16
 Laboratory for Industrial Energy Systems LENI -ISE-STI-EPFL    ©    F  .    M   a   r   e   c    h   a    l    L    E    N    I      I    S    E      S    T    I      E    P    F    L    2    0    0    5 COMBINED EXERGY AND PINCH ANALYSIS FOR OPTIMAL ENERGY CONVERSION TECHNOLOGIES INTEGRATION François Marechal, Daniel Favrat Laboratory for industrial energy systems Institute of energy Sciences Ecole Polytechnique fédérale de Lausanne mailto:[email protected] Laboratory for Industrial Energy Systems LENI -ISE-STI-EPFL    ©    F  .    M   a   r   e   c    h   a    l    L    E    N    I      I    S    E   -    S    T    I      E    P    F    L    2    0    0    4 Content Process integration technique Minimum energy requirement Exergy analysis Process integration Integration of the energy conversion system Analyse the energy requirement Heat pumps Combined heat and power Optimal integration Graphical representation Results 2

Exergy Pinch

Embed Size (px)

Citation preview

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 1/16

 

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   5

COMBINED EXERGY AND PINCHANALYSIS FOR OPTIMAL ENERGY

CONVERSION TECHNOLOGIES

INTEGRATION

François Marechal, Daniel FavratLaboratory for industrial energy systems

Institute of energy SciencesEcole Polytechnique fédérale de Lausanne

mailto:[email protected]

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Content

Process integration technique

Minimum energy requirement

Exergy analysisProcess integration

Integration of the energy conversion system

Analyse the energy requirementHeat pumpsCombined heat and power

Optimal integration

Graphical representation

Results

2

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 2/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Process integration vs system

3

3

Energy

Transformation

Processes

Waste treatment

Productionsupport

Rawmaterials

EnergyProductsBy-products

Energy Water - solvent

Waste heatEmissions

Environment Air

Water Solids

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Process integration

Hot & cold composite curves

Minimum energy requirementHot

Cold

Refrigeration

Heat recovery

4

REFRIGERATION

(EATRECOVERY

(OTUTILITY

COOLINGUTILITY

250

300

350

400

450

500

550

600

0 5000 10000 15000 20000 25000 30000

   T   (   K   )

Q(kW)

Cold composite curveHot composite curve

K7

K7

K7

K7

$4MINDTmin/2

DTmin/2

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 3/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Carnot composite curves

5

(OT

5TILITY

#OLD

5TILITY

2EFRIGERATION

(EAT

RECOVERY

1K7

#ARNOTCOMPOSITECURVES

HOTCOMPOSITEHOTCOMPOSITECORCOLDCOMPOSITECORCOLDCOMPOSITE

44

%XERGYLOSTCORRESPONDINGTOTHE$4MINOFTHEHOTSTREAMS

%XERGYDELIVEREDBYTHEHOTSTREAMSTOTHESYSTEM

%XERGYREQUIREDBYTHECOLDSTREAMSOFTHESYSTEM%XERGYLOSTCORRESPONDINGTOTHE$4MINOFTHECOLDSTREAMS

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

6

Table 3Exergy of the hot and cold process composite curves

Energy Exergy Exergy Name

Total ∆T mincorrected

Hot streams [kW] 20291.0 5521.4 5352.4 Eq hota

below T 0 [kW] 1709.0 131.5 151.2 Eq hotr

Cold streams[kW] 20197.0 4599.3 4650.1 Eq colda

below T 0 [kW] 0.0 0.0 0.0 Eq coldr

∆T min losses [kW] - 381.2

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 4/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Carnot Grand composite curve

7

#(0

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000 12000

   (   1  -   T   0   /   T   )

Q(kW)

Carnot Grand composite curve

200

250

300

350

400

450

500

550

600

0 500 1000 1500 2000 2500 3000

   T   (   K   )

Exergy (kW, T0 : 298.1K)

Exergy requirement as a function of the temperature

2EFRIGERATION

K7

#OLDUTILITY

K7 #OLDUTILITY

K7

2EFRIGERATION

K7

(EATPUMPING

%XERGYBALANCEK7

(EATPUMPING

#(0

(OTUTILITY

K7

(OTUTILITY

K7

Exergy requirementCarnot Grand composite

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Requirements

8

Table 2Minimum energy and exergy requirements of the process

Energy Exergy Name

Heating [kW] +6854 +567 E heat

Cooling [kW] -7145 - 1269 E cool

Refrigeration [kW] +1709 + 157 E frg

Balance [kW] -550

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 5/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

-0.2

0

0.2

0.4

0.6

0.8

1

-2000 0 2000 4000 6000 8000 10000 12000

   1  -   T   0   /   T   (   T   0  =   2   9   8   K   )

Q(kW)

