25
Exascale Compu.ng and Materials Discovery Bruce Harmon Ames Laboratory, USDOE and Iowa State University LAUSANNE May 25, 2011

Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Exascale  Compu.ng  and  Materials  Discovery  

Bruce  Harmon    

Ames  Laboratory,  USDOE  

   and  Iowa  State  University  

LAUSANNE    -­‐    May  25,  2011  

Page 2: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Outline:    1.  Exascale    (when?  and  how?)  

 2.  Tipping  point  for  Materials  

     Discovery?  

 3.  Local  (Ames  Lab)    Example    

Page 3: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Performance  for  top  10  Supercomputers  over  Gme.  

Year  From  Report:    ExaScale  Compu.ng  Study:    Technology  Challenges  in  Achieving  Exascale  Systems,      2008.    DARPA  

Page 4: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

DOE  -­‐  Exascale  Ini.a.ve  High  Level  Targets  

•  The  Exascale  Ini.a.ve  targets  plaSorm  deliveries  in  2018  and  a  robust  Exascale  simula.on  environment  for  the  science  exemplars  by  2020    

•  Co-­‐development  of  hardware,  system  soTware,  programming  model  and  applica.ons  require  intermediate  (100-­‐200  PF/s)  plaSorms  in  2015    

DOE  Exascale  Ini.a.ve  Technical  Roadmap  

Page 5: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

DOE  Exascale  Ini.a.ve  Technical  Roadmap  

Poten.al  System  Parameters  for  Exascale  

Systems   2009   2011   2015   2018  

System  peak   2  Peta   20  Peta   100-­‐200  Peta   1  Exa  

System  memory   0.3  PB   1.6  PB   5  PB   10  PB  

Node  performance   125  GF   200GF   200-­‐400  GF   1-­‐10TF  

Node  memory  BW   25  GB/s   40  GB/s   100  GB/s   200-­‐400  GB/s  

Node  concurrency   12   32   O(100)   O(1000)  

Interconnect  BW   1.5  GB/s   22  GB/s   25  GB/s   50  GB/s  

System  size  (nodes)   18,700   100,000   500,000   O(million)  

Total  concurrency   225,000   3,200,000   O(50,000,000)   O(billion)  

Storage   15  PB   30  PB   150  PB   300  PB  

IO   0.2  TB/s   2  TB/s   10  TB/s   20  TB/s  

MTTI   days   days   days   O(1  day)  

Power   6  MW   ~10MW   ~10  MW   ~20  MW  

Page 6: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Power  Consump.on  •  Barriers    –  Power  is  leading  design  constraint  for  compu.ng  

technology  –  Target  ~20MW,  es.mated  >  100MW  required  for  

Exascale  systems  (DARPA,  DOE)  –  Efficiency  is  industry-­‐wide  problem  (IT  

technology  >2%  of  US  energy  consump.on  and  growing)  

•  Technical  Focus  Areas  –  Energy  efficient  hardware  building  blocks  (CPU,  

memory,  interconnect)  –  Novel  cooling  and  packaging  –  Si-­‐Photonic  Communica.on  –  Power  Aware  Run.me  SoTware  and  Algorithms  

•  Technical  Gap  –  Need  5X  improvement  in  power  efficiency  over  

projec.ons  that  include  technological  advancements  

Possible  Leadership  class  power  requirements    

From  Peter  Kogge  (on  behalf  of  Exascale  Working  Group),  “Architectural  Challenges  at  the  Exascale  Fron.er”,  June  20,  2008  

Slide  6   DOE  Exascale  Ini.a.ve  Technical  Roadmap  

Desired  

Projected  including  industry  BAU  improvements  

Page 7: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Reliability  and  Resilience  •  Barriers    –  Number  of  system  components  increasing  faster  

than  component  reliability  –  Mean  Gme  between  failures  of  minutes  or  seconds  

for  exascale  –  Silent  error  rates  increasing    –  No  job  progress  due  to  fault  recovery  if  we  use  

exis.ng  checkpoint/restart  

•  Technical  Focus  Areas  –  Improved  hardware  and  soTware  reliability  

•  Beler  RAS  collec.on  and  analysis  (root  cause)  •  Greater  integra.on  

–  Fault  resilient  algorithms  and  applica.ons  –  Local  recovery  and  migra.on  

