55
Robert Pitz-Paal Everything You Always Wanted to Know About CSP * *But Were Afraid to Ask

Everything You Always Wanted to Know About CSP and Perspectives of... · 2017. 12. 8. · > Farrington Daniels Lecture 2017 > Robert Pitz -Paal • CSP Technology > 31.10.2017 . 1

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Robert Pitz-Paal

    Everything You Always Wanted to Know About CSP * *But Were Afraid to Ask

  • 1. Characteristics of CSP

    2. Market und Cost Development

    3. Benefits for a mix of PV und CSP

    4. Scientific Challenges in CSP Development

    • Shape Accuracy of Solar Concentrators • Controlling the Solar Flux Distribution • Stable and efficient Volumetric Receivers

    5. Conclusions

    Outline

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 2

  • 1. Characteristics of CSP

    2. Market und Cost Development

    3. Benefits for a mix of PV und CSP

    4. Scientific Challenges in CSP Development

    • Shape Accuracy of Solar Concentrators • Controlling the Solar Flux Distribution • Stable and efficient Volumetric Receivers

    5. Conclusions

    Outline

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 3

  • Thermal Storage vs. Electric Storage

    CSP with thermal storage and fossil back provides reliable dispatchble power at no additional cost

    2000 h

    +2000 h

    η >95 %

    η = 75%

    200 h

    Firm capacity

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 4

  • CSP only suitable in areas with high direct normal radiation > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 5

  • 1. Characteristics of CSP

    2. Market und Cost Development

    3. Benefits for a mix of PV und CSP

    4. Scientific Challenges in CSP Development

    • Shape Accuracy of Solar Concentrators • Controlling the Solar Flux Distribution • Stable and efficient volumetric receivers

    5. Conclusions

    Outline

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 6

  • Global expansion of CSP in three phases > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    1988 -1992 PhD

    DLR.de • Chart 7

  • Global expansion of CSP in three phases > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    Since 2003 More volumetric receivers in DLR

    DLR.de • Chart 8

  • Global expansion of CSP in three phases > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    1997 Sabbatical @ Sandia (US) TRNSYS STEC Library

    DLR.de • Chart 9

  • Global expansion of CSP in three phases > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    2003 DLR Head of Divison and Prof. @RWTH Aachen

    DLR.de • Chart 10

  • Global expansion of CSP in three phases > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    2006: 1,5 MW volumetric receiver demo plant planed with research & industry partners

    DLR.de • Chart 11

  • Global expansion of CSP in three phases > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    2008 QUARZ®: DLR Qualification Lab for Solar Components

    DLR.de • Chart 12

  • Global expansion of CSP in three phases > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    2011: Founding Director of new DLR Institute of Solar Research Transfer of Jülich Demo Plant to DLR as research platform

    DLR.de • Chart 13

  • Global expansion of CSP in three phases > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    2016: SynLight® Largest artificial sun for solar chemical fuel production

    DLR.de • Chart 14

  • Cost reduction over last 5 years at a learning rate of > 25%

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Lilliestam, J., Labordena, M., Patt, A. & Pfenninger, S. Nat. Energy 2, 17094 (2017).

    DLR.de • Chart 15

  • Cost for CSP and PV have dropped dramatically

    • Installed CSP capacity is more than an order of magnitude smaller than PV capacty

    Energy sales price PV

    Energy sales prices CSP

    2014

    2007

    2014

    Module price PV

    Dubai 2017 Chile 2016

    2016

    Australia 2017

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 16

  • More than 5000 full load hours

    Solar Electricity cheaper than power from gas! 700 MW @ 5500 h CSP á 7,3 $cents/kWh + 800 MW @ 2300 h PV a 3 $Cents/kWh

    = 5,95 $cents/kWh = 5,07 €cents/kWh for 24/7electricity

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

  • 1. Characteristics of CSP

    2. Market und Cost Development

    3. Benefits for a mix of PV und CSP

    4. Scientific Challenges in CSP Development

    • Shape Accuracy of Solar Concentrators • Controlling the Solar Flux Distribution • Stable and efficient Volumetric Receivers

    5. Conclusions

    Outline

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 18

  • 0

    1

    2

    3

    4

    5

    6

    [MW

    ]

    x 1

    00

    00

    Installed Capacity

    PumpBatteryCSP_SolarPV_SolarWindOtherHydro_NCREHydro_RORHydro_DamDieselLNGGeothermalBiomassCoal

