26
Nonlinear Analysis and Differential Equations, Vol. 9, 2021, no. 1, 31 - 56 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/nade.2021.91135 Existence of Solutions to Impulsive Fractional Sobolev-Type Integro-Differential Equations in Banach Spaces with Operator Pairs and State Dependent Delay D. N. Chalishajar Department of Applied Mathematics, Virginia Military Institute 435 Mallory Hall, Lexington, VA-24450, USA D. Senthil Raja Department of Mathematics, K.S. Rangasamy College of Technology Tiruchengode - 637 215, Tamil Nadu, India P. Sundararajan Department of Mathematics, Arignar Anna Government Arts College Namakkal - 637 002, Tamil Nadu, India K. Karthikeyan Department of Mathematics, KPR Institute of Engineering and Technology Coimbatore - 641 407, Tamil Nadu, India This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright c 2021 Hikari Ltd. Abstract We are concerned with impulsive fractional Sobolev-type integro-differential equations in Banach spaces with operator pairs and state dependent delay, where the operator pairs generates propagation families. With the help of the theory of prop- agation family and Laplace transforms as well as an estimate for a special sequence improved in this paper, we introduce a definition of mild solutions to the impulsive problem for these abstract fractional Sobolev-type integro-differential equations and

Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Nonlinear Analysis and Differential Equations, Vol. 9, 2021, no. 1, 31 - 56HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/nade.2021.91135

Existence of Solutions to Impulsive Fractional

Sobolev-Type Integro-Differential Equations in

Banach Spaces with Operator Pairs and

State Dependent Delay

D. N. Chalishajar

Department of Applied Mathematics, Virginia Military Institute435 Mallory Hall, Lexington, VA-24450, USA

D. Senthil Raja

Department of Mathematics, K.S. Rangasamy College of TechnologyTiruchengode - 637 215, Tamil Nadu, India

P. Sundararajan

Department of Mathematics, Arignar Anna Government Arts CollegeNamakkal - 637 002, Tamil Nadu, India

K. Karthikeyan

Department of Mathematics, KPR Institute of Engineering and TechnologyCoimbatore - 641 407, Tamil Nadu, India

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2021 Hikari Ltd.

Abstract

We are concerned with impulsive fractional Sobolev-type integro-differentialequations in Banach spaces with operator pairs and state dependent delay, where theoperator pairs generates propagation families. With the help of the theory of prop-agation family and Laplace transforms as well as an estimate for a special sequenceimproved in this paper, we introduce a definition of mild solutions to the impulsiveproblem for these abstract fractional Sobolev-type integro-differential equations and

Page 2: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

32 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

establish general existence theorems and a continuous dependence theorem, whichextend essentially some previous conclusions. In our results, the operator B couldbe unbounded, and the existence of an operator B−1 is not necessarily needed.Moreover, an example is given to illustrate our main results.

Mathematical Subject Classification: 34K37, 46B50, 47A50, 47D06, 47D99,47N20

Keywords: Sobolev-type, Fractional integro-differential equations, Operator pairs,Propagation family, Impulsive conditions, State dependent delay

1 Introduction

Consider the following fractional Sobolev-type integro-differential equations in a Banach spaceX with operator pairs (A,B) and impulsive conditions

cDq(Bu)(t) = Au(t) +Bf

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, u(s)))ds

), t ∈ J ′,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = u0,

(1.1)

where cDq, q ∈ (0, 1), is the Caputo fractional derivative of order q with the lower limit zero, Aand B are closed linear operators with domains contained in X, and the pair (A,B) generates apropagation family W (t)t≥0, f : J ×X ×X → D(B) with J = [0, T ] and T > 0 is a constant,ρ : Υ→ R is continuous with Υ = (t, s) ∈ J × J : t ≥ s, h : Υ×X → X, J ′ = J \ 0,

0 = t0 < t1 < t2 < · · · < tm < tm+1 = T,

∆u|t=tk denotes the jump of u(t) at t = tk, i.e., ∆u|t=tk = u(t+k )−u(t−k ), where u(t+k ) and u(t−k )represent the right and left limits of u(t) at t = tk, respectively, and the impulsive functionsIk : X → D(B) are continuous and u0 ∈ D(B).For brevity, we set

% := max(t,s)∈Υ

|ρ(t, s)|.

In resent decades, fractional integro-differential equations as well as impulsive differentialequations of integer order or fractional order have been studied by many researchers and a lotof results have been obtained. For the theory and developments of the related topics, we referthe reader to, e.g., [2, 3, 6, 7, 8, 9, 10, 11, 12, 14, 19, 21, 26, 27, 28] and the references therein.Especially, for contributions about Sobolev-type equations, we refer the reader to, e.g., [1, 18, 20]and the references cited in. Stimulated by these works as well as the papers [20, 22, 24], weinvestigate here the definition, existence and continuous dependence of mild solutions of thefractional Sobolev-type integro-differential equations in a Banach space X with operator pairsand impulsive conditions (1.1), where the operator pairs generates propagation families. As youcan see, we study the system (1.1) without assuming B has bounded (or compact) inverse aswell as without any assumption on the relation between D(A) and D(B).

Page 3: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 33

The rest of this paper is organized as follows. In section 2, we introduce some notations,recall some basic known results, and present a definition of mild solutions for the fractionalSobolev-type integro-differential equations in a Banach space X with operator pairs and impul-sive conditions (1.1), where the operator pairs generates propagation families. In section 3, wediscuss the existence of mild solutions for the system (1.1) in the Lipschitz case and further ina more general case. Moreover, we prove the continuous dependence of solutions to the initialvalues, which implies that the solution is unique in the Lipschitz case. All our results are evennew in the case of B = I. In section 4, an example is given to illustrate abstract results.

2 Preliminaries and definition of mild solutions

We begin this part with some notations. Throughout this paper, X is a Banach space withnorm ‖ · ‖. We denote by C(J,X) the space of all X-valued continuous functions on J with thenatural norm ‖x‖C(J,X) = sup

t∈J‖x(t)‖. Set

J1 = [0, t1], Jk = (tk−1, tk], k = 2, 3, . . . ,m, Jm+1 = (tm, T ].

Let PC(J,X) = u : J → X|u(t) is continuous at t 6= tk, and left continuous at t = tk, and u(t+k )exists, k = 1, 2, . . . ,m. Obviously, PC(J,X) is a Banach space with norm ‖u‖PC = sup

t∈J‖u(t)‖.

The beta function is defined by

B(p, q) =

∫ 1

0tp−1(1− t)q−1dt, p, q > 0.

The gamma function is defined by

Γ(p) =

∫ ∞0

tp−1e−tdt, p > 0.

It is well known that

B(p, q) =Γ(p)Γ(q)

Γ(p+ q), Γ(p+ 1) = pΓ(p).