•  Technical  Gap  –  Need  1000X  improvement  in  MTTI  so  that  

applica.ons  can  run  for  many  hours.  Goal  is  10X  improvement  in  hardware  reliability.  Local  recovery  may  and  migra.on  may  yield  another  10X.  However,  for  exascale,  applica.ons  will  need  to  be  fault  resilient.  

Slide  7   DOE  Exascale  Ini.a.ve  Technical  Roadmap  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

.me  

2000                2015                2018  

Time  to  checkpoint  grows  larger  as  problem  size  increases  

MTTI  grows  smaller  as  scale  increases  

By  exascale  checkpoint/restart  no  longer  viable      

Effec.ve  applica.on  u.liza.on  (including  checkpoint  overhead)  at  3  rates  of  hardware  failure  

Page 8: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Power  

Memory  and  Storage  Bandwidth  

Reliability  and  Resilience  

System  SoXware  Scalability  

Programming    Models  and  Environments  

Slide  8  DOE  Exascale  Ini.a.ve  Technical  Roadmap  

2012   2013   2014   2015   2017   2018   2019   2020  

10  Peta   1  Exa  100  Peta  

2016  

Technology  Roadmap  

Exascale  Science  

Memory  BW  10x  

Demonstrate  >  3X  power    efficiency  gain  over  2012  

SW  scalability  to  10M  threads  

3D  chip-­‐level    integraGon  

Improved  hardware  and  soXware  reliability  

Local  fault  recovery  

New  IO  technology  

Latency  tolerant  algorithms  

New  programming  model  

Improved  interconnect  technology  

Demonstrate  10X    power  efficiency    gain  over  2015  

Fault  Tolerant  ApplicaGons  

SW  scalability  to  10M  threads  

ApplicaGon    scalability  to    100M  threads  

ApplicaGon    scalability  to    100M  threads  

Page 9: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Benefits  from  Investments  Applica.ons  •  The  solu.on  to  the  na.on’s  5-­‐6  top  science  and  security  challenges  is  the  ul.mate  benefit  of    the  exascale  ini.a.ve.  Examples  include  na.onal  and  energy  security,  climate  change,  and  advanced  materials.  

Programming  Models  and  Environments  •  New  programming  environments  will  enable  scien.sts  across  DOE  to  use  these  systems  (not  just  a  

handful  of  hero  HPC  programmers).    •  Scalable,  resilient  system  soTware  will  enable  exascale  systems  to  be  effec.ve  tools  for  science  and  

improve  resilience  of  smaller  systems  across  the  porSolio.    •  New  tools  will  shorten  the  development  cycle  for  tackling  new  na.onal  challenges,    

Computer  Systems  •  The  benefits  of  technology  advances  in  resilience  and  power  efficiency  required  for  an  exascale  

system  will  also  trickle  down  to  smaller  systems  resul.ng  in  reduced  na.onal  energy  demand  and  broad  impact  to  science  in  the  U.S.  

•  The  strategy  of  staged    plaSorms  provides  a  path  for  applica.on  development  and  the  resources  for  intermediate  science  breakthroughs    

Slide  9   DOE  Exascale  Ini.a.ve  Technical  Roadmap  

Mo.va.on  /  Driving  Forces  

Page 10: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

MATERIALS    DISCOVERY  Data  mining  and  accelerated  electronic  structure  theory    

as  a  tool  in  the  search  for  new  func.onal  materials  C.  Or.z  1,  O.  Eriksson,  M.  Klintenberg    Uppsala  University,  Uppsala,  Sweden  Computa.onal  Material  Science  44  (2009)  1042-­‐1049  

Evolu.onary  crystal  structure  predic.on  as  a  tool  in  materials  design  Artem  R  Oganov  and  ColinW  Glass  J.  Phys.:  Condens.  Maler  20  (2008)  064210  

Materials  Informa.cs:  More  Than  Collec.ng  Data  Kim  F.  Ferris,  Pacific  Northwest  Na.onal  Laboratory  Dumont  M.  Jones,  Proximate  Technologies,  LLC.  Talk.    