    2029

    Social acceptance

    Energy demand

    Technological change in BESS

    Externality costs

    RE investment costs

    Fossil fuel costs

    CSP LCOE

    Scenario B High High Low High Low High USD 50 /MWh by 2025

    Chile Scenario Results – Expansion Model Scenario 1

    PV

    CSP

  • 0

    5

    10

    15

    20

    25

    [GW

    h]

    x 1

    00

    00

    Generation

    BatteryPumpDieselPV_SolarCSP_SolarWindHydro_RORHydro_NCREGeothermalOtherBiomassLNGHydro_DamCoal

    Chile Scenario Results – Expansion Model Scenario 1

    2029

    Social acceptance

    Energy demand

    Technological change in BESS

    Externality costs

    RE investment costs

    Fossil fuel costs

    CSP LCOE

    Scenario B High High Low High Low High USD 50 /MWh by 2025

    CSP PV

  • 0

    5000

    10000

    15000

    20000

    Pow

    er (M

    W)

    PV_SOLCSP_SOLLNG_CCGTLNG_GTWINDHYDRO_RORHYDRO_DAMGEODIECOGBIOCOAL

    Chile Szenario results: Short Term Simulation

    2035 summer week dispatch by technology

    CSP

    PV

  • 1. Characteristics of CSP

    2. Market und Cost Development

    3. Benefits for a mix of PV und CSP

    4. Scientific Challenges in CSP Development

    • Shape Accuracy of Solar Concentrators • Controlling the Solar Flux Distribution • Stable and efficient Volumetric Receivers

    5. Conclusions

    Outline

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 22

  • Introduction: Shape and Slope Deviations

    Deviations of the ideal shape of curved mirrors for CSP applications can have a significant impact on the optical efficiency and thus the performance of the power plant. Critical measure is slope deviation, not shape deviation: -> slope needs to be measured accurately, shape is only secondary

    Slide 23 www.dlr.de/enerMENA

  • Deflectometry: Measurement Principle

    Projector

    Camera

    Mirror

    Projection screen

    α α

    i

    n

    r

    Slide 24 www.dlr.de/enerMENA

  • Measurement Set-Up for Individual Mirror Panels

    Reflected horizontal and vertical stripe patterns

    Projected horizontal and vertical stripe patterns

    QDec set-up for horizontal and vertical measurement

    Slide 25 www.dlr.de/enerMENA

  • Example Result for ParabolicTrough Mirror Panel

    SDx = 2.5 mrad RMS value of slope deviation in curved direction

    SDy = 2.2 mrad RMS value of slope deviation in non-curved direction

    FDx = 9.5 mm RMS value of focus deviation

    Intercept = 96.8% Expected intercept considering sunshape and additional typical collector errors

    Slide 26 www.dlr.de/enerMENA

  • X

    Z

    camera

    dabs

    dcam

    ∆z

    ∆x

    reflector

    f

    nu

    nl

    ∆αu

    α1,u

    αu

    α1,l

    ∆αl

    αl

    TARMES (Trough Absorber Reflection Measurement System): Basic idea and set-up of measurement system

    Slide 27 www.dlr.de/enerMENA

  • Measurement: Turning of collector with camera at close distance (~17m)

    Slide 28 www.dlr.de/enerMENA

  • Evaluation

    • Correction of lens distortion

    • Image rectification

    • Image treatment

    • Edge detection

    • Input of geometrical set-up

    • Calculation of slope errors

    Slide 29 www.dlr.de/enerMENA

  • QFly – airborne prediction of the optical performance of parabolic trough collector fields

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    50 MW PTC solar field (Andasol I) QFly UAV

    DLR.de • Chart 30

  • 4. QFly - High Resolution Raw Data

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Individual unprocessed photos in 5 min. time lapse:

    DLR.de • Chart 31

  • 4. QFly - High Resolution Result: Mirror Shape Maps

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Raytracing software to determine intercept / optical performance

    Result: Absorber Position

    0 6 12 18 La

    tera

    l dev

    iatio

    n [m

    m]

    -20

    20

    0

    10

    -10

    -30

    30

    Module length [m]

    Accuracy RMS deviation ~1.5 mm

    SDx in mrad

    0

    5

    10

    -10

    -5

    Accuracy RMS 0.1 mrad Local ±1 mrad

    DLR.de • Chart 32

  • Gravity Load on Parabolic Trough Refectors

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    DLR.de • Chart 33

  • Photogrammetry to measure shape

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 34

  • Facet mounted in collector Simulation Measurement

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 35

  • DLR.de • Chart 36 > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Final quality inspection …

