Evolutin of Eukaryotes (1)

Embed Size (px)

Citation preview

  • 8/11/2019 Evolutin of Eukaryotes (1)

    1/8

    Evolutionary mechanisms forestablishing eukaryotic cellular

    complexityFred D. Mast1,2,3, Lael D. Barlow1, Richard A. Rachubinski1, and Joel B. Dacks1

    1Department

    of

    Cell

    Biology,

    University

    of

    Alberta,

    Edmonton,

    Alberta

    T6G

    2H7,

    Canada2Seattle

    Biomedical

    Research

    Institute,

    307

    Westlake

    Avenue

    North,

    Seattle,

    WA

    98109-5240,

    USA3 Institute

    for

    Systems

    Biology,

    401

    Terry

    Avenue

    North,

    Seattle,

    WA

    98109-5219,

    USA

    Through a comparative approach, evolutionary cell biol-

    ogy makes use of genomics, bioinformatics, and cell

    biology of non-model eukaryotes to provide new ave-

    nues for understanding basic cellular processes. This

    approach has led to proposed mechanisms underpin-ning the evolution of eukaryotic cellular organization

    including

    endosymbiotic

    and

    autogenous

    processes

    and neutral and adaptive processes. Together these

    mechanisms have contributed to the genesis and com-

    plexity

    of

    organelles,

    molecular

    machines,

    and

    genome

    architecture. We review these mechanisms and suggest

    that

    a

    greater

    appreciation

    of

    the

    diversity

    in

    eukaryotic

    form has led to a more complete understanding of the

    evolutionary connections between organelles and the

    unexpected routes by which this diversity has been

    reached.

    Bringing

    together

    cell

    biology

    and

    evolutionary

    biologyThe emergence of the eukaryotic state nearly 2 billion

    years

    ago

    transformed

    life

    on

    Earth.

    Efforts

    to

    unravel

    the

    evolutionary

    mechanisms

    that

    have

    shaped,

    and

    con-

    tinue to shape, eukaryotic cells are beginning to address

    this

    monumental

    evolutionary

    shift.

    Understanding

    these

    mechanisms

    will

    help

    us

    to

    make

    conceptual

    connections

    between the cell biology of taxonomically diverse modern

    eukaryotes,

    porting

    knowledge

    derived

    in

    model

    systems

    to

    less

    studied

    organisms

    of

    agricultural

    (e.g.,

    crops,

    plant

    pathogens),

    environmental

    (e.g.,

    aquatic

    primary

    produ-

    cers like haptophytes and diatoms), or medical (e.g., para-

    sites

    such

    as

    Plasmodium

    falciparum, the

    causative

    agent

    of

    malaria)

    relevance.

    This

    broad

    comparative

    approach

    known as evolutionary cell biology (see Glossary) facili-tates

    the

    generation

    of

    hypotheses

    that

    attempt

    to

    explain

    the cell

    biological

    functions

    shared

    among

    the

    full

    range

    of

    eukaryotes.

    This approach has been applied successfully to many

    aspects

    of

    the

    eukaryotic

    cell

    (e.g.,

    [1]).

    The

    combination

    of

    ultrastructure

    and

    molecular

    cell

    biology

    with

    genomic

    data from a sampling of organisms spanning the taxonomic

    breadth of eukaryotes [2,3] (Figure 1) has provided awealth of knowledge regarding the evolution of eukaryotic

    cell

    biology

    and

    its

    diversity.

    From

    the

    perspective

    of

    a

    cell

    biologist,

    this

    wealth

    of

    data

    allows

    the

    integration

    of

    established evolutionary theory with the study of cellular

    mechanisms.

    Review

    Glossary

    Complexity: a measure of the number of components and interactions of one

    system relative to another equivalent system.

    Endosymbiosis (primary): the process whereby a prokaryotic cell (endosym-

    biont) is incorporated into the cytoplasm of a eukaryotic cell (host), with a

    relationship being established via metabolic integration and EGT such that

    neither partner can survive on its own.

    Endosymbiosis (secondary): the same process as primary endosymbiosis

    exceptthat theendosymbiont is a eukaryotic cell possessing a primary plastid.

    Theprocesscan be extendedto tertiary endosymbiosis (the endosymbiont is a

    cell possessing a secondary plastid) and serial secondary endosymbiosis (a

    lineage possessing one type of secondary plastid replaces its secondary

    plasmid with a secondary plastid of a different lineage).

    Endosymbiotic gene transfer (EGT): a special case of horizontal gene transfer

    (see below), whereby thegene in questionis acquired by thehost lineage from

    the genome of the endosymbiont.

    Evolutionary cell biology: an emerging discipline that incorporates compara-

    tive perspectives and techniques from cell biology, protistology, molecular

    evolution, and mathematical evolutionary theory to address questions of the

    origins and diversity of cells.

    First eukaryotic common ancestor (FECA): the cell (or population of cells)

    belonging to the lineage that gave rise to the modern line of eukaryotes at the

    earliest point at which it possessed cell biological features distinct from those

    in prokaryote-like cells. Although this organism is deduced to have existed, a

    useful way to treat the FECA is as a theoretical reconstruction with the traits

    defining it as an exciting open research question.

    Horizontal gene transfer: the acquisition of a gene by a genome from a source

    other than the immediate parental lineage.

    Last eukaryotic common ancestor (LECA): the cell (or population of cells)

    belonging to the lineage that gave rise to the modern line of eukaryotes at the

    latest point at which the various descendent lineages diverged to leave the

    extant eukaryotic lineages. Again, this concept is most useful as a theoretical

    reconstruction or reference point to assess the antiquity of var ious cell

    biological features.

    Monophyletic: a group is considered monophyletic when it encompasses all

    descendants of a single ancestor.

    Paraphyletic:a group is considered paraphyletic when it encompasses some,

    but not all, descendants of a single ancestor.

    Paralog: genes that are the result of a gene duplication process.

    Selection: the process by which a factor (including the presence of another

    organism) presents a circumstance that results in the preferential death of

    some organisms in the environment over others.

    0962-8924/$ see front matter

    2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tcb.2014.02.003

    Corresponding author: Dacks, J.B. ([email protected]).

    Keywords: constructive neutral evolution; endosymbiosis; evolutionary cell biology;

    organelle paralogy hypothesis; protocoatomer; transfer-window hypothesis.

    Trends in Cell Biology, July 2014, Vol. 24, No. 7 435

    http://dx.doi.org/10.1016/j.tcb.2014.02.003mailto:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.tcb.2014.02.003&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.tcb.2014.02.003&domain=pdfhttp://dx.doi.org/10.1016/j.tcb.2014.02.003
  • 8/11/2019 Evolutin of Eukaryotes (1)

    2/8

  • 8/11/2019 Evolutin of Eukaryotes (1)

    3/8

    (Figure 2A). Recent cell biological and genomic studies of

    these organismshave revealed much about the mechanism

    of endosymbiosis.