A binomial coefficient is defined by

Cmn =n!

m!(n−m)!,

satisfying

Cmn + Cm−1n = Cmn+1,

where n! = n(n− 1)(n− 2) . . . 1.

Definition 2.1. ([2, 19]) The fractional integral of order q with the lower limit zero for afunction f ∈ AC[0,∞) is defined as

Iqf(t) =1

Γ(q)

∫ t

0(t− s)q−1f(s)ds, t > 0, 0 < q < 1.

Page 4: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

Definition 2.2. ([2, 19]) The Riemann-Liouville derivative of order q with the lower limit zerofor a function f ∈ AC[0,∞) can be written as

RLDqf(t) =1

Γ(1− q)d

dt

∫ t

0

f(s)

(t− s)qds, t > 0, 0 < q < 1.

Definition 2.3. ([2, 19]) The Caputo derivative of order q with the lower limit zero for afunction f ∈ AC[0,∞) can be written as

cDqf(t) = RLDq(f(t)− f(0)), t > 0, 0 < q < 1.

Remark 2.4.(1) If f(t) ∈ C1[0,∞), then

cDqf(t) =1

Γ(1− q)

∫ t

0

f ′(s)

(t− s)qds = I1−qf ′(t), t > 0, 0 < q < 1.

(2) The Caputo derivative of a constant is equal to zero.

Next, we introduce the Kuratowski measure of noncompactness µ(·) defined on each boundedsubset B in the Banach space X byµ(B) = infd > 0|B can be covered by a finite number of sets of diameter < d.

Some basic properties of µ(·) are listed in the following lemma.

Lemma 2.5. ([5]) Let B,C ⊂ X be bounded sets, then we have that:(i) µ(B) = 0 if and only if B is relatively compact in X;(ii) µ(B) = µ(B) = µ(coB), where coB is the closed convex hull of B ;(iii) µ(B) ≤ µ(C) when B ⊆ C;(iv) µ(B + C) ≤ µ(B) + µ(C);(v) µ(B ∪ C) ≤ maxµ(B), µ(C);(vi) µ(B(0, r)) = 2r where B(0, r) = x ∈ X| ‖x‖ ≤ r, if dimX = +∞.

Lemma 2.6. ([23]) Let X be a Banach space, and let D ⊂ X be bounded. Then there exists acountable set D0 ⊂ D, such that α(D) ≤ 2α(D0).

Lemma 2.7. ([16]) Let X be a Banach space, and let Ω ⊂ PC(J,X) be equicontinuous andbounded. Then α(Ω(t)) ∈ PC(J,R+), and α(Ω) = max

t∈Jα(Ω(t)).

Lemma 2.8. ([23, 17]) Let un∞n=1 be a sequence of Bochner integrable functions from J intoX with ‖un(t)‖ ≤ m(t) for almost all t ∈ J and every n ≥ 1, where m ∈ L1(J,R+), then thefunction ψ(t) = µ(un∞n=1) belongs to L1(J,R+) and satisfies

µ

(∫ t

0un(s)ds : n ≥ 1

)≤ 2

∫ t

0ψ(s)ds.

The following Sadovskii fixed point theorem will be used later.

Page 5: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 35

Theorem 2.9. ([15]) Let X be a Banach space. Assume that D ⊂ X is a bounded closed andconvex set on X and Q : D → D is a condensing mapping. Then Q has one fixed point on D.

For the following abstract degenerate Cauchy problem ([22])ddtBu(t) = Au(t), t ∈ J, t ≥ 0,

Bu(0) = Bu0,(2.1)

where A and B are closed linear operators in a sequentially complete locally convex space.Definition 2.10. ([22]) A strongly continuous operator family W (t)t≥0 of D(B) to a BanachspaceX, satisfying that W (t)t≥0 is exponentially bounded, which means that for any x ∈ D(B)there exist a > 0, M > 0 such that

‖W (t)x‖ ≤Meat‖x‖, t ≥ 0,

is called an exponentially bounded propagation family for (2.1) if for λ > a,

(λB −A)−1Bx =

∫ ∞0

e−λtW (t)xdt, x ∈ D(B). (2.2)

In this case, we also say that (2.1) has an exponentially bounded propagation family W (t)t≥0.Moreover, if (2.2) holds, we also say that the pair (A,B) generates an exponentially bounded

propagation family W (t)t≥0.In this paper, we assume that W (t)t≥0 is a norm continuous family for t > 0 and ‖W (t)‖ ≤

M . Definition 2.11. ([20]) By the mild solution of the following systemcDq(Bu)(t) = Au(t) +Bg(t), t ∈ J ′,u(0) = u0,

we mean that the function u ∈ C(J,X) which satisfies the following integral equation

u(t) = Q(t)u0 +

∫ t

0(t− s)q−1R(t− s)g(s)ds, t ∈ J,

where

Q(t) =

∫ ∞0

ξq(σ)W (tqσ)dσ, R(t) = q

∫ ∞0

σξq(σ)W (tqσ)dσ,

ξq(σ) =1

qσ−1− 1

q$q(σ− 1

q ) ≥ 0,

$q(σ) =1

π

∞∑n=1

(−1)n−1σ−qn−1 Γ(nq + 1)

n!sin(nπq), σ ∈ (0,∞),

ξq is a probability density function defined on (0,∞), that is

ξq(σ) ≥ 0, σ ∈ (0,∞) and

∫ ∞0

ξq(σ)dσ = 1.

Page 6: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

36 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

By [20], we know that

‖Q(t)‖ ≤M, ‖R(t)‖ ≤ M

Γ(q), t ≥ 0. (2.3)

The proof of the following lemma is obvious, so we omit it.

Lemma 2.12. Q(t)t≥0 and R(t)t≥0 are also norm continuous for t > 0.

For the rest of this section, we shall derive a definition of mild solutions to the system (1.1).We first consider the following impulsive fractional system:

cDq(Bu)(t) = Au(t) +Bg(t), t ∈ J ′,∆u|t=tk = yk, k = 1, 2, . . . ,m,

u(0) = u0,

(2.4)

where g(t) ∈ PC(J,D(B)), yk ∈ D(B), u0 ∈ D(B).

We can decompose u(·) which is a solution of the system (2.4) to v(·) +w(·), where v is themild solution to

cDq(Bv)(t) = Av(t) +Bg(t), t ∈ J ′,v(0) = u0,

(2.5)

on J , and w is the mild solution tocDq(Bw)(t) = Aw(t), t ∈ J ′,∆w|t=tk = yk, k = 1, 2, . . . ,m,

w(0) = 0,

(2.6)

By Definition 2.5, a mild solution of (2.5) is given by

v(t) = Q(t)u0 +

∫ t

0(t− s)q−1R(t− s)g(s)ds, t ∈ J.