Page 11: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Overview  •  What  is  materials  informaGcs  

–  System  architecture  –  General  definiGon  –  Compare  and  contrast  with  bioinformaGcs  

•  Basic  Approach  to  Materials  InformaGcs  –  Flow  chart  

•  Database  development  •  Testbed  environment  •  StaGsGcal  development    •  ProjecGon  and  new  candidate  generaGon  

•  Benefits  of  InformaGcs  vs.  Linear  Searches  •  Examples  •  Goals  of  Structured  Materials  Discovery  

Page 12: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

•  Provide  a  consistent  basis  for  electronic  and  structural  informaGon  derived  from  first-­‐principles  computaGon  with  exisGng  empirical  and  computaGonal  data.    

•  Generate  materials  informaGcs  toolkit  for  the  development  of  design  rules  based  on  staGsGcal  learning  theory,  simulaGon,  and  empirical  evidence  

•  Develop  a  materials  database  resource  which  can  be  used  as  a  basis  for  future  materials  development  or  verificaGon  (potenGally  within  and  outside  PNNL)    

•  Develop  a  signature  laboratory  capability  based  upon  informaGon  theory  techniques  for  new  materials  development.  

Summary  of  Expected  Outcomes  

Page 13: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Current  Ames  Lab  Example    

Mo.vated  by  need  Cri.cal  Materials  Concern    Desire  to  find  NEW  high  performance  magne.c  materials  containing  no  rare  earth  elements    Use  first  principles  calcula.ons  and  perform  massive  searches  on  supercomputers    Strong  interac.on  with  experimental  groups      

Page 14: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

GeneGc  algorithm  (GA)  for  global  structure  opGmizaGons  

•  Global  structure  opGmizaGon  is  a  big  challenge  

•  TradiGonal  approaches  use  simulated  annealing  

•  GeneGc  algorithm  approach  based  on  a  physical  representaGon  (i.e.,  atomic  coordinates)  is  simple  but  performs  befer  than  simulated  annealing  

•  GA  approach  has  been  applied  to  –  Atomic  clusters  –  Surfaces  and  interfaces  –  Nanowires  

Page 15: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

ma.ng  opera.on-­‐clusters

•  Pick  two  clusters  from  the  pool.  

•  Rotate  them  randomly  •  Cut  through  the  z=0    plane  •  Paste  atoms  above  z=0  

from  A  and  those  below  z=0  from  B  

•  ShiT  cluster  along  z-­‐direc.on  to  have  correct  match  in  number  of  atoms  

D.  Deaven  and  K.M  Ho  Molecular  Geometry  Op6miza6on  with  a  Gene6c  Algorithm  PRL    75  288  (1995)  

Page 16: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Use  of  GA  for  crystal  structure  predic.on  

•  A.R.  Oganov  and  C.  W.  Glass,  “Crystal  structure  predic.on  using  ab  ini6o  evolu.onary  techniques:  Principles  and  applica.ons”,  J.  Chem.  Phys.  124,  244704(2006).  

•  G.  Trimarchi  and  A.  Zunger,    “Finding  the  lowest-­‐energy  crystal  structure  star.ng  from  randomly  selected  lavce  vectors  and  atomic  posi.ons:  first-­‐principles  evolu.onary  study  of  the  Au–Pd,  Cd–Pt,  Al–Sc,  Cu–Pd,  Pd–Ti,  and  Ir–N  binary  systems”,  J.  Phys.:  Condens.  Ma@er  20,  295212  (2008).  

•  G.  Trimarchi,  A.  J.  Freeman  and  A.  Zunger,  “Predic.ng  Stable  Stoichiometries  of  Compounds  via  Evolu.onary  Global  Space-­‐group  Op.miza.on”,  Phys.  Rev.  B,  80,  092101  (2009).  