    Indeed,

    one

    reason

    why

    endosymbiosis

    is

    better understood than autogenous mechanisms of organ-

    elle

    acquisition

    is

    the

    wealth

    of

    endosymbiotic

    intermedi-

    ates available for study (e.g., [16]).Recent and independent

    occurrences

    of

    endosymbiosis

    have

    revealed

    the

    earliest

    stages

    of

    the

    process,

    including

    several

    examples

    of

    prima-

    ry (e.g., Paulinella) and secondary (e.g., Hatena) plastid-

    derived

    organelles

    as

    well

    as

    transiently

    acquired

    plastids

    termed kleptoplasts

    [16]. Other

    examples

    of

    where

    the

    hostand symbiont are at the beginning of their integration

    include

    dinotoms,

    algae

    wherein

    the

    host

    lineage

    is

    a

    dinoflagellate that possesses a minimally reduced diatom

    endosymbiont.

    Recent

    work

    has

    begun

    to

    uncover

    the

    extent and nature of their organellar and metabolic inte-

    gration [17]. Genome

    sequencing

    of

    organisms

    such

    as

    the

    cryptophyte

    and

    chlorarachniophyte

    algae,

    whose

    photo-

    synthetic organelle contains both a secondary plastid ge-

    nome

    and

    the

    remnant

    of

    the

    red

    or

    green

    algal

    nuclear

    genome

    (nucleomorph)

    and

    cytoplasm

    [18], have

    also

    allowed examination of genome reduction and cellular

    integration

    in endosymbiosis

    (Box 2). Because

    photosyn-

    thesis

    has

    been

    gained,

    stolen

    and

    co-opted

    throughout

    the

    history of eukaryotes, the acquisition of plastids has been a

    particularly

    useful

    model

    for

    understanding

    the

    early

    stages

    of

    endosymbiosis.

    However,

    a

    rare

    example

    of

    a

    potential

    secondary

    mitochondrial

    endosymbiont

    has

    re-

    cently been described by genomic methods [19]. The fish

    pathogen

    Neoparamoeba

    contains

    what

    appears

    to

    be

    an

    intracellular

    symbiont

    related

    to Ichthyobodo necator, a

    kinetoplastid. Although the atypical mitochondrion of this

    symbiont

    occupies

    nearly

    half

    of

    its

    cytoplasmic

    volume,

    the

    extent

    to

    which

    the

    endosymbiont

    has

    progressed

    to

    become an organelle is unclear. The nuclear genome of the

    symbiont

    does

    not

    appear

    to

    have

    undergone

    extensive

    reduction comparedwith that of otherkinetoplastids.All of

    these examples help focus the question of how reduced an

    endosymbiont

    has

    to

    be

    for

    it

    to

    be

    considered

    an

    organelle

    and

    no

    longer

    an

    organism.

    At the other extreme of endosymbiotic integration exist

    organelles

    apparently

    reduced

    from

    the

    canonical

    eukary-

    otic

    state,

    such

    as

    the

    non-photosynthetic

    apicoplasts

    of

    apicomplexans [16] and the hydrogenosomes and mito-

    somes,

    some

    of which

    no

    longer

    possess

    organellar

    gen-

    omes.

    Initially

    these

    latter

    organelles

    were

    seen

    as

    distinct

    classes;

    however,

    recent

    studies

    have

    clearly

    established

    them as derivatives of mitochondria and found various

    intermediates

    possessing

    aerobic

    or

    anaerobic

    metabo-

    lisms

    and

    different

    genomic

    organizations

    (e.g.,

    [20]).

    The range of genomic and cytoplasmic minimalization

    found

    for

    endosymbiotically

    derived

    organelles

    raises

    the

    question

    of

    what

    mechanism

    determines

    and

    limits

    the

    extent of this reductive trend in any given lineage. The

    passage

    of

    time

    cannot

    explain

    this

    reduction

    because

    a

    wide

    range

    of

    reduction

    is

    observed

    in

    organelles

    clearly

    derived

    from

    the

    same

    founding

    event

    (e.g.,

    the

    mitochon-

    drion). However, it was proposed that because the main

    Box 1. Eukaryotic diversity

    Eukaryotic diversity (Figure 1B inmain text) is currently divided into

    six large taxonomic groupings, or supergroups [2]. The Opistho-

    konta encompasses the lineages of animals and fungi, as well as

    their single-celled relatives. The Amoebozoa houses a diversity of

    amoeboid lineages with, and without, flagellated stages. It includes

    the pathogens Balamuthia, Acanthamoeba, and, most famously,

    Entamoeba histolytica, the causative agent of amoebic dysentery.

    The Opisthokonta and Amoebozoa

    are united in large-scalemolecular phylogenetic analyses and thought to represent a

    monophyletic grouping, named the Amorphea [2]. The Archae-

    plastida incorporates the lineages

    of red

    algae, green algae

    (including land plants), and the glaucophytes, which are derived

    from a single founding primary-endosymbiotic event. The SAR

    clade unites the seemingly disparate lineages of stramenopiles

    (diatoms, brown algae, and the causative agent of the Irish Potato

    Famine, Phythophthora) and alveolates (ciliates like Paramecium,

    the dinoflagellates that cause red tides, and apicomplexans such as

    Plasmodium, which causes malaria). The supergroup Excavata

    includes important disease-causing agents such as Trypanosoma,

    Leishmania, Giardia, and Trichomonas, as well as their free-living,

    or nonpathogenic, relatives. Finally, the CCTH supergroup currently

    contains the lineagesof cryptophytes, centrohelids, telonemids, and

    haptophytes; however, the most recent large-scale molecular-

    evolutionary analyses have cast doubt on the unity of these in asingle group [3] and the CCTH should be treated as tentative at best.

    Box 2. Endosymbiosis

    The types of endosymbiosis are classified based on thenature of the

    host and of the endosymbiont. The simplest form, or primary

    endosymbiosis, involves a eukaryotic host and a bacterial endo-

    symbiont (Figure 2A in main text). Two such primary events have

    been transformative in the history of eukaryotes and involved the

    incorporation of an a-proteobacterium and a cyanobacterium to

    give rise to mitochondrion- and plastid-derived organelles, respec-

    tively. Both events are known to have occurred early in eukaryotichistory, with the mitochondrial event now convincingly shown to

    have predated the LECA [20]. A primary plastid endosymbiosis is

    very likely to have occurred at the base of the Archaeplastida

    lineage, conferring photosynthetic capacity and giving rise to all red

    and green algae and land plants. The photosynthetic ability was

    clearly advantageous, as it spawned the subsequent evolution of

    complex plastids [16] through secondary and tertiary endosym-

    bioses (Figure 2A in main text).

