7
CHECKING EFFECTIVE SECTION INTO SPLICE ZONE Material Properties Concrete: f'c = 35 N/mm2 Strength compressive of concrete Ec = 34 GPa Secant modulus of elasticity Fy = 412 MPa Yield strength of reinforcement steel Structural Steel: Fyw = 250 MPa Yield strength - web Fyf = 250 MPa Yield strength - flange Fuf = 400 MPa Ultimate strength - flange Es = 205 GPa Secant modulus of elasticity n = 6.00 Es/Ec Ratio of Modulus n = 0.30 Poisson's ratio in elastic stage for the steel G = 79 GPa Shear Modulus Geometrical Data of section d = 1505.00 mm. Total height of Girder D = 1450 mm height of web Asft = 8750.00 tw = 12 mm thickness web Asw = 17400.00 bf sup = 350 mm width top flange Asfb = 19500.00 tf sup = 25.0 mm thickness top flange 45650.00 bf inf = 650 mm width bottom flange tf inf = 30.0 mm thickness bottom flange H total = 1805 mm Total height of composite section ts = 300 mm thickness deck L' = 25.00 m. Bridge span S = 2825.00 mm Distance between girders Effective width of flanges for shear lag (5.4.1.2. EN) bo = 220 mm distance between the centers of the outstand shear connectors To mid span Le1 = 21250 mm. beff = 2825 mm. Section Properties for Each Stage of Load Ratio for Concrete age-adjusted n = (1 + y . j t ) = 2.72 b (mm.) t (mm.) A (mm 2 ) y Yx A Io + dA 2 Ix (mm 4 ) Stage Load 1 - (steel girder only) Top Flange 350.00 25.00 8750.00 1492.50 13059375 7282046633 7282046633 Web 12.00 1450.00 17400.00 755.00 13137000 3579917776 3579917776 Bottom Flange 650.00 30.00 19500.00 15.000 292500 6232080418 6232080418 1505.00 45650 580.26 26488875 17094044828 Inercia respecto del centroide 924.74 939.740 Stage Load 3 - Composite Section (n L for long-time loading) Girder 45650.00 580.26 26488875 32027383362 32027383362 Slab 173.10 300.00 51930.15 1655.00 85944393 13517302207 13517302207 1805 1805.00 97580 1152.21 112433268 45544685569 924.74 1074.74 1182.214 Stage Load 2 - Composite Section (n for short-time loading) Girder 45650.00 580.26 26488875 47210893601 47210893601 Slab 470.83 300.00 141250.00 1655.00 233768750 10792382813 10792382813 1805.00 186900 1392.50 260257625 I = 58003276414 Elastic Section Properties Slab Slab Section Y (slab) W (slab) Steel Girder - 912.24 565.26 - 18738539 30241030 Composite Section (n L ) 652.79 640.29 1137.21 71131340 40049494 Composite Section (n) 412.50 400.00 1377.50 145008191 42107642 Slab Slab Section Y (slab) Y (top) Y (bottom) Y (slab) W (top) W (bottom) Steel Girder - 924.74 580.26 - 18485244 29459285 Composite Section (n L ) 652.79 652.79 1152.21 418615655 69769276 39528112 Composite Section (n) 412.50 412.50 1392.50 843684021 140614003 41654058 Beam Beam Beam Beam

Excel de Conexiones

Embed Size (px)

Citation preview

Page 1: Excel de Conexiones

CHECKING EFFECTIVE SECTION INTO SPLICE ZONE

Material Properties

Concrete: f'c = 35 N/mm2 Strength compressive of concrete

Ec = 34 GPa Secant modulus of elasticity

Fy = 412 MPa Yield strength of reinforcement steel

Structural Steel: Fyw = 250 MPa Yield strength - web

Fyf = 250 MPa Yield strength - flange

Fuf = 400 MPa Ultimate strength - flange

Es = 205 GPa Secant modulus of elasticity

n = 6.00 Es/Ec Ratio of Modulus

n = 0.30 Poisson's ratio in elastic stage for the steel

G = 79 GPa Shear Modulus

Geometrical Data of section

d = 1505.00 mm. Total height of Girder

D = 1450 mm height of web Asft = 8750.00

tw = 12 mm thickness web Asw = 17400.00

bf sup = 350 mm width top flange Asfb = 19500.00

tf sup = 25.0 mm thickness top flange 45650.00

bf inf = 650 mm width bottom flange

tf inf = 30.0 mm thickness bottom flange

H total = 1805 mm Total height of composite section

ts = 300 mm thickness deck

L' = 25.00 m. Bridge span

S = 2825.00 mm Distance between girders

Effective width of flanges for shear lag (5.4.1.2. EN)

bo = 220 mm distance between the centers of the outstand shear connectors

To mid span

Le1 = 21250 mm.

b eff = 2825 mm.