Now we rewrite (2.6) in the following integral equation:

Bw(t) =m∑i=1

χi(t)Byi +1

Γ(q)

∫ t

0(t− s)q−1Aw(s)ds, t ∈ J, (2.7)

where

χi(t) =

0, t ∈ [0, ti),

1, t ∈ [ti, T ].

We apply the Laplace transform for (2.7) to get

Bw(λ) =

m∑i=1

e−tiλ

λByi +

1

λqAw(λ),

Page 7: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 37

which implies

w(λ) =m∑i=1

e−tiλλq−1(λqB −A)−1Byi.

By [20], we know that the Laplace transform of Q(t)yi is λq−1(λqB − A)−1Byi. Hence wederive the mild solution of (2.6) as

w(t) =m∑i=1

χi(t)Q(t− ti)yi =∑

0<tk<t

Q(t− tk)yk.

Summarizing, the mild solution of (2.4) is given by

u(t) = Q(t)u0 +

∫ t

0(t− s)q−1R(t− s)g(s)ds+

∑0<tk<t

Q(t− tk)yk.

According to the analysis above, we introduce the following definition of the mild solutionto the system (1.1).

Definition 2.13. By a mild solution of the system (1.1), we mean a function u ∈ PC(J,X)satisfying the following integral equation with state dependent delay

u(t) =Q(t)u0 +

∫ t

0(t− s)q−1R(t− s)f

(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)ds

+∑

0<tk<t

Q(t− tk)Ik(u(tk)).

3 Main Results

We first consider the Lipschitz case for the system (1.1).In order to obtain more general result, we first prove the following estimate for a special

sequence Sn, which generalizes a result in [24], will be used in the proof of our main results.

Theorem 3.1. Suppose that 0 < a, q < 1, b > 0 are constants. Let

Sn = an +C1na

n−1b

Γ(q + 1)+C2na

n−2b2

Γ(2q + 1)+ · · ·+ bn

Γ(nq + 1), n ∈ N.

Then

Sn = o

(1

nd+1

), n→∞,

for any real constants d > 0.Proof. It is not difficult to verify that

limm→∞

(am−1m

(m

m− 1

)m−1) 1m

= a < 1.

Page 8: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

38 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

Therefore we can choose a positive integer M > 2, which is large enough such that(aM−1M

(M

M − 1

)M−1) 1M

≡ w < 1. (3.1)

For any positive integer n > 2M , set

n = Mj + p (0 ≤ p < M),

where M is given above. Clearly, j = [n/M ] < [n/2] Therefore, for any large enough positiveinteger n > 2M , it follows from the Stirling formula

n! =

(n

e

)n√2πn

(1 +O

(1

n

))and the equality (3.1) that

Sn ≡ C0na

n +C1na

n−1b1

Γ(q + 1)+C2na

n−2b2

Γ(2q + 1)+ · · ·+ Cjnan−jbj

Γ(jq + 1)

≤ Cjnan−j(

1 +b1

Γ(q + 1)+

b2

Γ(2q + 1)+ · · ·+ bj

Γ(jq + 1)

)= an−j

n!

j!(n− j)!O(1)

=O(1)an−jnn

√2πn

jj√

2πj√

2π(n− j)(n− j)n−j

= O

(M j

√j

)(aM

M − 1

)(M−1)j

= O

((aM−1M( M

M−1)M−1)j√j

)= O

(wMj

√j

)= O

(wn√n

).

On the other hand, without loss of generality, we can suppose that b > 1. By the Stirling formula

Γ(z + 1) =√

2πz

(z

e

)z(1 +O

(1

z

)), z → +∞

and

C[n2

]n = O(2n/

√n)

(see [25]), we obtain

˜Sn ≡Cj+1n an−j−1bj+1

Γ((j + 1)q + 1)+ · · ·+ Cnna

n−nbn

Γ(nq + 1)

Page 9: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 39

≤ 1

Γ((j + 1)q + 1)C

[n2

]n (an−j−1bj+1 + · · ·+ an−nbn)

=O(

2n√n

)e(j+1)q(an−j−1bj+1 + · · ·+ an−nbn)√

2π(j + 1)q((j + 1)q)(j+1)q(

1 +O(

1(j+1)q

))≤O(

2n√n

)e(j+1)q(1 + b+ b2 + · · ·+ bj+1 + · · ·+ bn)√

2π(j + 1)q((j + 1)q)(j+1)q

≤ O(1)2ne(j+1)qbn+1

√n√

(j + 1)q((j + 1)q)(j+1)q

≤O(1)2n

(eq

)(j+1)qbn+1

j(j+1)q+1

= o

(1

jd+1

)= o

(1

nd+1

)(n→∞),

where d > 0 can be any real constant.

Therefore,

Sn = Sn + ˜Sn

= O

(wn√n

)+ o

(1

nd+1

)= o

(1

nd+1

)(n→∞),

where d > 0 can be any real constant. This ends the proof of this theorem.

Theorem 3.2. Assume that the following conditions hold:(I1) f : J ×X ×X → D(B) is continuous, and there exist positive constants l1, l2 such that

‖f(t, x1, x2)−f(t, y1, y2)‖ ≤ l1‖x1 − y1‖+ l2‖x2 − y2‖,t ∈ J, xi, yi ∈ X, i = 1, 2;

(I2) h : Υ×X → X is continuous, and there exists a positive constant l3 such that

‖h(t, s, x)− h(t, s, y)‖ ≤ l3‖x− y‖, (t, s) ∈ Υ, x, y ∈ X;

(I3) there exists a positive constants ck (k = 1, 2, . . . ,m) such that

‖Ik(x)− Ik(y)‖ ≤ ck‖x− y‖, k = 1, 2, . . . ,m, x, y ∈ X;

(I4)

Mm∑k=1

ck < 1.

Page 10: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

40 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

Then the system (1.1) has a unique mild solution on J.Proof. Define an operator P by

(Pu)(t) =Q(t)u0 +

∫ t

0(t− s)q−1R(t− s)f

(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)ds

+∑

0<tk<t

Q(t− tk)Ik(u(tk)). (3.2)

It is not difficult to verify that P maps PC(J,X) into PC(J,X).We want to prove the following (3.3) by induction:For any t ∈ J, u, v ∈ PC(J,X),

‖(Pnu)(t)− (Pnv)(t)‖ ≤Mnn∑i=0

Cin

( m∑k=1

ck

)n−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC ,

n = 1, 2, . . . (3.3)

For n = 1, by (2.3), we get

‖(Pu)(t)− (Pv)(t)‖ ≤∑

0<tk<t

MCk‖u(tk)− v(tk)‖

+M

Γ(q)

∫ t

0(t− s)q−1

[l1‖u(s)− v(s)‖+ l2l3%

∫ s

0‖u(τ)− v(τ)‖dτ

]ds

≤M[ m∑k=1

ck +1

Γ(q + 1)(l1 + %T l2l3)tq

]‖u− v‖PC .

