35
Introduction Real Application Basic process Scaling Extensions Synthesis Event flows modeling Crimes are random processes Jean-Marc Vincent and Christine Plumejeaud MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email [email protected] ANR GEOMEDIA 1 / 25 Event flows modeling

Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email [email protected]

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Event flows modelingCrimes are random processes

Jean-Marc Vincent and Christine Plumejeaud

MESCAL-INRIA ProjectLaboratoire d’Informatique de Grenoble

email [email protected]

ANR GEOMEDIA

1 / 25Event flows modeling

Page 2: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Outline

1 Introduction

2 Real Application

3 Basic process

4 Scaling

5 Extensions

6 Synthesis

2 / 25Event flows modeling

Page 3: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Event flow model

Continuous time modeling : occurrence of events

traffic on a road, arrivals at a taxi station,

birth and death in demography

hit on web servers, messages on a link, phone calls

crimes, delinquency,...

...

Basic model of a 2 time scale system

Randomness due to complexity of the environmentSuperposition of many behaviors

{Nt}t∈R

Nt = number of events in [0, t[

3 / 25Event flows modeling

Page 4: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Event flow model

Continuous time modeling : occurrence of events

traffic on a road, arrivals at a taxi station,

birth and death in demography

hit on web servers, messages on a link, phone calls

crimes, delinquency,...

...

Basic model of a 2 time scale system

Randomness due to complexity of the environmentSuperposition of many behaviors

{Nt}t∈R

Nt = number of events in [0, t[

3 / 25Event flows modeling

Page 5: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Flow characteristics

Communication model : 2 counting processes- emission/reception process

Throughput

λ = limt→+∞

1

tNt .

Volume, StreamingLink capacity...

Latency

E(Tn+1 − Tn)

Response timeTime constraints

Jitter

Var(Tn+1 − Tn)

Variability of inter-arrivalsPeriodic behavior

Loss rates

Communication reliabilityPerturbed events

λemission − λreception

4 / 25Event flows modeling

Page 6: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Justice management

5 / 25Event flows modeling

Page 7: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Justice management(2)

6 / 25Event flows modeling

Page 8: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Justice management

7 / 25Event flows modeling

Page 9: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Justice management

8 / 25Event flows modeling

Page 10: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Counting process

time0

N_t

A typical trajectory

Counting automaton

0 n n+1λ λ λ

S_1 S_2 S_3 S_4

T_4

t=0

T_1 T_2 T_3 ..... Arrival time

1 2

time

9 / 25Event flows modeling

Page 11: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Macroscopic modeling

Definition (Macroscopic definition)

A continuous time stochastic process {Nt}t∈R+ is a counting Poisson processwith intensity λ iff

1 N0 = 0

2 {Nt}t∈R+ have independent increments

3 The number of events occurring in a time interval ]a, b] is Poisson distributedwith parameter λ(b − a);

P(Nb − Na = k) = e−λ(b−a) (λ(b − a))k

k!.

Properties

Increments are stationary : homogeneous in time

Linearity E(Nb − Na) = λ(b − a)

λ = intensity or throughput of the processnumber of events per unit of time

10 / 25Event flows modeling

Page 12: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Poisson distribution P(λ)

X random variable Poisson distributed with parameter λ

P(X = k) = e−λ λk

k!.

EX = λ; VarX = λ.

Poisson distribution with mean 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14

If X and Y are independent random variable Poisson distributed with mean λand µ then

X + Y ∼ P(λ+ µ).

11 / 25Event flows modeling

Page 13: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

InterpretationHigh number of individuals

emit signal with very small probability

N elements, each of them p = probability of signal emissionX total number of emissions: binomial distribution B(N, p).

EX = Npdef= λ mean number of emissions.

P(X = k) =

(Nk

)pk(1− p)N−k ;

=N(N − 1) · · · (N − k + 1)

N.N · · ·N︸ ︷︷ ︸→1

1

(1− λN

)k︸ ︷︷ ︸→1

λk

k!(1− λ

N)N︸ ︷︷ ︸

→e−λ

;

' e−λ λk

k!.

for very large N, X is asymptotically Poisson distributed

12 / 25Event flows modeling

Page 14: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Flow analysis

Traffic generated by a huge amount of individuals ⇒ Poisson process

requests arrival on a web server

arrivals of phone calls

routed packets in a network

cars on a road network

. . .