Section Properties for Each Stage of Load Ratio for Concrete age-adjusted n L = (1 + y L . j t ) = 2.72

b (mm.) t (mm.) A (mm2

) y Yx A Io + dA2

Ix (mm4

)

Stage Load 1 - (steel girder only)

Top Flange 350.00 25.00 8750.00 1492.50 13059375 7282046633 7282046633

Web 12.00 1450.00 17400.00 755.00 13137000 3579917776 3579917776

Bottom Flange 650.00 30.00 19500.00 15.000 292500 6232080418 6232080418

1505.00 45650 580.26 26488875 17094044828 Inercia respecto del centroide 924.74 939.740

Stage Load 3 - Composite Section (n L for long-time loading)

Girder 45650.00 580.26 26488875 32027383362 32027383362

Slab 173.10 300.00 51930.15 1655.00 85944393 13517302207 13517302207 1805

1805.00 97580 1152.21 112433268 45544685569 924.74 1074.74 1182.214

Stage Load 2 - Composite Section (n for short-time loading)

Girder 45650.00 580.26 26488875 47210893601 47210893601

Slab 470.83 300.00 141250.00 1655.00 233768750 10792382813 10792382813

1805.00 186900 1392.50 260257625 I = 58003276414

Elastic Section Properties

Slab Slab

Section Y (slab)Y (top

midthickness.)

Y (bot.

midthickness) W (slab) W (top midthickness.) W (bot. midthickness)

Steel Girder - 912.24 565.26 - 18738539 30241030

Composite Section (n L ) 652.79 640.29 1137.21 71131340 40049494

Composite Section (n) 412.50 400.00 1377.50 145008191 42107642

Slab Slab

Section Y (slab) Y (top) Y (bottom) Y (slab) W (top) W (bottom)

Steel Girder - 924.74 580.26 - 18485244 29459285

Composite Section (n L ) 652.79 652.79 1152.21 418615655 69769276 39528112

Composite Section (n) 412.50 412.50 1392.50 843684021 140614003 41654058

Beam Beam

Beam Beam

Page 2: Excel de Conexiones

BOLTS PROPERTIES

Tension MinimunRequiered

f Ag As Class 8.8 Class 10.9 Selección

Bolt Resistance for Shear Resistance 1 kN M 12 113.1 84

Bolt Resistance for Slip Resistance 2 kN M 16 201.1 157 91 114

Class fyb fub α. v M 20 314.2 245 142 179

4.6 240 400 0.6 M 22 380.1 303 176 221

4.8 320 400 0.5 M 24 452.4 353 205 257

5.6 300 500 0.6 M 27 572.6 459 267 334

5.8 400 500 0.5 M 30 706.9 561 326 408

6.8 480 600 0.5 M 36 1017.9 817 475 595

8.8 640 800 0.6

Bolt Class: 10.9 fyb = 900 MPa fub = 1000 MPa 10.9 900 1000 0.5 For M 30 Min FP.Cd = 408

CAPACIDAD DE CORTE EN PERNOS CAPACIDAD DE DESLIZAMIENTO EN PERNOSDiameter bolt: M 30 As = 561 mm2

Theoretical Dimension of Hole: 31.60 mm Fub: Resistencia a la tension f(tipo de perno) Pt : Tension minima requerida por el perno (Tabla 6.13.2.8.1)Final Dimension of Hole: 32 mm Ns: Numero de planos de deslizamiento por perno Kh : Factor debido al tamaño del orificio (Tabla 6.13.2.8.2)

Se reduce a 0.80 Rn si la L.conexion > 50 in Ks : Fact. debido a la condicion de la superficie (friccion) (Tabla 6.13.2.8.3)Bolt Capacity for Shear Resistance: Si es perno ASTM A307 varia el 0.48 a 0.38 Ns: Numero de planos de deslizamiento por perno

Manual LRFD 2004 Español pg 218 S6.13.2.7 Manual LRFD 2004 Español pg 219 S6.13.2.8

Manual LRFD 2012 Ingles pg 835 S6.13.2.7 Manual LRFD 2012 Ingles pg 836 S6.13.2.8

Tipo ASTM A490 III Kh 1 Coef.