So, (3.3) holds for n = 1.Suppose that (3.3) holds for n = l, that is,

‖(P lu)(t)− (P lv)(t)‖ ≤M ll∑

i=0

Cil

( m∑k=1

ck

)l−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC .

Then, we have

‖(P l+1u)(t)− (P l+1v)(t)‖ ≤∑

0<tk<t

MCk‖(P lu)(tk)− (P lv)(tk)‖

+M

Γ(q)

∫ t

0(t− s)q−1

[l1‖(P lu)(s)− (P lv)(s)‖

+ l2l3%

∫ s

0‖(P lu)(τ)− (P lv(τ)‖dτ

]ds

≤Mm∑k=1

ckMl

l∑i=0

Cil

( m∑k=1

ck

)l−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC

Page 11: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 41

+M(l1 + %T l2l3)

Γ(q)

∫ t

0(t− s)q−1.

M ll∑

i=0

Cil

( m∑k=1

ck

)l−i(l1 + %T l2l3)i(sq)i

Γ(iq + 1)‖u− v‖PCds.

In view of ∫ t

0(t− s)q−1smqds = t(m+1)qB(q,mq + 1)(m ∈ N),

and

B(p, q) =Γ(p)Γ(q)

Γ(p+ q)(p, q > 0),

we obtain

‖(P l+1u)(t)− (P l+1v)(t)‖ ≤M l+1l∑

i=0

Cil

( m∑k=1

ck

)l+1−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC

+M l+1l∑

i=0

Cil

( m∑k=1

ck

)l−i(l1 + %T l2l3)i+1(tq)i+1

Γ((i+ 1)q + 1)‖u− v‖PC

= M l+1

[( m∑k=1

ck)l+1

+l∑

i=1

Cil

( m∑k=1

ck

)l−i+1

(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u− v‖PC

+M l+1l∑

i=0

Cil

( m∑k=1

ck

)l−i(l1 + %T l2l3)i+1(tq)i+1

Γ((i+ 1)q + 1)‖u− v‖PC

= M l+1

[( m∑k=1

ck)l+1

+

l∑i=1

Cil

( m∑k=1

ck

)l−i+1

(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u− v‖PC

+M l+1l+1∑i=1

Ci−1l

( m∑k=1

ck

)l−i+1

(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC

= M l+1

[( m∑k=1

ck)l+1

+

l∑i=1

(Cil + Ci−1l )

( m∑k=1

ck

)l−i+1

(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u− v‖PC

Page 12: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

42 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

+M l+1 (l1 + %T l2l3)l+1(tq)l+1

Γ((l + 1)q + 1)‖u− v‖PC .

Since

Cim + Ci−1m = Cim+1,

we have

‖(P l+1u)(t)− (P l+1v)(t)‖ ≤M l+1

[( m∑k=1

ck)l+1

+l∑

i=1

Cil+1

( m∑k=1

ck

)l−i+1

(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u− v‖PC

+M l+1 (l1 + %T l2l3)l+1(tq)l+1

Γ((l + 1)q + 1)‖u− v‖PC

= M l+1l+1∑i=0

Cil+1

( m∑k=1

ck

)l+1−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u− v‖PC .

Hence, (3.3) holds for n = l + 1.Consequently, we see that

‖(Pnu)(t)− (Pnv)(t)‖ ≤Mnn∑i=0

Cin

( m∑k=1

ck

)n−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC , n = 1, 2, . . .

Therefore,

‖Pnu− Pnv‖PC ≤Mnn∑i=0

Cin

( m∑k=1

ck

)n−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC , n = 1, 2, . . .

Write

a = M

m∑k=1

ck < 1, b = M(l1 + %T l2l3)T q.

By Theorem 3.1, we know that there exists a positive integer n0 such that

Mn0

n0∑i=0

Cin0

( m∑k=1

ck

)n0−i(l1 + %T l2l3)i(T q)i

Γ(iq + 1)< 1,

that is, Pn0 is a contraction mapping on PC(J,X). Then by a well-known extension of theBanach contraction mapping theorem, P has a unique fixed point u(t) on PC(J,X), which is

Page 13: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 43

the unique mild solution of the system (1.1).

Next, we consider the continuous dependence of a mild solution to the system (1.1).

Theorem 3.3. Suppose that the conditions (I1) - (I4) hold. Let u(t), v(t) be the unique mildsolutions of the system (1.1) and the following system (3.4), respectively,

cDq(Bu)(t) = Au(t) +Bf

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, u(s)))ds

), t ∈ J ′,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = v0

(3.4)

where v0 ∈ D(B). Then there exists a constant M > 0 such that

‖u− v‖PC ≤ M‖u0 − v0‖.

Proof. Let u(t) and v(t) satisfy the following two equations respectively:

u(t) =Q(t)u0 +

∫ t

0(t− s)q−1R(t− s)f

(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)ds

+∑

0<tk<t

Q(t− tk)Ik(u(tk)),

v(t) =Q(t)v0 +

∫ t

0(t− s)q−1R(t− s)f

(s, v(s),

∫ s

0ρ(s, τ)h(s, τ, vρ(τ, v(τ)))dτ

)ds

+∑

0<tk<t

Q(t− tk)Ik(v(tk)).

We want to prove the following (3.5) by induction:

‖u(t)− v(t)‖ ≤M[1 +

n∑j=1

M jj∑i=0

Cij

( m∑k=1

ck

)j−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u0 − v0‖

+Mn+1n+1∑i=0

Cin+1

( m∑k=1

ck

)n+1−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC , n = 1, 2, . . .

(3.5)

First, we have

‖u(t)− v(t)‖ ≤M‖u0 − v0‖+M

Γ(q)

∫ t

0(t− s)q−1(l1 + %T l2l3)‖u− v‖PCds+M

m∑k=1

ck‖u− v‖PC

= M‖u0 − v0‖+M

[ m∑k=1

ck +(l1 + %T l2l3)tq

Γ(q + 1)

]‖u− v‖PC .

Page 14: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

44 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

For n = 1,

‖u(t)− v(t)‖ ≤M‖u0 − v0‖+M

Γ(q)

∫ t

0(t− s)q−1(l1 + %T l2l3)

M‖u0 − v0‖

+M

[ m∑k=1

ck +(l1 + %T l2l3)sq

Γ(q + 1)

]‖u− v‖PC

ds

+Mm∑k=1

ck

M‖u0 − v0‖+M

[ m∑k=1

ck +(l1 + %T l2l3)tq

Γ(q + 1)

]‖u− v‖PC

≤M[1 +M

( m∑k=1

ck +(l1 + %T l2l3)tq

Γ(q + 1)

)]‖u0 − v0‖

+M2

[( m∑k=1

ck

)2

+

2

( m∑k=1

ck

)(l1 + %T l2l3)tq

Γ(q + 1)+

(l1 + %T l2l3)2(tq)2

Γ(2q + 1)

]‖u− v‖PC .

