ly in ters t ra t i f ied

    s t ruc tu re by bo i l ing in a c id s o lu t ion fo r a f ew minu te s .

    R e h y d r a t i o n a n d r e h y d o x y l a t io n t h e r e f o re o c c u r r e d i n t h e

    hea ted s e r i c i t e unde r re l a t ive ly mi ld cond i t ions . Why i s i t

    t h a t r e h y d r a t i o n a n d r e h y d r o x y l a t i o n o c c u r s o e a s i l y i n

    hea ted s e r i c i t e ? Tomi ta and Dozono (1972) s ucceeded in

    fo rming a regu la r ly in t e r s t ra t i f i ed mine ra l f rom dehydroxy -

    l a t ed 2M t s e r ic i te by ex t rac t ion o f K ion w i th s od ium

    t e t r a p h e n y l b o r o n a t r o o m t e m p e r a t u r e a n d p r e ss u r e. H e r e ,

    r e h y d r a t i o n a n d r e h y d r o x y l a t i o n a g a i n o c c u r r e d i n t h e

    dehydrox y la t ed s e ri ci te , t h i s t ime d u r ing ex t rac t ion o f K

    ion f rom in te r laye rs .

    We is s enbe rg pho to g rap hs o f s ome ve rm icu l i t es g ive d i f-

    fus e s po t s , wh ich can be cons ide red ev idence tha t t he s e ve r -

    micu l i t e s have d i s to r t ed s t ruc tu re s . Th i s d i s to r t ion may be

    due pa r t ly to t e t rahedra l s ubs t i tu t ion o f AI fo r S i . Hea ted

    s e r i c i t e s a l s o have d i s to r t ed s t ruc tu re s (Tomi ta and Sudo ,

    1968b). Thes e d i s to r t ed s t ruc tu re s s eem to p lay an impor -

    t a n t r o l e i n r e h y d r a t i o n a n d r e h y d r o x y l at i o n .

    R ecen t ly , Tomi ta (1974) repor t ed tha t t he rehydra t ion

    and rehydroxy la t ion p rope r t i e s o f r e c to r i t e a re s imi l a r to

    thos e o f 2M s er ic it es . W hy a re the s e p rope r t i e s o f 2M s e r i-

    c i tes d ifferent f rom lM seric ites? W e repo rted an in ters t ra t i -

    f led mine ra l hav ing h igh rehydra t io n ab i li t y . We thou gh t the

    p h e n o m e n o n w o u l d b e h e l p fu l f o r i n t e rp r e t a t i o n o f t h e o r i -

    g in o f in t e r s t ra t i f i ed mine ra l s ; i t s e ems to be equa l ly pe r -

    t i n e n t t o d i s c u s s i o n o f t h e p r o b l e m s o f h i g h r e h y d r a t i o n

    capaci ty .

    P u r e s p e c im e n s h a v i n g h i g h r e h y d r a t i o n a b i l it y s h o u l d b e

    found in the near future . Studies on such specif iaens should

    309

  • 7/24/2019 Expansible Mineral Having High Rehydration Ability

    2/2

    310 Notes

    establ i sh the reasons for the observed high rehydra t ion and

    rehydroxyla t ion capaci ty .

    The wri te r expresses his apprec ia t ion to Dr . W. F. Cole

    for his Comments.

    Institute of Earth Sciences

    Kagoshima University

    Kagoshima Japan

    KATSUTOSHITOMITA

    R E F E R E N E S

    Brindley, G. W. and S anda laki, Z. 1963) Structure, com po -

    si t ion and genesis of some long-spacing, mica- l ike

    minera ls:

    Am. Mineralogist

    48, 138-149.

    Co le , W . F . 1974) Com ment s o n : A n expans ib le mine ra l

    hav ing h igh r ehydra t i on ab i l it y :

    Clays and Clay Minerals

    22, 307-308.

    Cole , W. F. and H osking, J . S. 1957) Clay minera l m ixtures

    and interst ra t i f ied minera ls: The Differential Thermal In-

    vestigation o f Clays

    Chap. X, pp. 248-274. Min era logica l

    Socie ty of Gr ea t Bri tain , Lon don.