α. v = 0.5 For Bolt Class d 22 mm Ks (Clase B) 0.5 Coef.

Ab 380.13 mm2 Ns 20 N° planos x Nb

Rn (Corte) 3022 kN Fub 1035 Mpa Pt 221 kN

Nb 10 N° pernos Rn 2210 kN

Ns 20 N° planos x Nb Capacidad 2210 kN

Rn 3777.00 kN

Bolt Capacity for Slip Resistance: φ (reduccion) 0.8 Coef.

Capacidad 3021.60 kN

FP.Cd = 408 kN Design preload force

ks = 1.00

h = 2 Number of the friction surface

gM3 = 1.25

m = 0.3 Class B corresponds to a surface which is cleaned by grit or s

hot blasting and painted with an alkali-zinc silicate paint

Rn (Deslizamiento) 2210 kN SLIP RESISTANCE IS NOT ADVISABLE 0.3927

Design for:

Then: F v.Rd = 2210 kN

SOLO

INTRODUCIR

EN CUADROS

EN BLANCO

Bolt Resistance for Slip Resistance

Fv.Rdv fub A

M2

:=

Fs.Rd

ks

M3

FP.Cd:=

𝑅𝑛 = 0.48 ∗ 𝐴𝑏 ∗ 𝐹𝑢𝑏 ∗ 𝑁𝑠 𝑅𝑛 = 𝐾ℎ ∗ 𝐾𝑠 ∗ 𝑁𝑠 ∗ 𝑃𝑡

Page 3: Excel de Conexiones

GEOMETRICAL DEFINITION OF THE SPLICE

SPLICE IN THE FLANGE:

BOLTS IN THE TOP FLANGE

# total bolts: N b,tf = 12

e1= 90.0 mm.

# bolts per horizontal row : 4 P1= 100.0 mm.

# vertical row: 3 e2= 90.0 mm.

P2= 100.0 mm. In the flange:

BOLTS IN THE BOTTOM FLANGE min max

# total bolts: N b,bf = 24 e1= 36 125

P1= 66 175

# bolts per horizontal row : 4 e2= 36 125

# vertical row: 6 P2= 72 175

Cover Plates dimensions:

Bottom Flange: Top Flange:

Inside: thickness ts_bi = 20.0 mm. ts_ti = 20.0 mm.

width bs_bi = 305.0 mm. bs_ti= 160.0 mm. 650 30

Outside thickness ts_bo = 20.0 mm. ts_bo = 20.0 mm. 25

width bs_bi = 650.0 mm. bs_ti= 350.0 mm.

SPLICE IN THE WEB:

# columns of bolts (vertical): m = 2

# rows of bolts (horizontal): n = 11

Vertical pitch: s = 125.00 mm 1375

Horizontal pitch: g = 100.00 mm In the web: 255

Dist between bolt and edge web beam: e1 = 75 mm min max

e1= 36 96

Cover Plate Web splice: e1 = e2 = 50 mm P1= 66 168

thickness t cp = 10 mm e2= 36 96

h = 1350 mm OK 1450 S = P2= 72 168

50

distance from the centerline of the splice to the centroid of the

connection on the side of the joint under consideration (eccentricity):

Separation between beams: 4 mm

Eccentricity of web group bolt:

e = 127 mm

Xwmax = 50.0 mm.

Ywmax = 625.0 mm.

Dist from g.c. of group bolts to web edge bolt:

X1 = 75.00 mm

Centroidal position for total bolts: Xmax Xmin

web 22 0 0 50.0 mm 50.0 mm

22 0

In the web:

Xcg = 127.0 mm. x_1= 0.00

Ycg = 625.0 mm.