So, (3.5) holds for n = 1.Suppose that (3.5) holds for n = l, that is,

‖u(t)− v(t)‖ ≤M[1 +

l∑j=1

M jj∑i=0

Cij

( m∑k=1

ck

)j−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u0 − v0‖

+M l+1l+1∑i=0

Cil+1

( m∑k=1

ck

)l+1−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC .

Then we obtain

‖u(t)− v(t)‖ ≤M‖u0 − v0‖+M

Γ(q)

∫ t

0(t− s)q−1(l1 + %T l2l3)

M

[1

+l∑

j=1

M jj∑i=0

Cij

( m∑k=1

ck

)j−i(l1 + %T l2l3)i(sq)i

Γ(iq + 1)

]‖u0 − v0‖

+M l+1l+1∑i=0

Cil+1

( m∑k=1

ck

)l+1−i(l1 + %T l2l3)i(sq)i

Γ(iq + 1)‖u− v‖PC

ds

+Mm∑k=1

ck

M

[1 +

l∑j=1

M jj∑i=0

Cij

( m∑k=1

ck

)j−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u0 − v0‖

Page 15: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 45

+M l+1l+1∑i=0

Cil+1

( m∑k=1

ck

)l+1−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC

= M

[1 +

l+1∑j=1

M jj∑i=0

Cij

( m∑k=1

ck

)j−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)

]‖u0 − v0‖

+M l+2l+2∑i=0

Cil+2

( m∑k=1

ck

)l+2−i(l1 + %T l2l3)i(tq)i

Γ(iq + 1)‖u− v‖PC .

Hence, (3.5) holds for n = l + 1.

We have thus proved (3.5) by induction.Therefore, we see that

‖u(t)− v(t)‖PC ≤M[1 +

n∑j=1

M jj∑i=0

Cij

( m∑k=1

ck

)j−i(l1 + %T l2l3)i(T q)i

Γ(iq + 1)

]‖u0 − v0‖

+Mn+1n+1∑i=0

Cin+1

( m∑k=1

ck

)n+1−i(l1 + %T l2l3)i(T q)i

Γ(iq + 1)‖u− v‖PC , n = 1, 2, . . .

By Theorem 3.1, if we set

M1 =∞∑n=1

Mnn∑i=0

Cin

( m∑k=1

ck

)n−i(l1 + %T l2l3)i(T q)i

Γ(iq + 1)

then we get

limn→∞

Mn+1n+1∑i=0

Cin+1

( m∑k=1

ck

)n+1−i(l1 + %T l2l3)i(T q)i

Γ(iq + 1)= 0.

Hence,

‖u− v‖PC ≤M(1 +M1)‖u0 − v0‖

This implies the conclusion of Theorem 3.3.

For the general case, we will require the following assumptions.

Page 16: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

46 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

(H1) (i) f : J ×X ×X → D(B) ⊂ X satisfies f(·, ν, ω) : J → D(B) ⊂ X is measurable forall (ν, ω) ∈ X ×X and f(t, ·, ·) : X ×X → D(B) ⊂ X is continuous for a.e. t ∈ J , and thereexists a function µ1(·) ∈ Lp(J,R+)(p > 1

q > 1) and a continulus function µ1(·) such that

‖f(t, ν, ω)‖ ≤ µ1(t)‖ν‖+ µ2(t)‖ω‖

for almost all t ∈ J .(ii) There exists a function η(·) ∈ Lp(J,R+) such that for any bounded sets D1, D2 ⊂ X,

α(f(t,D1, D2)) ≤ η(t)(α(D1) + α(D2)), a.e. t ∈ J.

(H2) (i) The function h(t, s, ·) : X → X is continulus for a.e. (t, s) ∈ ∆, and for each u ∈ X,the function h(·, ·, u) : ∆→ X is measurable.

Moreover, there exists a function m : ∆→ R+ with

supt∈J

∫ t

0m(t, s)ds := m∗ <∞

such that

‖h(t, s, u)‖ ≤ m(t, s)‖u‖, u ∈ X.

(ii) For any bounded set D ⊂ X and 0 ≤ s ≤ t ≤ T , there exists a function ζ : ∆ → R+

such that

α(h(t, s,D)) ≤ ζ(t, s)α(D),

where

supt∈J

∫ t

0ζ(t, s)ds := ζ∗ <∞.

(H3) (i) There exists positive constants Lk, Nk (k = 1, 2, . . . ,m) such that

‖Ik(x)‖ ≤ Lk‖x‖+Nk, x ∈ X.

(ii) There exists positive constant Mk (k = 1, 2, . . . ,m) such that for any bounded set D ⊂ X,

α(Ik(D)) ≤Mkα(D).

(H4)

M

Γ(q)

(lp,qT

q− 1p ‖µ1‖Lp +

T q%m∗µ∗2q

)+M

m∑k=1

Lk < 1, (3.6)

and

2M

Γ(q)

(lp,qT

q− 1p ‖ η‖Lp +

2%ζ∗T q

q

)+M

m∑k=1

Mk <1

2, (3.7)

Page 17: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 47

where

lp,q :=

(p− 1

pq − 1

) p−1p

, µ∗2 = supt∈J

µ2(t).

Theorem 3.4. Assume that (H1)− (H4) are satisfied. Then the system (1.1) has at least onemild solution on J.Proof. Consider the operator P defined in (3.2). P maps PC(J,X) into PC(J,X). Set

Br = u ∈ PC(J,X) : ‖u‖PC ≤ r.

Step 1. We show that there exists some r > 0 such that P (Br) ⊂ Br.Suppose this is not true. Then for each r > 0, there exists ur(·) ∈ Br and some t ∈ J such that

‖(Pur)(t)‖ > r.

It follows from (H1)(i), (H2)(i), (H3)(i) that

r < ‖Q(t)u0‖+

∫ t

0(t− s)q−1

∥∥∥∥R(t− s)f(s, ur(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, ur(τ)))dτ

)ds

∥∥∥∥+∑

0<tk<t

‖Q(t− tk)Ik(ur(tk))‖

≤M‖u0‖+M

Γ(q)

∫ t

0(t− s)q−1

[µ1(s)r + µ2(s)%r

∫ s

0m(s, τ)dτ

]ds+M

m∑k=1

(rLk +Nk)

≤M‖u0‖+Mr

Γ(q)

(∫ t

0(t− s)q−1µ1(s)ds+

T q%m∗µ∗2q

)+Mr

m∑k=1

Lk +Mm∑k=1

Nk

Moreover, by Holder inequality, we have∫ t

0(t− s)q−1µ1(s)ds ≤ t

pq−1p lp,q‖µ1‖Lp ≤ lp,qT q−

1p ‖µ1‖Lp .