How to detect non-Poisson flows

Time dependence or correlation (burstyness, periodicity,. . . )

Mean < Variance : too much variability

smoothers of the traffic (peack avoidance strategies)

. . .

13 / 25Event flows modeling

Page 15: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Microscopic modeling

Definition

Microscopic definition A continuous time stochastic process {Nt}t∈R+ is acounting Poisson process with intensity λ iff

1 N0 = 0

2 {Nt}t∈R+ have independent and stationary increments

3 On a very small intervall ]t, t + dt] we have :

P(Nt+dt − Nt = 1) = λdt + o(dt)

P(Nt+dt − Nt = 0) = 1− λdt + o(dt)

P(Nt+dt − Nt > 2) = o(dt)

Properties

increments are stationary : homogeneous in time

E(Nb − Na) = λ(b − a)

λ = intensity or throughput of the processnumber of events per unit of time

14 / 25Event flows modeling

Page 16: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Differential system

pn(t) = P(Nt = n)

pn(t + dt) = P(Nt+dt = n)

= P(Nt+dt = n|Nt = n)P(Nt = n) nothing happens

+P(Nt+dt = n|Nt = n − 1)P(Nt = n − 1) one arrival

+P(Nt+dt = n|Nt < n − 1)P(Nt < n − 1) more than one arrival

independent increments

= P(Nt+dt − Nt = 0)pn(t) nothing happens

+P(Nt+dt − Nt = 1)pn−1(t) one arrival

+P(Nt+dt − Nt > 2)P(Nt < n − 1) more than one arrival

= (1− λdt + o(dt))pn(t) + (λdt + o(dt))pn−1(t) + o(dt)

= pn(t) + λ(pn−1(t)− pn(t))dt + o(dt)

recurrent differential equations

p′n(t) = λ(pn−1(t)− pn(t)), p0(t) = λp0(t)

which is solved by recurrence (put qn(t) = eλtpn(t)) pn(t) = e−λt (λt)n

n!

15 / 25Event flows modeling

Page 17: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Differential system

pn(t) = P(Nt = n)

pn(t + dt) = P(Nt+dt = n)

= P(Nt+dt = n|Nt = n)P(Nt = n) nothing happens

+P(Nt+dt = n|Nt = n − 1)P(Nt = n − 1) one arrival

+P(Nt+dt = n|Nt < n − 1)P(Nt < n − 1) more than one arrival

independent increments

= P(Nt+dt − Nt = 0)pn(t) nothing happens

+P(Nt+dt − Nt = 1)pn−1(t) one arrival

+P(Nt+dt − Nt > 2)P(Nt < n − 1) more than one arrival

= (1− λdt + o(dt))pn(t) + (λdt + o(dt))pn−1(t) + o(dt)

= pn(t) + λ(pn−1(t)− pn(t))dt + o(dt)

recurrent differential equations

p′n(t) = λ(pn−1(t)− pn(t)), p0(t) = λp0(t)

which is solved by recurrence (put qn(t) = eλtpn(t)) pn(t) = e−λt (λt)n

n!

15 / 25Event flows modeling

Page 18: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Interarrivals

Let t be a fixed time and let Tt be the time to the next arrival after time t.

P(Tt > s) = P(Nt+s − Nt = 0) = e−λs .

Tt is exponentially distributed with rate λThe inter-arrival process {An}n∈N is a sequence of independent exponentiallydistributed random variable with rate λ

16 / 25Event flows modeling

Page 19: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Exponential distribution

Density, rate λ :

f (x) = λe−λx

Cumulative distribution function

F (x) = 1− e−λx

Mean, Variance

EX =1

λ, VarX =

1

λ2

Hazard rate

h(x) = λ

Laplace transform

L(t) = Ee−tX =λ

t + λ

0 2 4 6 80

0.2

0.4

0.6

0.8

1

x

den

sity

Density of the exponential distribution

Memoryless property

P(X > t + s|X > t) = P(X > s)

17 / 25Event flows modeling

Page 20: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Equivalence of definitions

Theorem (Global vision)

Macroscopic, microscopic and independent exponentially distributedinter-arrivals are equivalent definitions of a Poisson process

Proof : classical books

18 / 25Event flows modeling

Page 21: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Maximum Entropy Process

Spread of Points

Let [a, b] an interval, knowing Nb − Na = n the n points are distributed as therearrangement of n points independents and uniformly distributed points on[a, b]