    As a mechanism, the process of endosymbiosis can be divided

    into initiation and integration. Initiation may stem from various

    possible microbial associations, including mutualistic exchange of

    metabolites, intracellular invasion of the host by a parasite, or

    predatory ingestion of an eventual endosymbiont by a phagotroph.

    After initiation, the success of the resulting chimera depends on the

    ability to synchronize the cell growth and division cycles of the host

    and endosymbiont. In all cases, gradual transfer of genetic materialfrom the endosymbiont genome to the host genome promotes this

    synchronization (Figure 2B in main text). This ratchet-like mechan-

    ism of EGT drives the establishment of an obligate relationship

    between the endosymbiont and i ts

    host. Af ter acquir ing an

    endosymbiont, the organism has two genomes, one in the nucleus

    and one in the endosymbiont (Figure 2B, i inmain text). Whether by

    lysis or by improper fission and fusion events of the endosymbiont

    during replication, endosymbiont DNA released into the cytoplasm

    can be integrated into the host genome (Figure 2B, ii in main text).

    With an endosymbiont gene now encoded and expressed by the

    host, it must be successfully retargeted to the endosymbiont

    (Figure 2B, ii i in main text). When this occurs, the endosymbiont

    copy is redundant and sustains mutational decay, and the

    endosymbiont genome is reduced (Figure 2B, iv in main text). The

    directionality imposed by this

    transfer results in an iterative ratchet-

    like mechanism. The window of opportunity permitting EGT

    remains open until only a single endosymbiont genome remains

    (Figure 2B, v and vi in main text) [16,20].

    Loss of genes, coincident

    with loss of function, in the organism-to-organelle transition is also

    a major source of genome reduction [16,20].

    Review Trends in Cell Biology July 2014, Vol. 24, No. 7

    437

  • 8/11/2019 Evolutin of Eukaryotes (1)

    4/8

    Independent acvity Binding and presuppression Mutaon and dependence Ratchet-l ike increase in dependence

    Acvity A

    Factor A Factor A

    Factor B

    Acvity A

    Factor A

    Factor B

    Acvity A

    Factor A

    Factor B

    Acvity A

    (i)

    (i)

    (ii)

    (iii)

    (ii) (iii) (iv)

    x yz

    x yz

    x yz

    x yz

    x yz

    x yz

    (v)

    x

    x yz

    x yz

    (vi)

    x

    yz

    yz

    yz

    yz

    x zxy

    Endosymbiosis(A)

    (B)

    (C)

    (D)

    EGT and transfer window hypothesis

    Organelle paralogy hypothesis

    Construcve neutral evoluon

    Primary

    Secondary Terary

    (i) (ii) (iii)

    (i) (ii) (iii) (iv)

    TRENDS in Cell Biology

    Figure 2.

    Mechanisms of cellular evolution. (A) The variety of plastids arising from iterative acquisition of photosynthetic endosymbionts. (i) Primary endosymbiosis is

    established following engulfment of a cyanobacterium (green) by a eukaryotic host cell. A similar primary endosymbiotic process would also have produced the

    mitochondrion from a proteobacterium. (ii) In secondary plastid endosymbiosis, a green or red algal cell is engulfed by a new host cell. (iii) This process is repeated intertiaryendosymbiosis.Althoughprimary, secondary, and tertiaryendosymbioses are conceptuallyinterconnected,they arenot consecutivesteps of a single colonization.

    (B) The steps of endosymbiotic gene transfer (EGT) from a newly acquired endosymbiont: lysis of the endosymbiont and (ii) transfer of the gene to the host nucleus; (iii)

    retargetingand (iv) endosymbiont-encodedgene loss; and (v) repetition until (vi) a single endosymbiontremains. (C) Theorganelle-paralogy hypothesis (OPH). (i) Different

    protein families interact cooperatively to specify organelle-defining properties such as tethering, docking, fission, or fusion. (ii) Specificity-encoding protein families evolve

    by geneduplicationanddivergence, as representedby this hypothetical phylogeny. (iii) Increases in the complexity of specificity-encoding protein familiesaremirroredby

    increases in the complexity of themembrane-traffickingsystem. Paralogsof the specificity-encoding protein family reside in andhavetheir effect on distinct compartments.

    Modified from [59].

    (D) A generalized outline of constructive neutral evolution (CNE). (i) Protein factor A possesses a given activity. (ii) Through random steric collisions, a

    stochastic interactionwith a separate factor B occurs that has little or no effect on the activity of factor A. (iii) A mutation (representedby a yellowstar) occurs in factor A

    that reduces itsactivity, but due to theinteraction of factorA with factorB, themutation is suppressed and theactivityof factorA ismaintained at near-original levels. This

    could be due to stabilization of thestructure of factorA, masking of itscharge or exposed hydrophobicresidues, or altered localization of factorA allowing better accessto

    its substrate. (iv) Subsequent mutationsof theoriginalfactor A, and compensatory mutations in the interacting factor B, further integrate factor B in the activity of factorA

    via a ratchet-like mechanism that may also lead to the recruitment of additional factors.

    Review Trends in Cell Biology July 2014, Vol. 24, No. 7

    438

  • 8/11/2019 Evolutin of Eukaryotes (1)

    5/8

    mechanism

    of

    DNA

    transfer

    to

    the

    host

    nucleus

    comes

    from

    lysed

    organelles,

    the

    rate

    of

    transfer

    is

    proportional

    to

    the

    copy

    number

    of

    the

    endosymbiont

    in

    the

    cell

    (Figure 2B).

    This idea became known as the transfer-window hypothe-

    sis

    [21], which

    implies

    that

    transfer

    cannot

    continue

    once

    the

    number

    of

    organelles

    has

    reached

    a

    single

    copy.

    Indeed,

    experimental [22] and comparative [23] genomic analyses

    revealed

    far

    fewer

    transfers

    from

    plastids

    to

    nuclear

    gen-omes in organisms possessing a low plastid copy number.

    In addition,

    the

    nuclear

    genomes

    of

    a

    cryptophyte

    and

    of

    a

    chlorarachniophyte

    alga,

    each

    possessing

    a

    single

    nucleo-

    morph, have been sequenced and were reported in 2012

    [24].

    These

    findings

    revealed

    a

    complete

    lack

    of

    recent

    DNA

    transfer from either the plastid or the nucleomorph ge-

    nome

    despite

    evidence

    of

    transfer

    from

    mitochondria,

    which

    is

    consistent

    with

    a

    reduction

    to

    a

    single

    organelle

    that is responsible for halting endosymbiotic gene transfer

    (EGT)

    and

    hence

    organelle

    reduction.