    400°C

  • 1. Characteristics of CSP

    2. Market und Cost Development

    3. Benefits for a mix of PV und CSP

    4. Scientific Challenges in CSP Development

    • Shape Accuracy of Solar Concentrators • Controlling the Solar Flux Distribution • Stable and efficient Volumetric Receivers

    5. Conclusions

    Outline

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 37

  • Controlling the Solar Flux Distribution

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    ?

    optical efficiency safe operation

    ? problem is complicated by • high degree of freedom • different size and shape of focal images • size and shape varying with time • tracking uncertainty

    DLR.de • Chart 38

  • 2. State of the Art Existing tools for central receiver systems:

    • Flux density distribution of central receiver systems with different approaches

    analytical, e.g. HflCal (Kierra, 1986), Helios (Biggs et al. 1976)

    raytracing, e.g. Mirval (Leary et al., 1979)

    • Flux density distribution of secondary concentrators

    e.g. SORSIM (Denk, 1992)

    • Receiver performance

    e.g. VOLREC (Hoffschmidt, 1997), VORECO (Buck, 2000)

    Aim point strategies for central receiver systems:

    • primarily operated to avoid deterioration of the receiver

    • increase of the receiver performance was not intended

    • more or less provisional

    • e.g. PHOEBUS-receiver system on CESA-1-Tower (Berenguel et al., 1999)

    Measured vs. simulated flux density distribution of a single heliostat:

    measured simulated with a statistical mirror error

    low conformity between reality and simulation

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 39

  • Measurement of Heliostat Slope using Deflectometry

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Automated deflectometry measurement system Jülich

    2014/15

    • automatic selection of single heliostats/groups • automatic measurement and data processing • performance: ~60sec./hel.

    DLR.de • Chart 40

  • Validation by Comparison of Ray Tracing Calculations to Flux Measurement Data

    Flux Measurement Simulation

    Slide 41 www.dlr.de/enerMENA

  • Optimization of Heliostat-Aim Point Assignment

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    continuous optimization: 𝑑𝑑𝑑𝑑𝑑𝑑 𝑆𝑆 = 2 ⋅ 𝑛𝑛𝐻𝐻 discrete optimization: 𝑆𝑆 = 𝑛𝑛𝑍𝑍𝑛𝑛𝐻𝐻 → Ant Colony Optimization Meta-Heuristic (ACO)*

    ? x

    y

    H1 H2 H3 H4 … HnH

    A1 11 12 13 14 … 1nH

    A2 21 22 23 24 … 2nH

    … … … … … … …

    AnZ nZ1 nZ2 nZ3 nZ4 … nZnH *Belhomme, B.et al. : Optimization of Heliostat Aim Point Selection for Central Receiver Systems Based on the Ant Colony Optimization Metaheuristic. Journal of Solar Energy Engineering, 2014. 136(1).

    Natural Role Model: •Ants excrete pheromone on their trails •Pheromone on the trails evaporates over the time •Ants chose their way randomly mixed with a kind of short visibility (myopic) •Ants are strongly attracted by pheromone

    DLR.de • Chart 42

  • Modulnummer horizontal

    Mod

    ulnu

    mm

    er v

    ertik

    al

    1 5 10 15 20 25 30 35 40 45

    1

    6

    12

    18

    24

    30

    36100kW

    300kW

    500kW

    700kW

    900kW

    1100kW

    Aim Point Optimization @ Solar Tower Jülich

    Reference Case: Operator‘s experience Power Output = 100%

    Intercept – Optimization Power Output 111.31 %

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 43

    Modulnummer horizontal

    Mod

    ulnu

    mm

    er v

    ertik

    al

    1 5 10 15 20 25 30 35 40 45

    1

    6

    12

    18

    24

    30

    36100kW

    300kW

    500kW

    700kW

    900kW

    1100kW

  • 1. Characteristics of CSP

    2. Market und Cost Development

    3. Benefits for a mix of PV und CSP

    4. Scientific Challenges in CSP Development

    • Shape Accuracy of Solar Concentrators • Controlling the Solar Flux Distribution • Stable and efficient volumetric receivers

    5. Conclusions

    Outline

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 44

  • > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Energy from the sun: Open volumetric solar receiver

    Sour

    ce: d

    lr.de

    Volumetric effect

    HiTRec-II SiSiC

    honeycomb

    DLR.de • Chart 45

  • What is the perfect absorber?