Polar moment of inertia of the web bolt group

From the web: S r2

= 3506250.0 mm2 r wmax = 627.0 mm <° 1.4910r Ip = 3492500 mm2

Summary of Forces Applied in cross-section and combinations 5 - Resumen de Maximas Demandas en la Sección Analizada

Combinations

G1 G2 Q Temp Q1 t

C1 1.35 1.35 0 1.35

C2 1.35 1.35 1.125 1.0125

Peak Internal Forces in the connection section:

In Mid Span:

G1 G2 Q Temp Q1 C1 C2

M (kN-m/beam) 1823 820 751 2991 7606.2 7441.9 6385

V (kN/beam) 82.8 37.8 0.0 405.7 711 573.6

N (kN/beam) 0.0 0.0 0.0 0.0 0 0.0

Forces in ULTIMATE LIMIT STATE: M y,Ed = 7606.24 kN.m Momento de diseño respecto del eje YY (xx para el caso de esta hoja)

V Ed = 710.51 kN N Ed = 0.0 kN Fuerza Cortante de diseño

Ipn mvr

12s2

n2

1-( ) g2

mvr2

1-

+

:=

Page 4: Excel de Conexiones

Stresses due to Forces in ultimate limit state on Gross Steel section

Checking Stresses in the section

In Top Flange of Girder (Compression) In Service State

g M(G1) M(G2) M(Q1) M(Q2 Temp ) s t,s s t ,ser

g .G1 = 1.35 1823.10 133 -99

g .G2 = 1.35 820.30 16 -12

g . Q1 = 1.35 2990.86 29 -21

g .Q2 LT = 0 751.15 0 -5

177.7 -137.0

Stress in the top girder steel s t,s = 178 < 250 MPa OK!

In Bottom Flange of girder (tension) In Service State

g M(G1) M(G2) M(Q1) M(Q2 Temp ) s b,s s b,ser

g .G1 = 1.35 1823.10 84 62

g .G2 = 1.35 820.30 28 21

g . Q1 = 1.35 2990.86 97 72

g .Q2 LT = 0 751.15 0 18

208.5 172.5

Stress in bottom fiber of steel Girder s b,s = 208 < 250 MPa OK!

Stresses in the midthickness of the flanges

In midthickness of the Top Flange of Girder (Compression)

g M(G1) M(G2) M(Q1) M(Q2 Temp ) s t,s s t ,ser

g .G1 = 1.35 1823.10 131 -97

g .G2 = 1.35 820.30 16 -12

g . Q1 = 1.35 2990.86 28 -21

g .Q2 LT = 0 751.15 0 -5

174.8 -134.6

Stress in midthickness of the top steel girder s tf,s = 175 < 250 MPa OK!

In midthickness of the Bottom Flange of girder (tension) In Service State

g M(G1) M(G2) M(Q1) M(Q2 Temp ) s b,s s b,ser

g .G1 = 1.35 1823.10 81 60

g .G2 = 1.35 820.30 28 20

g . Q1 = 1.35 2990.86 96 71

g .Q2 LT = 0 751.15 0 18

204.9 169.6

Stress in midthickness of the bottom steel girder s bf,s = 205 < 250 MPa OK!

Page 5: Excel de Conexiones

Checking Stresses for Effective Section: Section Properties Using Effective Bottom Flange Area of Steel Girder

Ratio for Concrete age-adjusted n L = (1 + y L . j t ) = 2.72

b (mm.) t (mm.) A (mm2

) y Yx A Io + dA2

Ix (mm4

)

Stage Load 1 - (steel girder only)

Top Flange 222.00 25.00 5550.00 1492.50 8283375 4618898150 4618898150

Web 12.00 1450.00 17400.00 755.00 13137000 3579917776 3579917776

Bottom Flange 522.00 30.00 15660.00 15.000 234900 5004839967 5004839967

1505.00 38610 560.87 21655275 13203655893

Stage Load 3 - Composite Section (n L for long-time loading)

Girder 38610.00 560.87 21655275 26704916353 26704916353

Slab 173.10 300.00 51930.15 1655.00 85944393 11694507947 11694507947

1805.00 90540 1188.42 107599668 38399424300

Stage Load 2 - Composite Section (n for short-time loading)