    Endosymbiosis

    has

    repeatedly

    allowed

    for

    increased

    overall complexity in eukaryotic cells compared with their

    pre-merged

    state.

    Ironically,

    because

    the

    cell

    is

    at

    its

    most

    complex state immediately after endosymbiosis begins,with

    integration

    progressing

    principally

    via

    EGT

    or

    gene

    loss, the process of endosymbiosis actually involves

    decreases

    in

    complexity.

    Autogenous (non-endosymbiotic) organelles

    Although

    endosymbiosis

    has

    undoubtedly

    been

    a

    powerful

    force

    in

    building

    some

    aspects

    of

    eukaryotic

    cellular

    com-

    plexity, it does not explain them all.A simpler, alternative

    explanation

    for

    the

    origin

    of

    organelles

    delimited

    by

    a

    single

    lipid

    bilayer

    and

    devoid

    of

    genetic

    material

    is

    that

    they are autogenous. The organelles most commonly

    proposed

    to

    have

    an

    autogenous

    origin

    are

    those

    of

    the

    membrane-trafficking

    system,

    including

    the

    endoplasmicreticulum

    (ER),

    Golgi

    apparatus,

    endosomes,

    and

    plasma

    membrane [25]. Although these endomembrane organelles

    are

    dynamically

    connected

    to

    one

    another,

    they

    are

    main-

    tained

    as

    distinct

    compartments

    through

    the

    action

    of

    membrane trafficking machineries such as Rabs, SNAREs,

    coatomer,

    and

    adaptin

    (AP)

    complexes

    [26]. These

    speci-

    ficity-encoding

    protein

    families

    have

    different

    members

    that perform the same function (e.g., inducing membrane

    curvature

    or

    facilitating

    membrane

    fusion)

    at

    distinct

    locations within the membrane-trafficking system [26].

    Although each protein family could play an individual role,

    part of the information encoding specificity in membrane

    trafficking

    appears

    to

    result

    from

    combinatorial

    protein

    protein

    interactions

    between

    members

    of

    the

    different

    families [27]. Comparative genomic and phylogenetic anal-

    yses

    of

    these

    various

    protein

    families

    have

    revealed

    details

    of

    their

    primary

    diversification

    by

    gene

    duplication

    (e.g.,

    [1]). Surprisingly, theduplications giving rise toparalogs of

    the

    various

    specificity-encoding

    proteins

    associated

    with

    each

    cellular

    location

    occurred

    before

    the

    LECA.

    However,

    examination of the endocytic paralogs of the SNARE, Rab,

    and

    AP

    families

    revealed

    a

    pattern

    whereby

    some

    organ-

    elle-specific

    paralogs

    had

    not

    duplicated

    before

    the

    LECA,

    with

    parallel

    duplications

    occurring

    instead

    in

    lineages

    after the LECA [28]. These patterns provide an under-

    standing

    of

    the

    timing

    of

    these

    events

    and

    suggest

    a

    possible

    mechanism

    underpinning

    them,

    which

    is

    formal-

    ized

    in

    the

    organelle-paralogy

    hypothesis

    (OPH)

    [28,29].

    The

    OPH

    (Figure 2C) proposes

    that

    a

    set

    of

    specificity-

    encoding proteins with complementary functions that de-

    fine organelle

    properties

    produce

    sets

    of

    interacting

    para-

    logs

    by

    undergoing

    duplications.

    Through

    coevolution,

    these sets of specificity-encoding proteins accumulate

    mutations

    that

    fix

    their

    specific

    functional

    binding,

    thusdefining separate organelles [30]. Iterations of this process

    could

    therefore

    account

    for

    the

    array

    of

    organelles

    in

    the

    endomembrane

    systems

    of

    extant

    eukaryotes

    that

    arose

    via differentiation from an original prototypical internal

    compartment

    in

    the

    FECA.

    Recently, the OPH has been tested by computer simu-

    lation.

    Mathematical

    modeling

    of

    specificity-encoding

    genes

    in

    populations

    of

    vesicles

    showed

    that

    gene

    duplica-

    tion and differential interactions between paralogs pro-

    duced

    novel

    vesicular

    compartments

    [31]. The

    OPH

    further

    predicts

    that

    the

    order

    of

    evolutionary

    emergence

    for

    each

    member of a specificity-encoding protein family should

    correspond

    to

    the

    order

    of

    emergence

    of

    the

    different

    organelles they define and on which they have effect.Two

    recent

    studies

    have

    reported

    phylogenetic

    resolution

    for important specificity-encoding protein families, thereby

    allowing

    hypotheses

    to

    be

    proposed

    based

    on

    empirical

    evidence

    regarding

    an

    order

    of

    evolutionary

    emergence

    beyond the establishment of extensive complexity in mem-

    brane

    trafficking

    in

    the

    LECA.

    AP

    complexes

    aid

    in sorting

    the

    vesicular

    traffic

    between

    organelles

    found

    between

    and

    including the plasma membrane and the trans-Golgi net-

    work

    [32,33]. Comparative

    genomic

    and

    phylogenetic

    anal-

    ysis

    resolved

    the

    order

    of

    emergence

    of

    the

    members

    of

    the

    AP complex family, withAP3 andAP5 first diverging from

    the

    remaining

    AP

    complexes,

    followed

    by AP4

    and

    AP1/2

    [32]. Based

    on

    their

    known

    locations

    of

    action,

    this

    ordersuggests

    that

    adaptins

    first

    acted

    at

    an

    organellar

    inter-

    face between the secretory system and the phagocytic

    system,

    before

    the

    establishment

    of the

    trans-Golgi

    net-

    work.

    In

    addition,

    recent

    evidence

    provides

    clues

    to

    the

    conservation among the Rab family of GTPases, which are

    molecular

    switches

    involved

    in

    specifying

    organelle

    iden-

    tity

    in

    the

    membrane-trafficking

    system

    [34]. Although

    it

    is

    well established that Rab GTPases are ancient and that

    the

    LECA

    possessed

    a

    large

    complement

    of

    such

    proteins

    [35], the extent to which Rab families are conserved

    remained unknown. Rigorous homology searching resulted

    in the expansion of the Rab complement in LECA to 15

    subfamilies

    [36]. However,

    robust

    phylogenetic

    resolution

    between

    the

    paralogs

    of

    the

    Rab

    gene

    families

    increased

    the estimated number of Rab subfamilies in the LECA to

    between

    19

    and

    23

    [37]. Surprisingly,

    this

    analysis

    also

    revealed

    two

    ancient

    sets

    of

    Rabs,

    one

    inferred

    to

    be

    involved in exocytosis and one predominantly in endocyto-

    sis,

    potentially

    reflecting

    the

    earliest

    establishment

    of

    these

    pathways.