Theorem (Information Approach)

The Poisson process is the model of process with a fixed intensityand minimal ”a priori” information

19 / 25Event flows modeling

Page 22: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Maximum Entropy Process

Spread of Points

Let [a, b] an interval, knowing Nb − Na = n the n points are distributed as therearrangement of n points independents and uniformly distributed points on[a, b]

Theorem (Information Approach)

The Poisson process is the model of process with a fixed intensityand minimal ”a priori” information

19 / 25Event flows modeling

Page 23: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Scale Invariance

Theorem (Superposition)

Let {N1t } and {N2

t } be two independent Poisson processes then {(N1 + N2)t}is a Poisson process with rate λ1 + λ2

Theorem (Extraction)

Probabilistic thinning of a Poisson process is a Poisson process.

20 / 25Event flows modeling

Page 24: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Scale Invariance

Theorem (Superposition)

Let {N1t } and {N2

t } be two independent Poisson processes then {(N1 + N2)t}is a Poisson process with rate λ1 + λ2

Theorem (Extraction)

Probabilistic thinning of a Poisson process is a Poisson process.

20 / 25Event flows modeling

Page 25: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Poisson Clumping heuristic

Simulation of a birth and death process

5

10

15

20

25

30

0 200 400 600 800 1000 0

21 / 25Event flows modeling

Page 26: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Non-homogeneity

Definition (Macroscopic definition)

A continuous time stochastic process {Nt}t∈R+ is a non-homogeneous countingPoisson process with intensity λ(t) iff

1 N0 = 0

2 {Nt}t∈R+ have independent increments

3 The number of events occurring in a time interval ]a, b] is Poisson distributed

with parameter∫ ba λ(t)dt = Λ(b)− Λ(a);

P(Nb − Na = k) = e−(Λ(b)−Λ(a)) (Λ(b)− Λ(a))k

k!.

embedded periodicity

exceptional period

. . .

22 / 25Event flows modeling

Page 27: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Doubly Stochastic

Randomness on the intensity

{λt}t∈real+stationary process. Conditioned by λt , {Nt}t∈R+ is a Poisson process.

Markov-modulated Poisson process

System

several time scales

algebra by composition of automata

ON/OFF systems

. . .

23 / 25Event flows modeling

Page 28: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Doubly Stochastic

Randomness on the intensity

{λt}t∈real+stationary process. Conditioned by λt , {Nt}t∈R+ is a Poisson process.

Markov-modulated Poisson process

output

Environment

Input of the system

System

System

several time scales

algebra by composition of automata

ON/OFF systems

. . .

23 / 25Event flows modeling

Page 29: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Spatial Poisson Process

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"foo"

P(NA = k) = e−µ(A) µ(A)k

k!.

24 / 25Event flows modeling

Page 30: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Spatial Poisson Process

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"foo1"

P(NA = k) = e−µ(A) µ(A)k

k!.

24 / 25Event flows modeling

Page 31: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Spatial Poisson Process

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"foo2"

P(NA = k) = e−µ(A) µ(A)k

k!.

24 / 25Event flows modeling

Page 32: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Spatial Poisson Process

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"foo3"

P(NA = k) = e−µ(A) µ(A)k

k!.

24 / 25Event flows modeling

Page 33: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Spatial Poisson Process

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"foo4"

P(NA = k) = e−µ(A) µ(A)k

k!.

24 / 25Event flows modeling

Page 34: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Spatial Poisson Process

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

"foo5"

P(NA = k) = e−µ(A) µ(A)k

k!.

24 / 25Event flows modeling

Page 35: Event ows modeling - imagpolaris.imag.fr/arnaud.legrand/teaching/2013/RICM4_EP_Poisson.pdf · MESCAL-INRIA Project Laboratoire d’Informatique de Grenoble email Jean-Marc.Vincent@imag.fr

Introduction Real Application Basic process Scaling Extensions Synthesis

Synthesis

Base model

1 reference model ⇒ deviation

2 refinement ⇒ model extension

3 multi-scale analysis (algebra for superposition, composition,...)

4 statistical methods ⇒ Poisson regression

Geomedia questions

1 Are RSS flow relevant of Poisson models ?

2 Scales of homogeneity ?

3 Development of the algorithms ?

4 ..

25 / 25Event flows modeling