Process composite curve

Utility composite curve

-INIMUM%NERGY2EQUIREMENTABOVETHEPINCHPOINT

Exergy requirement

Exergy requirement above the pinch

9

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Exergy by combustion

10

-0.2

0

0.2

0.4

0.6

0.8

1

-2000 0 2000 4000 6000 8000 10000 12000

   1  -   T   0   /   T   (   T   0  =

   2   9   8   K   )

Q(kW)

Process composite curve

Utility composite curve

-INIMUM%NERGY2EQUIREMENTABOVETHEPINCHPOINT

Exergy combustion

Exergy requirement

   E  x  e  r  g  y   l  o

  s  s  e  s  c   h   i  m  n  e  y

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 6/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Exergy composite Heat exchange losses

11

-0.2

0

0.2

0.4

0.6

0.8

1

-2000 0 2000 4000 6000 8000 10000 12000

   1  -   T   0   /   T   (   T   0  =   2   9   8   K   )

Q(kW)

Process composite curve

Utility composite curve

-INIMUM%NERGY2EQUIREMENTABOVETHEPINCHPOINT

Exergy loss -Heat exchange

Exergy requirement

Exergy loss combustion

   E  x  e  r  g  y   l  o  s  s  e  s  c   h   i  m  n  e

  y

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Exergy composite -self-sufficient pockets

12

-0.2

0

0.2

0.4

0.6

0.8

1

-2000 0 2000 4000 6000 8000 10000 12000

   1  -   T   0   /   T   (   T   0  =   2

   9   8   K   )

Q(kW)

Process composite curve

Utility composite curve

-INIMUM%NERGY2EQUIREMENTABOVETHEPINCHPOINT

Exergy loss -

Heat exchange

Exergy requirement

Exergy loss combustion

Process Exergy

   E  x  e  r  g  y   l  o

  s  s  e  s  c   h   i  m  n  e  y

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 7/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

CHP : define the steam network

13

200

300

400

500

600

700

800

9001000

1100

1200

0 2000 4000 6000 8000 10000 12000

   T   (   K   )

Q(kW)

Grand composite curve

Grand composite curve

˙ E = qc

T v " T cT v

#c

" T v " T 

c( )

& & 

) ) =  AT v

#c

" T v " T 

c( )

q c

T v

T c

[1]! F. " Marechal and B. " Kalitventzeff. Identification the

optimal pressure levels in steam networks using integratedcombined heat and power method. Chemical Engineering

Science, 52(17):2977–2989, 1997.

mfuel ∗ LHV  fuel =QMER +

nCHP i=1 E i

ηcomb

Fuel consumption

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Technology w with nominal flow

T outw,i , P outw,i , mw,i, xw,i

T inw,i, P inw,i, mw,i, xw,i

q w = mw,i(hinw,i − houtw,i)

Hot/cold streams

Mechanical power/electricity

Costs

C 1w, C 2w, CI 1w, CI 2w

ew

Integration of the energy conversion system

14

(OT 5TILITY K73ELF SUFFICIENT

0OCKET

#OLD UTILITY K7

2EFRIGERATION K7

HEATPUMPS

  '

  A  S  T  U  R   B

  I  N E

(IGHPRESSURESTEAM

W

   #   O   M    B

   U   S   T    I   O

   N

W

W

W

-EDIUMPRESSURESTEAM

,OWPRESSURESTEAM

2EFRIGERATIONCYCLE

/RGANIC2ANKINECYCLE

(OTSTREAMS#OLDSTREAMS0ROCESSSTREAMS

 4+

W

&UEL

&UEL

f w

yw

Level of usage of w

Buy/use technology w ?

Decision variables

Creative engineers ?

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 8/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

MILP formulation

15

minRr,yw,f w,E +,E −

(

nw

w=1

C 2wf w + C el+E +−C el−E 

−) ∗ t

+

nw

w=1

C 1wyw +1

τ 

(

nw

w=1

(CI 1wyw + CI 2wf w))

nw

w=1

f wq w,r +

ns

s=1

Qs,r + Rr+1 −Rr = 0 ∀ r = 1,...,nr

Rr ≥ 0 ∀r = 1,...,nr; Rnr+1= 0; R1 = 0

nw

w=1

f wew +E + − E c ≥ 0

nw

w=1

f wew +E + − E c − E − = 0

fminwyw ≤ f w ≤ fmaxwyw yw ∈ {0, 1}

E +≥ 0;E 

≥ 0

Subject to : Heat cascade constraints

Electricity consumption Electricity production

Feasibility

Energy conversion Technology selection

Operating cost

Fixed maintenance

Investment

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Application

16

Energy Exergy

Heating (kW) +6854 +567

Cooling (kW) -6948 - 1269

Refrigeration (kW) +1709 + 157

Maximum energy recovery

Hot Utility :6854 kWSelf sufficient"Pocket"

Ambient temperature

Cold utility :6948 kW

Refrigeration :1709 kW250

300

350

400

450

500

550

600

0 2000 4000 6000 8000 10000 12000

   T   (   K   )

Q(kW)

.