    As

    improved

    comparative

    and

    phyloge-

    netic methods are applied to other trafficking families, it

    will

    be

    important

    to

    compare

    the

    evolutionary

    patterns

    that

    emerge

    and

    to

    delve

    further

    into

    events

    pre-LECA.

    Although the OPH is a

    mechanism for evolving

    in-

    creased compartment number and specialization within

    an organellar system,

    it is currently limited

    to

    the

    Review Trends in Cell Biology July 2014, Vol. 24, No. 7

    439

  • 8/11/2019 Evolutin of Eukaryotes (1)

    6/8

    membrane-trafficking

    system.

    However,

    an

    idea

    thatcom-

    plements

    theOPH is theprotocoatomer hypothesis,which

    proposes,

    based

    on

    protein-structural evidence,

    that ho-

    mology exists between the membrane deformation com-

    ponents

    of

    vesicular trafficking

    and the nuclear pore [38].

    Specifically, proteins

    integrated

    into

    the COP I,

    COP II,

    clathrin, and nuclear pore complexes share a structure of

    b-propellers

    followed bya-solenoid

    domains.

    These pro-teins are suggested to be homologous and therefore de-

    rived from

    a

    single ancestral protocoatomer protein

    [39].

    Recent

    analyses

    have also

    firmly established relation-

    ships between protocoatomer-derived proteins of the

    intraflagellar complex [40].

    These proteins,

    which are

    dispersed throughout the cell and essential for organ-

    elle-specific functions, appear to

    have

    expanded

    along

    with their organelles

    via the process

    described in the

    OPH. Therefore, the overlap between the two hypotheses

    extends

    themechanism

    of

    autogenousorganelleevolution

    to

    potentially

    all organelles

    for

    whicha

    non-endosymbiotic

    origin appears likely.

    Examples

    exist

    of

    organelles

    whose

    origins

    blur

    the

    divisions of autogenous and endosymbiotic organellar evo-lution.

    The

    origin

    of

    the

    peroxisome

    has

    been

    contentiously

    explained by both mechanisms. Although the evidence,

    both

    functionally

    [41]

    and

    evolutionarily

    [42], strongly

    favors

    an

    autogenous

    origin

    for

    peroxisomes,

    there

    have

    undoubtedly been, and continue to be, molecular and

    functional

    interactions

    between

    peroxisomes

    and

    orga-

    nelles

    of

    endosymbiotic

    origin,

    notably

    the

    mitochondrion

    [43]. Many proteins that localize to the peroxisome are

    encoded

    by

    genes

    of

    bacterial

    origin

    and

    function

    in

    meta-

    bolic

    processes

    shared

    with

    mitochondria

    (e.g.,

    fatty-acid

    oxidation). Determining how endosymbiotic organelles

    have

    become

    integrated

    within

    the

    cell

    and

    interact

    with

    non-endosymbiotically

    derived

    systems

    is

    an

    emergingarea

    of

    investigation

    for

    cell

    biology

    and

    evolutionary

    cell

    biology. Work in the past few years has uncovered several

    protein

    complexes

    mediating

    protein,

    lipid,

    and

    ion

    trans-

    port

    between

    the

    ER

    and

    mitochondria

    [44]

    and

    it

    was

    recently shown that protein complexes bridging the ER

    and

    mitochondria

    in

    fungi

    are

    more

    widely

    present

    in

    eukaryotes

    than

    previously

    suspected

    [45,46].

    Constructive neutral evolution (CNE)

    Evolutionary processes are not limited to the organellar

    level. Individual cellular machines in the eukaryote (e.g.,

    ribosomes, proteasomes) also show increased complexity

    over

    their

    prokaryotic

    counterparts.

    In

    some

    cases,

    this

    increased

    complexity

    could

    result

    in

    new

    functions,

    pro-

    viding a selective advantage to the eukaryotic cell. How-

    ever,

    the

    role

    of

    selection

    as

    the

    only

    driver

    in

    the

    evolution

    of

    complexity

    is

    increasingly

    being

    questioned.

    The theory of CNE [47] posits that many biological

    phenomena

    can

    arise,

    or

    be

    elaborated

    on,

    by

    neutral

    evolutionary

    processes

    that

    promote

    increased

    complexity

    without additional functionality [48]. CNE is predicated on

    an idea

    of

    presuppression

    (Figure 2D); that

    is,

    interactions

    between

    factors

    that

    are

    the

    initial

    result

    of

    random

    colli-

    sions

    or

    cytosolic

    overcrowding

    and

    that

    minimally

    affect

    function [49] may become stabilized due to random muta-

    tion

    in

    a

    factors

    partner

    or

    in

    both

    factors.

    On

    their

    own,

    these

    mutations

    may be slightly deleterious for

    the origi-

    nal function, but if binding of

    the partner

    restores

    func-

    tionality, the

    interaction becomes

    fixed.

    Therefore,

    the

    mutation is not selective in the traditional sensebutneeds

    to

    be sufficiently compensatory

    to

    avoid negative

    selection

    and to

    allow the organism to

    survive.

    These mutations

    may be extremely rare; nevertheless, once established

    they result in

    a

    ratchet

    that promotes

    tighter bindingand, potentially, recruits other factors. These interactions

    could involve

    protein

    interactions with nearly any mole-

    cule

    or

    surface

    in the cell (e.g., diffusible small

    molecules,

    cellular membranes).

    Among

    these

    biological

    phenomena,

    the

    origin

    of

    the

    spliceosome has been proposed to require CNE [47,48].

    Comparative

    genomic

    studies

    of

    spliceosomal

    components

    have

    demonstrated

    that

    the

    spliceosome

    is

    a

    eukaryotic

    innovation that was present in its highly elaborate state

    before

    the

    LECA

    [50]. Comprising

    well

    over

    100

    different

    protein

    and

    RNA

    components,

    the

    spliceosome

    is

    a

    candi-

    date for one of the most complex cellular machines in

    existence.

    However,

    it

    has

    long

    been

    appreciated

    that

    the underlying essential process could have evolved froma

    simple

    self-splicing

    group

    II-class

    intron.

    Rather

    than

    being the result of selective forces, the spliceosome is best

    explained

    as

    a

    product

    of CNE

    whereby

    mutations

    in

    the

    self-splicing

    RNA

    molecule

    were

    suppressed

    through

    a

    pre-

    existing interaction with a RNA or RNA/protein complex

    [47,48]. As

    protein

    and

    RNA

    components

    accumulated

    over

    time,

    the

    basic

    function

    of

    splicing

    remained

    unaltered.