Girder 38610.00 560.87 21655275 39906658414 39906658414

Slab 470.83 300.00 141250.00 1655.00 233768750 8851278262 8851278262

1805.00 179860 1420.13 255424025 I = 48757936676

Elastic Section Properties

Slab Slab

Section Y (slab) Y (top) Y (bottom) Y (slab) W (top) W (bottom)

Beam - 944.13 560.87 - 13984998 23541384

Composite Section (n L ) 1805.00 616.58 1188.42 62278089 32311325

Composite Section (n) 427.50 384.87 1420.13 126686769 34333432

Checking Stresses in the Effective Section

In Top Flange of Girder (Compression) In Service State

g M(G1) M(G2) M(Q1) M(Q2 LT ) s t,s s t ,ser

g .G1 = 1.35 1823.10 176 -130

g .G2 = 1.35 820.30 18 -13

g . Q1 = 1.35 2990.86 32 -24

g .Q2 LT = 0 751.15 0 -6

225.6 -173.1

Stress in the top girder steel s t,s = 226 < 400 MPa OK!

In Bottom Flange of girder (tension) In Service State

g M(G1) M(G2) M(Q1) M(Q2 LT ) s b,s s b,ser

g .G1 = 1.35 1823.10 105 77

g .G2 = 1.35 820.30 34 25

g . Q1 = 1.35 2990.86 118 87

g .Q2 LT = 0 751.15 0 22

256.4 211.8

Stress in bottom fiber of steel Girder s b,s = 256 < 400 MPa OK!

Stresses in the Web 10.75047081

For gross section: Slab Slab

Section Y (slab) Y (top web) Y (bottom web) W (slab) W (top web) W (bottom web)

Beam - 899.74 565.26 - 18998872 30241030

Composite Section (n L ) 616.58 327.79 1137.21 138944707 40049494

Composite Section (n) 384.87 87.50 1377.50 662894588 42107642

Stress in the Top web of Girder (Compression)

g M(G1) M(G2) M(Q1) M(Q2 LT ) s t,s

g .G1 = 1.35 1823.10 129.54

g .G2 = 1.35 820.30 7.97

g . Q1 = 1.35 2990.86 6.09

g .Q2 LT = 0 751.15 0.00

143.6

s 1 = 143.6 < 250 MPa OK!

Stress in the Bottom web of girder (tension)

g M(G1) M(G2) M(Q1) M(Q2 LT ) s b,s

g .G1 = 1.35 1823.10 81.39

g .G2 = 1.35 820.30 27.65

g . Q1 = 1.35 2990.86 95.89

g .Q2 LT = 0 751.15 0.00

204.93

s 2 = 204.9 < 250 MPa OK!

Distribution of Moment in the girder web (for girder stresses integration)

Y J Ag An M' Ed N' Ed,cp

Web: 852.56 4.10E+09 27000 19960 732.79 0 1235.87 0.096

Distribution of Moment and Axial Force in the Cover Plates

Top Flange: 1493.9

Inside 715.00 3.27E+09 6400 3840 986.09 689.6

Outside 762.50 4.07E+09 7000 4440 1226.59 804.3

Bottom flange: 2808.2

Inside 715.00 6.24E+09 12200 9640 1879.73 1314.5

Outside 762.50 7.56E+09 13000 10440 2277.96 1493.7

2.52E+10 65600 7103.17

Beam Beam

Beam Beam

Page 6: Excel de Conexiones

Design in the Flange: For Minimum Design Force Controlling in the Flanges

Stresses in midthickness of flange: s cf,Ed.bf = Max( ( s f,s + fy f )/2, 0.75*fy f )

In Bottom Flange: In Top Flange:

s cf,Ed.bf = 227.5 MPa s cf,Ed.tf = 212.4 MPa 204.9

The minimum design force: N'' cu,Ed = s cf,Ed.bf * A flange

In Bottom Flange: In Top Flange:

In midthickness flange: N'' cu,Ed = 4435.5 kN N'' cu,Ed = 1858.3 kN

From the Cover Plates N' Ed,cp = 2808.2 kN N' Ed,cp = 1493.9 kN

To take N cu,Ed = 4435.5 kN N cu,Ed = 1858.3 kN

Horizontal shear per bolt: F' h,Rd = N cu,Ed /N b,bf F' h,Rd = N cu,Ed /N b,tf

F h,Rd = 185 kN F h,Rd = 155 kN 2.007023682

Correction for Long Joints:

b Lf = 0.99 b Lf = 1.00

F h,Rd = 183 kN OK F h,Rd = 155 kN OK 2210 kN

Design Bottom and Top Flange Splice

Gross area and net area of the inside and outside splice plates:

Bottom Flange: Top Flange:

Inside: gross Ag_bi = 12200 mm2 Ag_ti = 6400 mm2

net An_bi = 9640 mm2 An_ti = 3840 mm2

Outside gross Ag_bo = 13000 mm2 Ag_to = 7000 mm2

net An_bo = 10440 mm2 An_to = 4440 mm2

For yielding of the inside and outside splice plate:

P Rd = An. Fy/ g M0

Inside: P Rd = 3050 kN P Rd = 1600 mm2

P cu,Ed / 2 = 2218 kN OK P cu,Ed / 2 = 929 kN OK

Outside P Rd = 3250 kN P Rd = 1750 mm2

P cu,Ed / 2 = 2218 kN OK P cu,Ed / 2 = 929 kN OK

Design ultimate resistance of the net section of the splice plate:

P U,Rd = 0.9An. Fu/ g M2

Inside: P U,Rd = 2776.32 kN P Rd = 1105.92 mm2

P cu,Ed / 2 = 2218 kN OK P cu,Ed / 2 = 929 kN OK

Outside P Rd = 3006.72 kN P Rd = 1278.72 mm2

P cu,Ed / 2 = 2218 kN OK P cu,Ed / 2 = 929 kN OK

Design for Block Tearing: DISEÑO POR BLOQUE DE CORTANTE

Inside: L1 t = 152.5 mm. to tension

L2 s = 227.5 mm. to shear

φbs: Factor de resistencia para el bloque de corte (Art 6.5.4.2) (pg 46-es)Rp: Factor de Reduccion debido al agujero Atg: Area bruta a lo largo del plano que resiste esfuerzo de traccion

a) Rp = 0.9, para agujeros perforados a tamaño completo

V eff,2,Rd = 3648 kN > 2217.8 OK b) Rp = 1, para agujeros subperforados y luego ensanchados

Fu: Minima resistencia a la tracción especificada Tabla 6.4.1-1 (Pag 39-es)Fy: Minima resistencia a la fluencia Tabla 6.4.1-1 (Pag 39-es) Manual LRFD 2004 Español pg 230 S6.13.4

Avn: Area neta a lo largo del plano que resiste esfuerzo de corte (mm2) Manual LRFD 2012 Ingles pg 845 S6.13.4

Outside: Atn: Area neta a lo largo del plano que resiste esfuerzo de traccion (mm2)Case 1 Case 2 Avg: Area bruta a lo largo del plano que resiste esfuerzo de corte (mm2)

Case 1: Ubs: Factor de reduccion de la resistencia del bloque de corte

L1 t = 150.0 mm. to tension a) Ubs = 0.5, si esfuerzo de tension no es uniforme

L2 s = 910.0 mm. to shear b) Ubs = 1, si esfuerzo de tension es uniforme

Placa Interior Placa Exterior Ala inferior de viga

V eff,2,Rd = 4314 kN > 2217.8 OK φbs 0.8 Coef. Caso 1 Caso critico 2

Rp 0.9 Coef. Avg 23200 mm2 Fy 250 Mpa

Case 2: Fu 450 MPa Avn 18200 mm2 Fu 400 Mpa

L1 t = 305.0 mm. to tension Fy 345 MPa Atn 3000 mm2 t inf 30 mm

L2 s = 455.0 mm. to shear Avg 5800 mm2 Rr (por placa) 4392.14 kN Avg 17400 mm2

Avn 4550 mm2 Rr máx 4314.47 kN Avn 13650 mm2

V eff,2,Rd = 3648 kN > 2217.8 OK Atn 3050 mm2 Rr 4314.47 kN Atn 9150 mm2

Ubs 1 Coef. Nro Placas 1 Rr 4915.30 kN

In the bottom flange: Rr (por placa) 1843.24 kN Rr (Total) 4314.47 kN Rr máx 4451.76 kN