Thus

r ≤M‖u0‖+Mr

Γ(q)

(lp,qT

q− 1p ‖µ1‖Lp +

T q%m∗µ∗2q

)+Mr

m∑k=1

Lk +Mm∑k=1

Nk. (3.8)

Dividing both sides of (3.8) by r, and taking r →∞, we get

M

Γ(q)

(lp,qT

q− 1p ‖µ1‖Lp +

T q%m∗µ∗2q

)+M

m∑k=1

Lk ≥ 1.

This contradicts (3.6). Hence for some positive number r, PBr ⊂ Br.Step 2. We show that P is continuous from Br into Br.Let un ∈ Br, n = 1, 2, . . . , be a sequence such that un → u ∈ Br in PC(J,X) as n→∞. By

(H1)(i) and (H2)(i), we see that for almost every t ∈ J ,

f

(t, un(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, un(s)))ds

)→ f

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, u(s)))ds

),

Page 18: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

48 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

as n → ∞. Noting that un → u in PC(J,X), we infer that there exists ε > 0 such that‖un − u‖PC ≤ ε for k sufficiently large. Therefore, we have∥∥∥∥f(t, un(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, un(s)))ds

)− f

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, u(s)))ds

)∥∥∥∥≤ µ1(t)(‖un(t)‖+ ‖u(t)‖) + µ2(t)

(∫ t

0‖ρ(t, s)h(t, s, uρ(s, un(s)))‖ds+

∫ t

0‖ρ(t, s)h(t, s, uρ(s, u(s)))‖ds

)≤ µ1(t)(‖un(t)− u(t)‖+ 2‖u(t)‖) + µ2(t)%

∫ t

0m(t, s)(‖un(s)− u(s)‖+ 2‖u(s)‖)ds

≤ (µ1(t) + µ∗2%m∗)(ε+ 2 sup

t∈J‖u(t)‖).

It follows from the continuity of Ik(k = 1, 2, . . . ,m) and the Lebesgue’s Dominated ConvergenceTheorem that

‖(Pun)(t)− (Pu)(t)‖ ≤∫ t

0(t− s)q−1

∥∥∥∥R(t− s)[f

(t, un(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, un(s)))ds

)− f

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, u(s)))ds

)]∥∥∥∥ds+∑

0<tk<t

‖Q(t− tk)[Ik(un(tk))− Ik(u(tk))]‖

≤ M

Γ(q)

∫ t

0(t− s)q−1

∥∥∥∥f(t, un(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, un(s)))ds

)− f

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, u(s)))ds

)∥∥∥∥ds+M

∑0<tk<t

‖Ik(un(tk))− Ik(u(tk))]‖

→ 0, n→∞.

Therefore, we obtain

limn→∞

‖Pun − Pu‖PC = 0.

this means that P is continuous.

Step 3. We prove that Pu : u ∈ Br is a family of equicontinuous functions.

Since W (t) is strongly continuous on D(B) for t ≥ 0, we know that Q(·)u0 : · ∈ J isequicontinuous.

Without loss of generality, we suppose that tj ≤ r2 < r1 < tj+1, u ∈ Br. Then we obtain∥∥∥∥∫ r1

0(r1 − s)q−1R(r1 − s)f

(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)ds

−∫ r2

0(r2 − s)q−1R(r2 − s)f

(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)ds

∥∥∥∥

Page 19: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 49

≤∫ r2

0

∥∥∥∥[(r1 − s)q−1R(r1 − s)− (r2 − s)q−1R(r2 − s)]

× f(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)∥∥∥∥ds+

∫ r1

r2

(r1 − s)q−1‖R(r1 − s)‖∥∥∥∥f(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)∥∥∥∥ds=: I1 + I2.

I1 ≤∫ r2

0|(r1 − s)q−1 − (r2 − s)q−1|‖R(r1 − s)‖ ×

∥∥∥∥f(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)∥∥∥∥ds+

∫ r2

0(r2 − s)q−1‖R(r1 − s)−R(r2 − s)‖ ×

∥∥∥∥f(s, u(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, u(τ)))dτ

)∥∥∥∥ds≤ M

Γ(q)

∫ r2

0|(r1 − s)q−1 − (r2 − s)q−1|

(µ1(s)‖u(s)‖+ µ∗2%m

∗ supτ∈[0,s]

‖u(τ)‖)ds

+

∫ r2

0(r2 − s)q−1‖R(r1 − s)−R(r2 − s)‖

(µ1(s)‖u(s)‖+ µ∗2%m

∗ supτ∈[0,s]

‖u(τ)‖)ds

≤ Mr

Γ(q)

∫ r2

0|(r1 − s)q−1 − (r2 − s)q−1|µ1(s)ds

+ r

∫ r2

0µ1(s)(r2 − s)q−1‖R(r1 − s)−R(r2 − s)‖ds

+M%m∗µ∗2r

Γ(q)

∫ r2

0|(r1 − s)q−1 − (r2 − s)q−1|ds

+ %m∗µ∗2r

∫ r2

0(r2 − s)q−1‖R(r1 − s)−R(r2 − s)‖ds

=: I3 + I4 + I5 + I6.

Clearly, I3 tends to 0 as r2 → r1. I4 tends to 0 as r2 → r1 as a consequence of the continuityof R(t) in the uniform operator topology for t > 0. Similarly, I5 and I6 tends to 0 as r2 → r1,respectively.

For I2, we have

I2 ≤Mr

Γ(q)

[ ∫ r1

r2

(r1 − s)q−1µ1(s)ds+ %m∗µ∗2

∫ r1

r2

(r1 − s)q−1ds

]→ 0, as r2 → r1.

In conclusion,

‖(Pu)(r2)− (Pu)(r1)‖ → 0, as r2 → r1,

which means that the operator P : Br → Br is equicontinuous.Let H = coQ(Br). Then it is easy to see that P maps H into itself and H ⊂ Br is

equicontinuous.Step 4. Now we prove that P : H → H is a condensing operator.For any D ⊂ H, by Lemma 2.6, there exists a countable set D0 = un ⊂ D, such that

α(P (D)) ≤ 2α(P (D0)).