    A recently well elaborated example involving experi-

    mental

    testing

    of

    hypothesized

    CNE

    processes

    is

    the

    vacu-

    olar

    V0-ATPase ring of yeast [49,51]. Although the ancestor

    of the yeast V0-ATPase ring comprises two subunits, sev-

    eral

    yeasts

    require

    three

    subunits,

    with

    the

    third

    subunit

    resulting

    from

    an

    ancient

    gene

    duplication

    that

    was

    fol-lowed

    by

    gene

    suppression.

    To

    verify

    this

    sequence

    of

    events, investigators reconstructed the common ancestral

    gene

    of

    extant

    two-subunit

    rings

    and

    three-subunit

    rings

    and

    revealed

    specific

    suppressive

    interactions

    required

    to

    enforce the adoption of the three-subunit system [51].

    When

    suppression

    succeeds,

    the

    system,

    because

    of

    this

    dependency,

    is

    more

    complex;

    however,

    the

    net

    effect

    of

    the

    increased complexity remains neutral in that no altera-

    tions

    in

    the

    cells

    ability

    to

    produce

    the

    phenotype

    have

    occurred. Therefore, CNE allows the accumulation of

    greater complexity combined with a dilution of responsi-

    bility for maintaining a phenotype among multiple factors.

    Ironically,

    this

    dilution,

    via

    redundant

    functionality

    of

    components,

    would

    reduce

    the

    risk

    of

    negative

    selection

    on a single mutational target and, as such, the CNE

    mechanism

    itself

    may

    be

    under

    positive

    selective

    pressure

    [48].

    Concluding remarks

    The

    above

    overview

    was

    organized

    into

    processes

    acting

    at

    the level of the organelle or at the level of the underlying

    molecular

    complex,

    but

    such

    divisions

    are

    by no

    means

    absolute.

    Molecular

    machineries

    clearly

    cooperate

    to

    build

    and define

    organelles.

    At

    the

    same

    time,

    the

    compartmen-

    talization of specific molecular machineries within a given

    organelle

    limits

    the

    range

    of

    proteins

    with

    which

    these

    Review Trends in Cell Biology July 2014, Vol. 24, No. 7

    440

  • 8/11/2019 Evolutin of Eukaryotes (1)

    7/8

    molecular

    machines

    will

    frequently

    interact

    and

    thereby

    increases

    the

    opportunities

    for

    distinct

    environments

    that

    would

    lead

    to

    complexity

    via

    CNE

    mechanisms.

    At present, tremendous opportunities exist for the ad-

    vancement

    of

    evolutionary

    cell

    biology

    as

    a

    discipline.

    While

    the

    field

    brings

    evolutionary

    biology

    from

    the

    popu-

    lation and the large organism down to the scale of the cell,

    it

    also

    brings

    a

    comparative

    approach

    over

    species

    andspace to cell biologists focused on specific organisms or

    organelles.

    However,

    there

    is

    also

    a

    potential

    for

    miscon-

    ceptions.

    In

    many

    ways,

    the

    study

    of

    cell

    biology

    shares

    conceptual commonalities with the discipline of reverse

    engineering

    [52]. Cell

    biology

    is

    typically

    understood

    from

    a reductionist approach whereby the cell is disassembled,

    both

    conceptually

    and

    physically,

    into

    its

    components

    (proteins,

    organelles,

    and

    complexes)

    and

    then

    laid

    out,

    manipulated, andunderstood.Therefore, it isunsurprising

    that

    questions

    regarding

    evolutionary

    mechanisms

    that

    give

    rise

    to

    cells

    are

    sometimes

    misframed

    as

    a

    forward-

    engineering problem; that is, How did the cell find the

    most

    efficient

    way

    of

    performing

    process

    x?

    However,

    there is a fundamental difference between evolution andengineering.

    Evolution

    does

    not

    always

    proceed

    along

    an

    optimized path leading to the observed modern state.

    Viewing

    each

    trait

    as

    the

    result

    of

    an

    iterative

    and

    mechanistic,

    rather

    than

    teleological,

    process

    leading

    to

    these solutions changes the way investigations are under-

    taken

    and

    data

    are

    interpreted.

    Although

    it

    may

    remain

    useful

    to

    ask

    What

    is

    the

    selective

    advantage

    of

    a

    given

    trait?, knowing that the evolutionary path is not always

    direct

    and

    constant

    allows

    the

    investigator

    to

    consider

    multiple

    advantages

    and

    possibly

    entertain

    alternative

    explanations beyond selection. Therefore, it may be more

    productive

    to

    answer

    the

    how

    behind

    evolutionary

    cell

    biological

    questions

    and

    to

    reconstruct

    the

    steps

    and

    evo-lutionary

    details

    for

    the

    emergence

    of

    a

    given

    trait,

    thus

    deriving process from the patterns observed across multi-

    ple

    examples.

    Although

    significant

    progress

    has

    been

    made

    in devel-

    oping model cell-biological systems across eukaryotes (e.g.,

    Dictyostelium, Toxoplasma, Trypanosoma, Arabidopsis)

    and analyzing

    molecular

    evolution

    to

    deduce

    the

    origins

    ofprotein complexes and their resident organelles, yielding

    some of

    the

    discoveries

    described

    above,

    many

    areas

    re-

    main unexplored. For example, the consequences of popu-

    lation genetics have not been fully explored in the context

    of cellular evolution [53]. Similarly, although there have

    been

    attempts

    to

    correlate

    geology

    with

    cellular

    evolution

    [54], particularly

    regarding

    the

    origin

    of

    life

    [55], this

    aspect is often overlooked by cell biologists. Furthermore,

    the

    mechanisms

    of

    emergence

    of

    evolutionary

    innovations,

    such

    as

    organelle

    inheritance,

    that

    combine

    multiple,

    well

    adapted cellular components remains to be better eluci-

    dated

    [56]. Finally,

    as

    our

    understanding

    of

    systems

    biolo-

    gy

    matures

    and

    omic

    data

    types

    become

    increasingly

    available, we will be able to integrate information about

    the

    timing

    and

    context

    of

    genes

    and

    proteins

    into

    various

    models

    of

    cellular

    evolution

    [57].

    With tractable

    progress

    being

    made

    on

    concrete

    mecha-

    nistic questions, this is truly an exciting time as the biology

    of

    the

    cell

    can

    now

    be

    parsed

    in

    the

    light

    of

    evolution

    [58].