Rr máx 1823.82 kN Rr 4451.76 kN

Case 2: Rr 1823.82 kN Caso 2 Nro Placas 1

L1 t = 305.0 mm. to tension Nro Placas 2 Avg 11600 mm2 Rr (Total) 4451.76 kN

L2 s = 455.0 mm. to shear Rr (Total) 3647.64 kN Avn 9100 mm2

Atn 6100 mm2

V eff,2,Rd = 4452 kN > 4435.6 OK 4435.6 Rr (por placa) 3686.47 kN

Rr máx 3647.64 kN

Rr 3647.64 kN

Design of the Web: Nro Placas 1

Rr (Total) 3647.64 kN

SOLO

INTRODUCIR

EN

CUADROS

EN BLANCO

𝑹𝒓 = 𝞿𝒃𝒔 ∗ 𝑹𝒑(𝟎. 𝟓𝟖 ∗ 𝑭𝒖 ∗ 𝑨𝒗𝒏 + 𝑼𝒃𝒔 ∗ 𝑭𝒖 ∗ 𝑨𝒕𝒏)

𝑹𝒓 𝒎á𝒙 ≤ 𝞿𝒃𝒔 ∗ 𝑹𝒑(𝟎. 𝟓𝟖 ∗ 𝑭𝒚 ∗ 𝑨𝒗𝒈 + 𝑼𝒃𝒔 ∗ 𝑭𝒖 ∗ 𝑨𝒕𝒏)

Page 7: Excel de Conexiones

Aditional Horizontal Force for equilibrium:

H w = (s1* Aw1 + s2* Aw2 ) / 2 + N' Ed.w

H w = 533.53 kN

Computing Forces for Design:

M. Tot = M' w,Ed + V y.Ed *e

M. Tot = 823.0 kN.m

The vertical shear force in the bolts due to the applied shear force:

F v.Ed = 32.3 kN

The horizontal shear force in the bolts due to the horizontal force resultant:

F H.Ed = 24.3 kN

Determine the horizontal and vertical components of the bolt shear force on the extreme bolt due to the total

moment in the web:

F H2.Ed = 146.7 kN 146.7

F v2.Ed = 11.7 kN

The resultant bolt force for the extreme bolt is:

F res.Ed = 176.5 kN OK

DISEÑO POR RESISTENCIA EN ALAS

Design Bearing resistance:

In the cover plate: Ala determinante Ala no determinante

l 1cp = 52 mm fcf 0 My/I fcf 0 My/I

In the web: Rh 1 Coef. Fcf 187.5 Mpa

l 2w = 77 mm Ae: Area efectiva del ala (mm2) α 1 Coef. Rcf 0 Coef.

Ae para el ala en compresion sera el area bruta φf 1 Coef. Fncf 0 MPa

Ae para el ala en traccion sera: Fyf 250 Mpa Fncf min 187.5 MPa

Fcf 125 Mpa Fncf 187.5 MPa

Fcf min 187.5 Mpa Ag 8750 mm2

fcf : Maximo esfuerzo de flexion debido a cargas amplificadas a la mitad del espesor del ala Fcf 187.5 Mpa An 6250 mm2

Rh: Factor de hibridez (Art 6.10.1.10.1). Si Fcf no es mayor que la resistencia de fluencia Rh = 1 φy 0.95 Coef. Ae 10526.32 mm2

α = 1, para alas en las cuales Fn es menor que Fyf y se puede usar Fn/Fyf Fu 400 Mpa Ae 8750 mm2

Cover plates k1 = 2.5 φf: Factor de resistencia a flexion (Art 6.5.4.2) Ag 19500 mm2 Fncf x Ae 1640.63 kN

a b = 0.54 Fn: Resistencia nominal a flexion del ala An 16500 mm2

F b,Rd = 3656.25 OK Fyf: Resistencia Minima a la fluencia especificada del ala Ae 27789.47 mm2

φu: Factor de resistencia para fractura de elementos traccionados (Art 6.5.4.2) Ae 19500 mm2

Beam web k1 = 2.5 φy: Factor de resistencia para fluencia de elementos traccionados (Art 6.5.4.2) Fcf x Ae 3656.25 kN

a b = 0.79 An: Area neta del ala traccionada esfecificado (Art 6.8.3)