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Honeycomb

    Foam

    Wire mesh

    DLR.de • Chart 46

  • local hot spots → instable flow at

    • high temperatures • linear pressure drop characteristics • low thermal conductivity

    viscosity increases with increasing temperature

    hot zones are badly cooled

    Different Characteristics affecting Flow Stability

  • IR-Camera

    Heater

    HeaterPorousMonolith

    Cold air

    How can instable flow be visualized?

    by thermograph monitoring of the cooling of a heated porous monolith

    V=const.

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 48

  • cordierite honey comb

    SiC foam

    geometry/pressure loss characteristics influences flow stability

    heat conductivity influences flow stability

    v = const. v = 0 in hot channels

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 49

  • > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Optimizing the Absorber Design

    State-of-the-art Unit element

    Unit element

    Increase cellularity and porosity

    Unit element

    Decrease inlet radiative losses

    DLR.de • Chart 50

  • > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Optimizing the Absorber Design Numerical Simulation Innovative

    geometry

    Tair-out: 1149 K η = 90 %

    HiTRec-II

    Tair-out: 1012 K η = 72%

    Optimized design

    State of the arrt design

    DLR.de • Chart 51

  • > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Prototype sample production by 3D printing

    Cylindrical prototype test-sample: Ti6Al4V 3:1 scaled up geometry

    Front view Top view Bottom view

    DLR.de • Chart 52

  • > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017

    Experimental Validation of Prototype

    Thermal efficiency evaluation 20 kW solar simulator

    DLR.de • Chart 53

  • 1. Characteristics of CSP

    2. Market und Cost Development

    3. Benefits for a mix of PV und CSP

    4. Scientific Challenges in CSP Development

    • Shape Accuracy of Solar Concentrators • Controlling the Solar Flux Distribution • Stable and efficient volumetric receivers

    5. Conclusions

    Outline

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 54

  • • CSP troughs and towers with large thermal energy storage systems are commercial products today

    • In combination with PV, CSP is competitive to 24/7 power from natural gas under favorable conditions

    • Today we better understand how to measure, model and optimize • large solar fields of parabolic troughs and heliostats, • solar receivers and storage systems with different heat transfer fluid, • the impact of environmental effects like sunshape and aerosols to

    maximize the performance and lifetime of a CSP plant.

    • With 5 GW installed the technology is very young and significant further improvement is feasible

    • Major future challenges are related to integrate new power cycles that operate at elevated temperatures and require new heat transfer and storage fluids

    Conclusion

    > Farrington Daniels Lecture 2017 > Robert Pitz-Paal • CSP Technology > 31.10.2017 DLR.de • Chart 55

    Everything You Always Wanted to Know About CSP * *But Were Afraid to AskOutlineOutlineThermal Storage vs. Electric StorageCSP only suitable in areas with high direct normal radiation OutlineGlobal expansion of CSP in three phasesGlobal expansion of CSP in three phasesGlobal expansion of CSP in three phasesGlobal expansion of CSP in three phasesGlobal expansion of CSP in three phasesGlobal expansion of CSP in three phasesGlobal expansion of CSP in three phasesGlobal expansion of CSP in three phasesCost reduction over last 5 years �at a learning rate of > 25%Foliennummer 16Foliennummer 17OutlineFoliennummer 19Foliennummer 20Foliennummer 21OutlineFoliennummer 23Foliennummer 24Foliennummer 25Example Result for ParabolicTrough Mirror PanelTARMES (Trough Absorber Reflection Measurement System):�Basic idea and set-up of measurement systemMeasurement:�Turning of collector with camera at close distance (~17m)�EvaluationQFly – airborne prediction of the optical performance of parabolic trough collector fields 4. QFly - High Resolution�Raw Data4. QFly - High Resolution�Result: Mirror Shape Maps�Gravity Load on Parabolic Trough RefectorsPhotogrammetry to measure shape Facet mounted in collector�Simulation MeasurementFinal quality inspection … OutlineControlling the Solar Flux Distribution Foliennummer 39Measurement of Heliostat Slope using DeflectometryValidation by Comparison of Ray Tracing Calculations �to Flux Measurement DataOptimization of Heliostat-Aim Point AssignmentAim Point Optimization @ Solar Tower JülichOutlineFoliennummer 45What is the perfect absorber?Different Characteristics affecting Flow StabilityFoliennummer 48Foliennummer 49Foliennummer 50Foliennummer 51Foliennummer 52Foliennummer 53OutlineConclusion