•  A.R.  Oganov,  J.H.  Chen  ,C.  Gav,  Y.Z.  Ma,  Y.  M.  Ma,  C.W.  Glass,  Z.X.  Liu  ,  T.  Yu,  O.O.  Kurakevych  and  V.L.  Solozhenko,  “Ionic  high-­‐pressure  form  of  elemental  boron”,  Nature,  457,863(2009).  

Some  relevant  references  

Page 17: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Bolleneck  of  computa.onal  crystal  structure  predic.on  

•  M.  Ji,  C.  Z.  Wang,  and  K.  M.  Ho,                        “Comparing  efficiencies  of  gene.c  and  minima  hopping  algorithms  for  crystal  structure                        

predic.on”,                  Phys.  Chem.  Chem.  Phys,  12,  11617-­‐23  (2010)  

•   Searches  using  empirical  poten.als  are  fast  but  suffer  from  inaccuracies  which  can  lead  the  search  to  wrong  structures.    

•  GA  searches  using  ab-­‐ini.o  calcula.ons  are  restricted  because  the  computa.onal  effort  needed  to  effec.vely  sample  the  structure  configura.on  space  is  extremely  demanding  for  any  but  the  smallest  unit  cells.  

•  A  breakthrough  is  needed  which  can  address  both  the  speed  and  effec.veness  of  the  search  with  an  accurate  descrip.on  of  interatomic  interac.ons  in  the  system.    

Page 18: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Adap.ve  GA  •  Ji  Min,  C.  Z.,  K.  M.  •  Most  of  the  computer  .me  is  spent  in  simula.ng  the  

relaxa.on  of  false  structural  candidates.    •  Employ  auxillary  poten.als  to  give  an  es.mate  of  the  

approximate  energy  ordering  of  the  different  compe.ng  geometries.  Star.ng  with  some  educated  guesses,  the  accuracy  of  the  auxillary  poten.als  can  be  improved  by  adap.ve  adjustments  during  the  course  of  the  GA  process  

•  Method  combines  the  speed  of  empirical  poten.als  with  the  accuracy  of  ab-­‐ini.o  calcula.ons  

Page 19: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Adap.ve  GA  atomic  structure  search  of  FeCo  alloy  

Manh  Cuong  Nguyen,  Min  Ji,  Cai-­‐Zhuang  Wang  and  Cai-­‐Ming  Ho  

Page 20: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Relaxa.on  in  DFT  

•  Lowest  energy  structures  with  energy  window  of  5  meV/atom.  

•  Structures  are  fully  relaxed.  

Page 21: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Relaxa.on  in  DFT  

•  Lowest  energy  structures  with  energy  window  of  5  meV/atom.  

•  Structures  are  fully  relaxed.  

Page 22: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Relaxa.on  in  DFT  

•  Lowest  energy  structures  with  energy  window  of  5  meV/atom.  

•  Structures  are  fully  relaxed.  

Page 23: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

•  GA  atomic  structure  search  “from  scratch”  was  implemented  for  FeCo  and  FeCoW  systems.  

•  Low  energy  structures  of  FeCo  and  FeCoW  systems  have  a  BCC  underlying  palern,  consistent  with  experiment.  

•  Ground  states  of  FeCo  systems  are  highly  degenerate.  •  Low  energy  structures  of  FeCoW  system  have  2  main  palerns  of  Co  atoms:  triangle  and  line.  

FIND:  

Page 24: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta

Conclusions      

Petascale  compu.ng  will  greatly  enhance  theore.cal  capability  to  search  for  new  cri.cal  material  candidates.    Strong  partnering  with  synthesis  and  charateriza.on  groups,  promises  to  greatly  accelerate  the  discovery  of  new  materials.  

Page 25: Exascale(Compu.ng(and( Materials(Discovery( · DOE(Exascale(Ini.ave(Technical(Roadmap(Poten.al(System(Parameters(for(Exascale(Systems 2009 2011 2015 2018 System(peak(2(Peta 20(Peta