    Acknowledgments

    Theauthorsthankthe members of theDackslaboratory, aswell asW.Ford

    Doolittle andHolly Goodson, for critical comments on themanuscript and

    for discussion. J.B.D.and L.D.B. also thank thestaff at theBanff Centrefor

    the Arts for their generosity and

    hospitality during the flooding that

    occurred in Alberta in June 2013, at which time significant work on the

    writing of this manuscript took place. F.D.M. is the recipient of a Vanier

    Canada Graduate Scholarship from the Canadian Institutes of Health

    Research (CIHR) and a Full-Time Studentship from Alberta Innovates

    Health Solutions. L.D.B. was supported by a National Science andEngineering Council of Canada (NSERC) Undergraduate Student Re-

    search Award. J.B.D. is Canada Research Chair (Tier II) in Evolutionary

    CellBiology. Researchin theRachubinski laboratory is supported bygrants

    9208,15131, and 53326fromtheCIHR. Researchin theDacks laboratory is

    supported by a NSERC discovery grant and an Alberta Innovates

    Technology Futures New Investigator Award to J.B.D.

    References1 Koumandou, V.L.et al. (2013) Molecular paleontology and complexity

    in the last eukaryotic common ancestor.Crit. Rev. Biochem. Mol. Biol.

    48, 373396

    2 Adl, S.M. et al. (2012) The revised classification of eukaryotes. J.

    Eukaryot. Microbiol. 59, 429493

    3 Burki, F. et al. (2012) The evolutionary history of haptophytes and

    cryptophytes: phylogenomic evidence for separate origins. Proc. Biol.

    Sci. 279, 22462254

    4 Koonin, E. (2011) The Logic of Chance, FT Press

    5 McShea, D.W. (2002) A complexity drain on cells in the evolution of

    multicellularity. Evolution 56, 441452

    6 Williams, T.A.et al. (2013) An archaeal origin of eukaryotes supports

    only two primary domains of life. Nature 504, 231236

    7 Kelly, S. et al. (2010) Archaeal phylogenomics provides evidence in

    support of a methanogenic origin of the Archaea and a thaumarchaeal

    origin for the eukaryotes. Proc. Biol. Sci. 278, 10091018

    8 Schopf, J.W. (1999) Deep divisions in the Tree of Life what does the

    fossil record reveal? Biol. Bull. 196, 351353 discussion 354355

    9 Javaux, E.J. (2007) The early eukaryotic fossil record. Adv. Exp. Med.

    Biol. 607, 119

    10 Javaux, E.J. et al. (2010) Organic-walled microfossils in 3.2-billion-

    year-old shallow-marine siliciclastic deposits. Nature 463, 934938

    11 Walker, G. et al. (2011) Eukaryotic systematics: a users guide for cell

    biologists and parasitologists. Parasitology 138, 1638166312 Cavalier-Smith, T. (1975) The origin of nuclei and of eukaryotic cells.

    Nature 256, 463468

    13 De Duve, C. and Wattiaux, R. (1966) Functions of lysosomes. Annu.

    Rev. Physiol. 28, 435492

    14 Gray, M.W. and Doolittle, W.F. (1982) Has the endosymbiont

    hypothesis been proven? Microbiol. Rev. 46, 142

    15 Sagan, L. (1967) On the origin of mitosing cells. J. Theor. Biol. 14,

    255274

    16 Keeling, P.J. (2010) The endosymbiotic origin, diversification and fate

    of plastids. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 365, 729748

    17 Imanian, B. et al. (2012) Tertiary endosymbiosis in two dinotoms has

    generated little change in the mitochondrial genomes of their

    dinoflagellate hosts and diatom endosymbionts. PLoS ONE 7, e43763

    18 Moore, C.E. and Archibald, J.M. (2009)Nucleomorph genomes. Annu.

    Rev. Genet. 43, 251264

    19 Tanifuji, G. et al. (2011) Genomic characterization ofNeoparamoebapemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont.

    Eukaryot. Cell 10, 11431146

    20 Muller, M.et al. (2012) Biochemistry and evolution of anaerobicenergy

    metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444495

    21 Barbrook, A.C.et al. (2006)Why are plastid genomes retained in non-

    photosynthetic organisms? Trends Plant Sci. 11, 101108

    22 Lister, D.L. et al. (2003) DNA transfer from chloroplast to nucleus is

    much rarer in Chlamydomonas than in tobacco. Gene 316, 3338

    23 Smith, D.R. et al. (2011) Correlation between nuclear plastid DNA

    abundance and plastid number supports the limited transfer window

    hypothesis. Genome Biol. Evol. 3, 365371

    24 Curtis,B.A.et al. (2012) Algal genomes reveal evolutionarymosaicism

    and the fate of nucleomorphs.Nature 492, 5965

    25 de Duve, C. (2007) The origin of eukaryotes: a reappraisal. Nat. Rev.

    Genet. 8, 395403

    Review Trends in Cell Biology July 2014, Vol. 24, No. 7

    441

    http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0010http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0010http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0010http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0010http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0010http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0010http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0020http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0020http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0020http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0025http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0025http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0025http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0025http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0030http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0030http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0030http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0030http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0030http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0030http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0040http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0040http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0040http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0040http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0045http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0045http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0045http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0045http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0050http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0050http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0050http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0050http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0050http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0050http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0055http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0055http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0055http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0055http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0055http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0055http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0060http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0060http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0060http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0065http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0065http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0065http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0065http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0070http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0070http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0070http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0070http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0075http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0075http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0075http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0075http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0080http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0080http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0080http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0080http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0090http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0090http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0090http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0090http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0100http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0100http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0100http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0100http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0100http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0100http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0105http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0105http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0105http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0105http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0105http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0105http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0120http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0120http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0120http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0120http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0120http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0120http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0125http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0125http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0125http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0125http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0125http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0125http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0120http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0120http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0115http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0110http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0105http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0105http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0100http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0100http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0095http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0090http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0090http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0085http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0080http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0080http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0075http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0075http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0070http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0070http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0065http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0065http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0060http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0060http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0055http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0055http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0050http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0050http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0045http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0045http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0040http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0040http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0035http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0030http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0030http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0025http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0025http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0020http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0015http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0010http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0010http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0005
  • 8/11/2019 Evolutin of Eukaryotes (1)

    8/8

    26 Bonifacino, J.S. and Glick, B.S. (2004) The mechanisms of vesicle

    budding and fusion. Cell 116, 153166

    27 Cai, H.et al. (2007)Coats, tethers, Rabs, andSNAREswork together to

    mediate the intracellular destination of a transport vesicle. Dev. Cell

    12, 671682

    28 Dacks, J.B. et al. (2008) Phylogeny of endocytic components yields

    insight into the process of nonendosymbiotic organelle evolution. Proc.

    Natl. Acad. Sci. U.S.A. 105, 588593

    29 Dacks, J.B. and Field, M.C. (2007) Evolution of the eukaryotic

    membrane-trafficking system: origin, tempo and mode. J. Cell Sci.120, 29772985

    30 Dacks, J.B. et al. (2009) Evolution of specificity in the eukaryotic

    endomembrane system. Int. J. Biochem. Cell Biol. 41, 330340

    31 Ramadas, R. and Thattai, M. (2013) New organelles by gene

    duplication in a biophysical model of eukaryote endomembrane

    evolution. Biophys. J. 104, 25532563

    32 Hirst, J. et al. (2011) The fifth adaptor protein complex. PLoS Biol. 9,

    e1001170

    33 Hirst, J. et al. (2012) Adaptor protein complexes AP-4 and AP-5: new

    players in endosomal trafficking and progressive spastic paraplegia.