Page 20: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

50 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

By the equicontinuity of H, we know that D0 ⊂ D is also equicontinuous.For t ∈ J , by Lemma 2.5 and Lemma 2.8, we have

α(P (D0)(t)) = α

[(Q(t)u0 +

∫ t

0(t− s)q−1R(t− s)f

(s, un(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, un(τ)))dτ

)ds

+∑

0<tk<t

Q(t− tk)Ik(un(tk))

)]

≤ 2M

Γ(q)

∫ t

0(t− s)q−1α

[(f

(s, un(s),

∫ s

0ρ(s, τ)h(s, τ, uρ(τ, un(τ)))dτ

))]ds

+M∑

0<tk<t

α

[(Ik(un(tk))

)]

≤ 2M

Γ(q)

∫ t

0(t− s)q−1

[η(s)

(α(D0) + 2%

∫ s

0ζ(s, τ)dτα(D0)

)]ds+M

m∑k=1

Mkα(D0)

≤[

2M

Γ(q)

∫ t

0(t− s)q−1

(η(s) + 2%ζ∗

)ds+M

m∑k=1

Mk

]α(D0)

≤[

2M

Γ(q)

(lp,qT

q− 1p ‖η‖Lp +

2%ζ∗T q

q

)+M

m∑k=1

Mk

]α(D).

Since P (D0) ⊂ H is bounded and equicontinuous, we know from Lemma 2.7 that

α(P (D0)) = maxt∈J

α(P (D0)(t)).

Therefore, by (3.7) we have

α(P (D)) ≤ 2

[2M

Γ(q)

(lp,qT

q− 1p ‖η‖Lp +

2%ζ∗T q

q

)+M

m∑k=1

Mk

]α(D) < α(D).

Thus P : H → H is a condensing mapping. It follows from Theorem 2.9 that P has at least onefixed point u ∈ H, which is just a mild solution of the system (1.1).

When B = I, then D(B) = X. We assume that A generates a norm continuous semigroupW (t)t≥0 of uniformly bounded linear operators on X. Then we have the following theorems.

Theorem 3.5. Assume that (I1)− (I4) are satisfied. Then the systemcDqu(t) = Au(t) + f

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, u(s)))ds

), t ∈ J ′,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = u0, u0 ∈ X,

(3.9)

has a unique mild solution on J.

Page 21: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 51

Theorem 3.6. Assume that (I1)− (I4) are satisfied. Let u(t),v(t) be the unique mild solutionsof the system (3.9) and the following system (3.10), respectively,

cDqu(t) = Au(t) + f

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, us)))ds

), t ∈ J ′,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = v0, v0 ∈ X.

(3.10)

Then there exists a constant M > 0 such that

‖u− v‖PC ≤ M‖u0 − v0‖.

Theorem 3.7. Assume that (I1) − (I4) are satisfied. Then the system (3.9) has at least onemild solution on J.

4 An application

In this section, we give an example to illustrate the main results obtained above.

Example 4.1. Consider the following impulsive Cauchy problem for fractional partial-integraldifferential equations

cDq(u−∆u)(t) = ∆u+ f

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, us)))ds

)−∆f, t ∈ J ′,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = u0,

(4.1)

where

q =1

2, ∆ =

∂2

∂x21

+∂2

∂x22

+∂2

∂x23

, ρ(t, s) = 1,

h(t, s, u(s, x)) =1

5s2 · sin u(s, x)

t, f(t, u, v) =

1

5k · k√tu+

t2

5kv,

m = 3, t1 =1

4, t2 =

1

2, t3 =

3

4,

I1(u) =1

50u, I2(u) =

1

50sinu, I3(u) ≡ u1,

where

1k√t∈ Lp([0, 1], R+)(p > 2), u0, u1 ∈ H2(R3).

Take X = L2(R3) and define

A = ∆, B = I −∆,

Page 22: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

52 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

with

D(A) = D(B) = H2(R3).

Then the problem (4.1) is transformed into the following fractional Sobolev-type integro-differentialequations in the Banach space X with operator pairs (A,B) and impulsive conditions

cDq(Bu)(t) = Au(t) +Bf

(t, u(t),

∫ t

0ρ(t, s)h(t, s, uρ(s, u(s)))ds

), t ∈ J ′,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = u0,

(4.2)

By [22], we know that the pair (A,B) generates a propagation family W (t) of uniformly bounded.Moreover, by the arguments similar to those in the proof of (2.15), (2.16) and (2.17) in [22], wededuce that W (t)t≥0 is norm continuous for t > 0 and ‖W (t)‖ ≤ 1.

We have

‖f(t, u, v)‖ ≤ 1

5k · k√t‖u‖+

t2

5k‖v‖

:= µ1(t)‖u‖+ µ2(t)‖v‖,

and for any bounded sets D1, D2 ⊂ X,

f(t,D1, D2) ≤ 1

5k · k√t(α(D1) + α(D2)) := η(t)(α(D1 + α(D2)), t ∈ (0, 1].

Moreover,

‖h(t, s, u)‖ ≤ s2

5t‖u‖ := m(t, s)‖u‖

and

supt∈[0,1]

∫ t

0m(t, s)ds = sup

t∈[0,1]

∫ t

0

s2

5tds =

1

15:= m∗.

For any u1, u2 ∈ X,

‖h(t, s, u1)− h(t, s, u2)‖ ≤ s2

5t‖u1 − u2‖.

So, for any bounded set D ⊂ X,

α(h(t, s,D)) ≤ s2

5tα(D) := ζ(t, s)α(D)

and

supt∈[0,1]

∫ t

0ζ(t, s)ds = sup

t∈[0,1]

∫ t

0

s2

5tds =

1

15:= ζ∗.

Page 23: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 53

If we take p = 4, k = 5, then

‖µ1‖Lp([0,1],R+) = ‖η‖Lp([0,1],R+) =

(1

5

) 74

, µ∗2 =1

25.

Noting that

Γ

(1

2

)=√π, lp,q :=

(p− 1

pq − 1

) p−1q

= 334

L1 = M1 =1

50, L2 = M2 =

1

50, L3 = M3 = 0,

we have

M

Γ(q)

(lp,qT

q− 1p ‖µ1‖Lp +

T q%m∗µ∗2q

)+M

m∑k=1

Lk =1√π

(1

5

(3

5

) 34 +

2

375

)+

1

25

≈ 0.43

< 1,

2M

Γ(q)

(lp,qT

q− 1p ‖η‖Lp +

2%ζ∗T q

q

)+M

m∑k=1

Mk =2√π

(1

5

(3

5

) 34 +

4

15

)+

1

25

≈ 0.49

< 0.5.

Hence (H1)− (H4) are satisfied. This means that the problem (4.2), i.e., the problem (4.1) has

a mild solution by Theorem 3.4.