    Gran quist , W. T. and K ennedy , J . V. 1967) Sorp t ion of

    water a t h igh tempera tures on cer ta in c lay minera l sur-

    faces. Corre la t ion wi th la t t ice f luor ide :

    Clays and Clay

    Minerals 15, 103-117.

    Grim , R. E . and Bradley, W. F. 1948) Reh ydra t io n and

    dehydra t i on o f t he c l ay mine ra l s : Am. Mineralogist 33,

    50-59.

    Hi l l , R. D. 1953) Reh ydra t io n of c lay minera ls:

    Trans. Brit.

    Ceram. Soc. 52, 589-613.

    Ka naok a, S. 1968) Lon g spacing c lay minera l in Uebi s tone

    f rom Eh ime Pre fec tu re and I zush i st one f rom H yogo Pre -

    fecture: J. Ceram . Assoc. Japan 76, 1~2 6. In Japanese

    with Eng lish abstract .)

    Schmidt , E . R. and Heystek, H. 1953) Sapon i te f rom Kru-

    ge r sdorp :

    Miner. Mag.

    30, 201 210.

    Tom ita , K. 1974) Simi lar i t ies of rehyd ra t ion and rehydrox -

    l a t i on p rope r t i e s o f r e c to r i t e and 2M micas : Clays and

    Clay Minerals 22 Bradley Me m oria l Issue), 79-85.

    Tomi t a , K. and D ozono , M, 1972) Form a t ion o f an i n te r -

    st ra t if ied minera l by ext rac t ion of potass ium from m ica

    wi th sod ium t e t r apheny lboron : Clays and Clay Minerals

    20, 225-231.

    Tomi t a , K. and Dozono , M. 1973) An expans ib le mine ra l

    having high rehydra t ion abi l i ty : Clays and Clay Minerals

    21, 185-190.

    Tomi t a , K. and Dozon o , M . 1974) An in t e r s t ra t if i ed

    mine ra l o f m ica and montm or i l l on i te found in an a l t ered

    tuff: J. Japan. Assoc. Miner. Pet. Econ. Geol. In press.

    Tom ita , K. and Sudo, T . 1968a) Interst ra t i f ied st ruc ture

    fo rmed f rom a p re -hea t ed mica by ac id t r e a tmen t s :

    Nature 217, 1043-1044.

    Tomi t a , K. and Sudo , T . 1968b) Conve r s ion o f m ica in to

    an interst ra t i f ied minera l : Rept . Facul ty o f Sci . Kago-

    shima Univ.

    I, 89-119.

    Tom ita , K. , Yamashita, H. and O ba, N . 1969) An interst ra-

    t i f fed minera l found in a l te red andesi te :

    J. Japan. Assoc.

    Miner. Pet. E con . Geol.

    61, 25-34.

    van Olphen , H. 1965) The rmo dynam ics o f i n t e rl aye r

    abso rpt ion of water in c lays: J. Colloid Sci. 20 , 82~837 .

    Walker , G. F. 1961) Verm icul i te M inera ls: The X-ray Iden-

    tification and Crystal Structures of Clay Minerals Chap.

    VII , pp. 297-324. M inera logica l Socie ty of Gr ea t Brita in ,

    London .

    Walker , G. F. and C ole , W. F. 1957) The v ermicul i te

    minera ls:

    The Differential Thermal Investigation of Clays

    Chap. VII , pp. 191-206. M inera logica l Socie ty of Gre a t

    Britain, London.

    Weiss, A. and Hofm ann, U . 1951) Batav i t : z . Natur forsch.

    6b, 405-409.

    Wright , A. C. , Gran quist , W . T. and Kenned y, J . V. 1972)

    Cata lysis by layer la t t ice si l ica tes-- I : The st ruc ture and

    the rma l mod i f i c a ti on o f a syn the ti c amm onium d ioc t a -

    hedra l c lay: J. Catalysis 25, 65-80.