.

.

.

.

.

.

.

.

,

.

,

.

:

Ref rigerant R717 Ammonia

Reference flowrate 0.1 kmol/s

Mechanical power 394 kW

P T in T out  Q !Tmin/2

(bar) ( °K) ( °K) kW (°K)

Hot str. 12 340 304 2274 2

Cold str. 3 264 264 1880 2

,

.

. ,

 

:

:

,

.

.

.

.

:

Refrigeration: ,

Plow T low Phigh T high COP kWe

(bar ) ( °K) ( ba r) (K) -

Cycle 3 5 354 7.5 371 15 130

Cycle 2 6 361 10 384 12 323

Cycle 0 6 361 7.5 371 28 34

:

.

,.

.

:

,

.

Heat pumpsFluid R123

 

Header P T  Comment

(bar) (K)

HP2 92 793 superheated

HP1 39 707 superheated

HPU 32 510 c ondensation

MPU 7.66 442 condensation

LPU 4.28 419 cond ensation

LPU2 2.59 402 condensation

LPU3 1.29 380 condensation

DEA 1.15 377 deaeration

Steam cycle

Boiler house : NG (44495 kJ/kg)

Air PreheatingGas turbine : NG (el. eff = 32%)

Hot utility

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 9/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

New objective function

Thermal exergy :

Chemical Exergy :

Work :

Consider exergy losses

17

MinRr,yw,f w

nw

w=1

Lw =

nw

w=1

(f w ∗ (E +w −

nr

r=1

(Eq −w,r)∆T min − E −w ))

(Eq −w,r)∆T min =

nsw

s=1

Q−s,r ∗ (1−T 0 ∗ ln(

T r+1T r

)

T r+1 − T r)

E +w =nfuel,w

f =1 M f,w∆k0f 

E −w

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

18

Table 7Exergy balances of the energy conversion technologies per 1000 kJ of services deliv-ered.

Technology Servicenr

r=1 Eq−

w,r (nr

r=1 Eq−

w,r)∆T min∆∆T min

E −w E +w Lw

[kJ ] [kJ ] [kJ ] [kJ ] [kJ ] [kJ ]

Gas turbine Hot stream 485.72 481.05 -4.67 1160.3 3228.98 1587.63

Heat pump 1 Hot stream 48.91 40.14 -8.77 63.08 0 22.94

Heat pump 2 Hot stream 64.09 55.89 -8.2 84.77 0 28.88

Heat pump 3 Hot stream 27.55 18.83 -8.72 34.72 0 15.89

Refrigeration Cold stream 158.23 141.96 -16.27 209.59 0 67.63

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 10/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Results

19

Opt Fuel GT CHP Cooling HP

kW  LHV  kWe kWe kW kWe

1 7071 - - 8979 -

2 10086 2957 9006 -

3 16961 5427 2262 9160 -

4 - - - 2800 485

5 666 - 738 2713 496

Comb. + frg

Comb. + stm + frg

GT + stm + frg

hpmp + frg

hpmp + stm + frg

HP1 : 34 kWe

HP2 : 323 kWeHP3 : 129 kWe

Share between heat pumps

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Balanced composite curves (option 5)

20

200

300

400

500

600

700

800

900

1000

1100

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

   T   (   K   )

Q(kW)

Balanced Grand composite curve

Grand composite

-0.2

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

   (   1  -   T   0   /   T   )

Q(kW)

BalancedCarnot Grand composite

(EATEXCHANGESYSTEM

(EATEXCHANGERS

%XERGYLOSSES

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 11/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

200

300

400

500

600

700

800

900

1000

1100

1200

-1000 0 2000 4000 6000 8000 10000

   T   (   K   )

Q(kW)

Othersheat pumps

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 0 2000 4000 6000 8000 10000

   (   1  -   T   0   /   T   )

Q(kW)

Othersheat pumps

Fig. 8. Integrated composite curves of the heat pumps

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Integrated composite curves

22

200

300

400

500

600

700

800

900

1000

1100

1200

-2000 0 2000 4000 6000 8000 10000 12000

   T   (   K   )

Q(kW)

Process composite curveUtility composite

/PTION5TILITYINTEGRATEDCOMPOSITECURVE

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 12/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Integrated composite curve : steam network

23

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Visualising the results : Carnot efficiency

24

-0.2

0

0.2

0.4

0.6

0.8

1

-2000 0 2000 4000 6000 8000 10000 12000

   1  -   T   0   /   T

Q(kW)

Option 1 : Carnot composite curves

Process composite curveUtility composite curve

-0.2

0

0.2

0.4

0.6

0.8

1

-2000 0 2000 4000 6000 8000 10000 12000

   1  -   T   0   /   T

Q(kW)

Option 5 : Carnot composite curves

Process composite curveUtility composite curve

Tricks for creative engineers : reduce the green area !