References

[1] S. Agarwal and D. Bahuguna, Existence of solutions to Sobolev-type partial neutraldifferential equations, J. Appl. Math. Stoch. Anal., (2006), Art. ID 16308, 10pp.https://doi.org/10.1155/jamsa/2006/16308

[2] S. Abbas, M. Benchohra, and G. M. N’Guerekata, Topics in Fractional DifferentialEquations, Developments in Mathematics, Vol. 27, Springer, New York, 2012.https://doi.org/10.1007/978-1-4614-4036-9

[3] A. Aghajani, Y. Jalilian, and J. Trujillo, On the existence of solutions of fractionalintegro-differential equations, Fract. Calc. Appl. Anal., 15 (2012), 44-69.https://doi.org/10.2478/s13540-012-0005-4

Page 24: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

54 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

[4] H. M. Ahmed and M. M. El-Borai, Hilfer fractional stochastic integro-differentialequations, Appl. Math. Comput., 331 (2018), 182-189.https://doi.org/10.1016/j.amc.2018.03.009

[5] S. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, LectureNotes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980.

[6] D. N. Chalishajar and F. S. Acharya, Controllability of second order semi-linearneutral impulsive differential inclusions on unbounded domain with infinite delay inBanach spaces, Bull. Korean Math. Soc., 48 (2011), 813-838.https://doi.org/10.4134/bkms.2011.48.4.813

[7] D. N. Chalishajar, A. Anguraj, K. Malar, and K. Karthikeyan, A study of con-trollability of impulsive neutral evolution integro-differential equations with state-dependent delay in Banach spaces, Mathematics, 60 (2016).https://doi.org/10.3390/math4040060

[8] D. N. Chalishajar and K. Karthikeyan, Boundary value problems for impulsive frac-tional evolution integrodifferential equations with Gronwall’s inequality in Banachspaces, Discontinuity Nonlinearity Complex, 3 (2014), 33-48.https://doi.org/10.5890/dnc.2014.03.003

[9] D. N. Chalishajar, K. Karthikeyan, and A. Anguraj, Existence results for impulsiveperturbed partial neutral functional differential equations in Frechet space, Dyn.Contin. Discret, Impuls. Syst. Ser. A Math. Anal., 22 (2015), 25-45.https://doi.org/10.3390/math4020023

[10] Karthikeyan K., Sundararajan P. and Senthil Raja D., Existence of solutions forimpulsive second order abstract functional neutral differential equation with nonlo-cal conditions and state dependent-delay, Research and Reports on Mathematics, AScitechnol Journal, 2 (1) (2018).

[11] Dimplekumar Chalishajar, Duraisamy Senthil Raja, Kulandhaivel Karthikeyan, Pon-nusamy Sundararajan Existence Results for Nonautonomous Impulsive FractionalEvolution Equations, Results in Nonlinear Analysis, 3 (2018), 133-147.

[12] C. Cuevas and J. C. de Souza, S-asymptotically ω-periodic solutions of semilinearfractional integro-differential equations, Appl. Math. Lett., 22 (2009), 865-870.

[13] M. M. El-Borai, Some probability densities and fundamental solutions of fractionalevolution equations, Chaos Solitons Fractals, 14 (2002), 433-440.https://doi.org/10.1016/s0960-0779(01)00208-9

[14] T. Diagana, G. M. Mophou and G. N’Guerekata, On the existence of mild solutionsto some semilinear fractional integro-differential equations, Electron. J. Qual. TheoryDiffer. Equ., 58 (2010), 1-17. https://doi.org/10.14232/ejqtde.2010.1.58

Page 25: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

Impulsive fractional sobolev-type integro-differential equations 55

[15] A. Granas and J. Dugundji, Fixed point theory, Springer-Verlag, New York, 2003.https://doi.org/10.1007/978-0-387-21593-8

[16] D. J. Guo and J. X. Sun, Ordinary Differential Equations in Abstract Spaces, Shan-dong Science and Technology, Jinan, 1989.

[17] H. P. Heinz, On the behaviour of measure of noncompactness with respect to dif-ferentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983),1351-1371. https://doi.org/10.1016/0362-546x(83)90006-8

[18] R. W. Ibrahim, On the existence for differ-integro inclusion of Sobolev-type of frac-tional order with applications, ANZIAM J., 52 (2010), E1-E21.https://doi.org/10.21914/anziamj.v52i0.1161

[19] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of frac-tional differential equaations, in: North-Holland Mathematics Studies, vol. 204, El-sevier, Amsterdam, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5

[20] F. Li, J. Liang and H. K. Xu, Existence of mild solutions for fractional integrodif-ferential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl.,391 (2012), 510-525. https://doi.org/10.1016/j.jmaa.2012.02.057

[21] J. Liang, James H. Liu, and T. J. Xiao, Periodic solutions of infinite delay impulsiveevolution equations, Discrete and Continuous Dynamical Systems - Series S, 10(2017), 475-485. https://doi.org/10.3934/dcdss.2017023

[22] J. Liang and T. J. Xiao, Abstract degenerate Cauchy problems in locally convexspaces, J. Math. Anal. Appl., 259 (2001), 398-412.https://doi.org/10.1006/jmaa.2000.7406

[23] J. Liang and T. J. Xiao, Solvability of the Cauchy problem for infinite delay equations,Nonlinear Anal., 58 (2004), 271-297. https://doi.org/10.1016/j.na.2004.05.005

[24] L. S. Liu, Y. Wu and X. G. Zhang, On well-posedness of an initial value problemfor nonlinear second-order impulsive integro-differential equations of Volterra type inBanach spaces, J. Math. Anal. Appl., 317 (2006), 634-649.https://doi.org/10.1016/j.jmaa.2005.12.032

[25] B. D. Lou, Fixed point for operators in a space of continuous functions and applica-tions, Proc. Amer. Math. Soc., 127 (1999), 2259-2264.https://doi.org/10.1090/s0002-9939-99-05211-9

[26] G. Mophou and G. M. N’Guerekata, Mild solutions for semilinear fractional differ-ential equations, Elect. J. Differ. Equ., 21 (2009), 1-9.

Page 26: Existence of Solutions to Impulsive Fractional Sobolev-Type ......34 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan De nition 2.2. ([2, 19]) The Riemann-Liouville

56 D. N. Chalishajar, D. Senthil Raja, P. Sundararajan and K. Karthikeyan

[27] G. Mophou and G. M. N’Guerekata, Existence of mild solutions for some fractionaldifferential equations with nonlocal conditions, Semigroup Forum, 79 (2009), 315-322. https://doi.org/10.1007/s00233-008-9117-x

[28] B. D. Lou, R. N. Wang, D. H. Chen, and T. J. Xiao, Abstract fractional Cauchyproblems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235. https://doi.org/10.1016/j.jde.2011.08.048

Received: April 21, 2021; Published: June 5, 2021