F b,Rd = 1640.63 OK Ag: Area bruta del ala traccionada

Fu: Minima resistencia a la traccion especificada del ala traccionada (Tabla 6.4.1-1)Fyt: Minima resistencia a la fluencia especificada del ala traccionada

Shear resistance of beam web (BS recommendation) Manual LRFD 2004 Español pg 239 S6.13.6.1.4c

Manual LRFD 2012 Ingles pg 853 S6.13.6.1.4c

Aw n = 13176 mm2 OK 0.757241379 0.625

V n,Rd = 1901.8 kN OK

Shear rupture resistance

Rcf: Valor absoluto de la relacion entre Fcf y fcf para el ala determinante

fncf: Esfuerzo de flexion debido a cargas amplificadas a la mitad del espesor del ala no determinante en el punto de empalme concurrente con fcfRh: Factor de hibridez (Art 6.10.1.10.1). Si fcf no es mayor que la resistencia de fluencia Rh = 1Manual LRFD 2004 Español pg 240 S6.13.6.1.4c

Lv = 1250 mm Manual LRFD 2012 Ingles pg 854 S6.13.6.1.4c

L1 = 100 mm

L2 = 94 mm DISEÑO POR CORTE EN EL ALMAL3 = 1194 mm

Lveff = 1194 mm

V eff,Rd = 3894.5 kN OK

Corte en el alma de viga Corte de placa en el alma

Shear resistance of web cover plates φbs 0.8 Coef. Fu 450 Mpa

Rp 0.9 Coef. Fy 345 Mpa

Aw n = 19960 mm2 Fu 400 MPa t placa 10 mm mm

V n,Rd = 7325.6 kN OK Fy 250 MPa Avg 3000 mm2

Avg 4200 mm2 Avn 2250 mm2

Avn 3750 mm2 Atn 10000 mm2

Atn 12000 mm2 Rr 3662.82 kN

Ubs 1 Coef. Rr máx 3672.22 kN

Rr (por placa) 4082.40 kN Rr 3662.82 kN

Rr máx 3894.48 kN Nro Placas 2

Rr 3894.48 kN Rr (Total) 7325.64 kN

Nro Placas 1

Rr (Total) 3894.48 kN

SOLO

INTRODUCI

R

EN

CUADROS

EN

BLANCO

SOLO

INTRODUCIR

EN

CUADROS

EN BLANCO

Resistencia de

diseño

en el ala

determinante

Resistencia de

diseño

en el ala no

determinante

Fv.Ed

Vy.Ed

mvr n:=

Fres.Ed Fv.Ed Fv2.Ed+( )2

FH.Ed FH2.Ed+( )2

+:= Fv2.EdFv2.Ed

FH.Ed

Hw

m n:=

HwHw

)cos(..2.2 f

r

rMF Tot

EdH

=

)sin(..2.2 f

r

rMF Tot

EdV

=

𝐹𝑐𝑓 =

𝑓𝑐𝑓

𝑅ℎ+𝛼𝜙𝑓𝐹𝑦𝑓

2≥0.75𝛼𝜙𝑓𝐹𝑦𝑓

𝐴𝑒 =𝜙𝑓𝐹𝑢

𝜙𝑦𝐹𝑦𝑡𝐴𝑛 ≤ 𝐴𝑔

𝐹𝑛𝑐𝑓 = 𝑅𝑐𝑓𝑓𝑐𝑓

𝑅ℎ≥0.75𝛼𝜙𝑓𝐹𝑦𝑓

𝑹𝒓 = 𝞿𝒃𝒔 ∗ 𝑹𝒑(𝟎. 𝟓𝟖 ∗ 𝑭𝒖 ∗ 𝑨𝒗𝒏 + 𝑼𝒃𝒔 ∗ 𝑭𝒖 ∗ 𝑨𝒕𝒏)

𝑹𝒓 𝒎á𝒙 ≤ 𝞿𝒃𝒔 ∗ 𝑹𝒑(𝟎. 𝟓𝟖 ∗ 𝑭𝒚 ∗ 𝑨𝒗𝒈 + 𝑼𝒃𝒔 ∗ 𝑭𝒖 ∗ 𝑨𝒕𝒏)