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 13/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Carnot integrated composite curves

25

200

300

400

500

600

700

800

900

1000

1100

1200

-1000 0 1000 2000 3000 4000 5000 6000

   T   (   K   )

Q(kW)

Integrated composite curves of the steam network

Others(STMNET)

Mech. power

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 0 1000 2000 3000 4000 5000 6000

   1  -   T   0   /   T

Q(kW)

Carnot integrated composite curves of the steam network

Others(STMNET)Mech. power

%XERGYLOSSESINTHEHEAT

TRANSFERBETWEENSTEAM

CYCLEANDTHESYSTEM

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Energy efficiency

NGCC equivalence of electricity

EU mix for electricity

Exergy efficiency

Comparing results

26

Total2 = mfuel ∗ LHV  fuel +(E + −E 

−)

ηel

(= 38%(EUmix))

Total1 = mfuel ∗ LHV  fuel +(E + −E −)

ηel

(= 55%(NGCC ))

ηex =Eq colda + Eq hotr + E −grid

E + + Eq coldr + Eq hota

E + =nfuels

fuel=1

M +fuel∆k0

fuel + E +grid

with

L = (1− ηex)(E + + Eq coldr + Eq hota)

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 14/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Table 9Energy consumption and exergy efficiency of the diff erent options

Option Fuel E +

gridTotal 1 Total 2 ηec ηex Losses

[kW LHV  ] [kWe] [kW LHV  ] [kW LHV  ] % % [kW]

1 7071.0 371.0 7745.5 8029.7 9.2 34.9 8868.0

2 10086.0 -2481.0 5575.1 3675.1 29.4 44.5 8830.0

3 16961.0 -7195.0 3879.2 -1630.7 43.5 51.3 11197.2

4 0.0 832.0 1512.7 2149.9 49.3 72.4 2408.1

5 666.0 125.0 893.3 989.0 49.6 72.6 1831.6

Results

Comb. + frg

Comb. + stm + frg

GT + stm + frg

hpmp + frg

hpmp + stm + frg

Total2 = mfuel ∗ LHV  fuel +(E + −E 

−)

ηel(= 38%(EUmix))

Total1 = mfuel ∗ LHV  fuel +(E + −E 

−)

ηel

(= 55%(NGCC ))

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

-20000

-15000

-10000

-5000

0

5000

10000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

option 1option 2option 3option 4option 5

'RID%LECTRCITYEFFICIENCY

K7

Sensitivity of the grid electricity mix

Comb. + frgComb. + stm + frg

GT + stm + frghpmp + frg

hpmp + stm + frg

cfuel(e/kJ )

c−grid

(e/kJ e)

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 15/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

OPT1 OPT2 OPT3 OPT4 OPT5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Conversion

HTX

DTmin conversion

DTmin process

Energy conversion system configurations

    E   x   e   r   g   y    l   o   s   s   e   s    (    k    W

    )

Fig. 6. Exergy losses of the diff erent options

Exergy losses of the options

Laboratory for Industrial Energy Systems

LENI -ISE-STI-EPFL   ©   F

 .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S   E  -   S   T   I  -   E   P   F   L   2   0   0   4

OPT1 OPT2 OPT3 OPT4 OPT5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Conversion

HTX

DTmin conversionDTmin process

Energy conversion system configurations

       S      h     a     r     e

      i     n

      t      h

     e

     e     x     e     r     g     y

      l     o     s     s     e     s

Fig. 7. Share of the exergy losses in the diff erent options

Share of the exergy losses

7/28/2019 Exergy Pinch

http://slidepdf.com/reader/full/exergy-pinch 16/16

Laboratory for Industrial Energy SystemsLENI -ISE-STI-EPFL

   ©   F .   M  a  r  e  c   h  a   l   L   E   N   I  -   I   S

   E  -   S   T   I  -   E   P   F   L   2   0   0   4

Conclusions

Energy conversion system integration

Satisfy the process requirement with minimum ressourcesValorise the available process exergy

Combined exergy - Process integration

Analyse the requirements

Opportunities for energy conversion integration (Carnot composite)

Type of technologies

Generate optimal integrated systems

MILP method

Exergy objective

Evaluate & compare solutions

Graphical representations : Carnot composite & area

Integrated composite curves

Exergy efficiency wrt minimum process exergy requirement (+&-)

31