    Traffic 14, 153164

    34 Grosshans, B.L. et al. (2006) Rabs and their effectors: achieving

    specificity in membrane traffic. Proc. Natl. Acad. Sci. U.S.A. 103,

    1182111827

    35 Pereira-Leal, J.B. andSeabra, M.C. (2001)Evolution of theRab family

    of small GTP-binding proteins. J. Mol. Biol. 313, 88990136 Diekmann, Y. et al. (2011) Thousands of Rab GTPases for the cell

    biologist. PLoS Comput. Biol. 7, e1002217

    37 Elias, M. et al. (2012) Sculpting the endomembrane system in deep

    time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. 125,

    25002508

    38 Field, M.C.et al. (2011)Evolution: ona bender BARs,ESCRTs, COPs,

    and finally getting your coat. J. Cell Biol. 193, 963972

    39 Devos, D.et al. (2004) Components of coated vesicles and nuclear pore

    complexes share a commonmolecular architecture.PLoS Biol. 2, e380

    40 van Dam, T.J. et al. (2013) Evolution of modular intraflagellar

    transport from a coatomer-like progenitor. Proc. Natl. Acad. Sci.

    U.S.A. 110, 69436948

    41 Titorenko,V.I. andRachubinski, R.A. (2009) Spatiotemporaldynamics

    of the ER-derived peroxisomal endomembrane system. Int. Rev. Cell

    Mol. Biol. 272, 191244

    42 Schluter, A. et al. (2006) The evolutionary origin of peroxisomes: an

    ERperoxisome connection. Mol. Biol. Evol. 23, 838845

    43 Mohanty, A. andMcBride,H.M. (2013)Emergingroles ofmitochondria

    in the evolution, biogenesis, and function of peroxisomes. Front.

    Physiol. 4, 268

    44 Michel, A.H. and Kornmann, B. (2012) The ERMES complex and ER

    mitochondria connections. Biochem. Soc. Trans. 40, 445450

    45 Flinner, N. et al. (2013) Mdm10 is an ancient eukaryotic porin co-

    occurring with the ERMES complex. Biochim. Biophys. Acta 1833,

    3314332546 Wideman,

    J.G.

    et al. (2013) The ancient and widespread nature of

    the ERmitochondria encounter structure.Mol.Biol. Evol. 30, 2044

    2049

    47 Stoltzfus,A. (1999)On thepossibility of constructive neutral evolution.

    J. Mol. Evol. 49, 169181

    48 Lukes, J. et al. (2011) How a neutral evolutionary ratchet can build

    cellular complexity. IUBMB Life 63, 528537

    49 Doolittle, W.F. (2012) Evolutionary biology: a ratchet for protein

    complexity. Nature 481, 270271

    50 Koonin, E.V. (2009) Intron-dominated genomes of early ancestors of

    eukaryotes. J. Hered. 100, 618623

    51 Finnigan, G.C. et al. (2012) Evolution of increased complexity in a

    molecular machine. Nature 481, 360364

    52 Hartwell, L.H. et al. (1999) From molecular to modular cell biology.

    Nature 402, C47C52

    53 Lynch, M. (2012) The evolution of multimeric protein assemblages.Mol. Biol. Evol. 29, 13531366

    54 Cavalier-Smith, T. (2006) Cell evolution

    and Earth history: stasis

    and revolution.

    Philos. Trans.

    R. Soc. Lond. B: Biol.

    Sci. 361, 969

    1006

    55 Lane, N. and Martin, W.F. (2012) The origin of membrane

    bioenergetics. Cell 151, 14061416

    56 Mast, F.D. et al. (2012) Emergent complexity in myosin V-based

    organelle inheritance. Mol. Biol. Evol. 29, 975984

    57 Ryan, C.J. et al. (2012) Hierarchical modularity and the evolution of

    genetic interactomes across species. Mol. Cell 46, 691704

    58 Dobzhansky, T. (1973) Nothing in biology makes sense except in the

    light of evolution. Am. Biol. Teach. 35, 125129

    59 Schlacht,A. et al. (2014)Missingpieces of an ancient puzzle: evolution

    of the eukaryotic membrane-trafficking system. Cold Spring Harb.

    Perspect. Biol. http://dx.doi.org/10.1101/CSHPERSPECT.a01604

    Review Trends in Cell Biology July 2014, Vol. 24, No. 7

    442

    http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0130http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0130http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0130http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0130http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0145http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0145http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0145http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0145http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0150http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0150http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0150http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0150http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0150http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0150http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0155http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0155http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0155http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0155http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0155http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0160http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0160http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0160http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0160http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0160http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0160http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0175http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0175http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0175http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0175http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0180http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0180http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0180http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0180http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0180http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0180http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0190http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0190http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0190http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0190http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0190http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0190http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0195http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0195http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0195http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0195http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0195http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0195http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0205http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0205http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0205http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0205http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0205http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0210http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0210http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0210http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0210http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0210http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0210http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0215http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0215http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0215http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0215http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0215http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0220http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0220http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0220http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0220http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0235http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0235http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0235http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0240http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0240http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0240http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0240http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0240http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0240http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0245http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0245http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0245http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0245http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0250http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0250http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0250http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0250http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0255http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0255http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0255http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0255http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0255http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0255http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0260http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0260http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0260http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0260http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0260http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0265http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0265http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0265http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0275http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0275http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0275http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0275http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0280http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0280http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0280http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0280http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0280http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0280http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0285http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0285http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0285http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0285http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0285http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0285http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0290http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0290http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0290http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0290http://dx.doi.org/10.1101/CSHPERSPECT.a01604http://dx.doi.org/10.1101/CSHPERSPECT.a01604http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0290http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0290http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0285http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0285http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0280http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0280http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0275http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0275http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0270http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0265http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0265http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0260http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0260http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0255http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0255http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0250http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0250http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0245http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0245http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0240http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0240http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0235http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0235http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0230http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0225http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0220http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0220http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0215http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0215http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0215http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0210http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0210http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0205http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0205http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0205http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0200http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0195http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0195http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0190http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0190http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0185http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0180http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0180http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0175http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0175http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0170http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0165http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0160http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0160http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0155http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0155http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0155http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0150http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0150http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0145http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0145http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0145http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0140http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0135http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0130http://refhub.elsevier.com/S0962-8924(14)00032-4/sbref0130