47
KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different Wire in Liquid 316 Stainless Steel MH250X Master of Science Thesis by Oscar Juneblad Division of Applied Process Metallurgy Department of Material Science and Engineering KTH Royal Institute of Technology Stockholm, Sweden 2015-06-26

Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

KTH - School of Industrial Engineering and Management

Evaluation of Ce Addition by Different Wire in Liquid 316 Stainless Steel

MH250X

Master of Science Thesis

by

Oscar Juneblad

Division of Applied Process Metallurgy

Department of Material Science and Engineering

KTH Royal Institute of Technology

Stockholm, Sweden

2015-06-26

Page 2: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 2  

Preface/Acknowledgments    The  following  work  has  been  carried  out  at  the  Department  of  Materials  Technology,  Royal  institute  of  Technology  (KTH)  from  February  to  July  2015.  This  master  thesis  work  is  part  of  “phase  1  –  JK24058”  in  a  long-­‐term  collaboration  between  KTH,  Ferrox  and  Sandvik  Materials  Technology  (SMT)  to  evaluate  the  possibility  of  enabling  alloying  with  REM  in  the  Cu-­‐mold  in  the  Continuous  casting  machine.    

Professor  Andrey  Karasev  have  been  the  supervisor,  along  with  Pär  Jönsson,  Bo  Rågberg  (SMT)  and  Olle  Sundqvist  (SMT)  as  co-­‐supervisors.  

I  would  like  to  thank  Andrey  Karasev  for  interesting  discussions  and  helping  out  with  the  lab-­‐scale  experiments  and  SEM  examination.  Furthermore  I  would  like  to  thank  Pär  Jönsson  for  introducing  me  to  this  topic  as  well  as  for  the  support  on  the  way.  Also  I  would  like  to  thank  Olle  and  Bo  from  SMT  for  willingly  sharing  their  precious  time  to  answer  questions  and  inviting  me  up  to  Sandviken  for  a  personal  field  trip.  Lastly,  I  would  like  to  thank  my  family  who  has  supported  me  throughout  the  entire  process.  I  will  be  forever  grateful.  

 

Page 3: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

3  

Abstract  It  is  well  known  that  REMs  are  strong  oxide  and  sulphide  formers  that  can  easily  form  large  clusters  which  have  harmful  effect  on  the  casting  process  as  well  as  the  quality  of  the  final  steel  product.  By  adding  these  elements  right  before  casting,  the  number  of  narrow  transfer  parts  are  eliminated  (compared  to  if  added  in  ladle)  Also,  the  REM-­‐inclusions  has  less  time  to  sinter  together  to  form  large  clusters,  preventing  clogging.  

The  general  idea  behind  this  alloying  method  in  the  continuous  casting  machine  is  to  feed  a  wire  of  FeSiRE  powder  blend,  coated  with  a  metal  strip,  into  the  melt  in  the  chilled  Cu-­‐mold  (CC-­‐mold)  Adding  REMs  to  the  steel,  in  particular  Ce,  can  increase  the  resistance  to  oxidation  at  high  temperatures  by  improving  the  properties  of  the  chromia  layer.  This  is  of  big  interest  for  SANDVIK  as  it  can  improve  their  corrosion  resistant  grades  and  may  also,  in  the  future,  enable  alloying  in  with  other  volatile  elements  such  as  Zr.  

This  master  thesis  has  the  objective  to  find  out  the  dissolution  time  of  the  wire,  coated  with  three  different  metal-­‐strips;  Steel,  Cu  and  Al.  The  experiments  were  performed  with  steel  grade  316L,  provided  by  SMT,  in  a  2kg  melt  in  a  lab-­‐scaled  induction  furnace  at  1500oC,  1510oC  and  1530oC.  The  operations  were  performed  both  with  and  without  FeSiRE-­‐powder  inside.  The  results  obtained  with  powder  inside  at  1500oC  showed  that  the  Al-­‐wire  experienced  the  shortest  dissolution  time  (  0,5  to  1s)  followed  by  Cu  (≤10s)  and  Steel  (18  to  20s).  In  addition  to  this,  sampling  procedures  was  implemented  (-­‐1,  1,  3,  5  10  and  29mins  after  wire  addition)  in  a  depth  of  40mm  for  each  wire.  Here,  the  yield  of  Ce  1  minute  after  wire  addition  was  highest  for  the  Steel  wire  (41.9%)  followed  by  Cu-­‐wire  (25%)  and    Al-­‐wire  (<14.8%).  From  samples  taken  1  and  5mins  after  wire  addition  in  the  Al-­‐wire  experiment,  inclusions  were  extracted  and  collected  on  a  film  filter  after  electrolytic  extraction  and  filtration.  The  film  filter  was  observed  in  SEM.  The  morphology  and  compositions  were  analysed  and  compared.  It  was  found  that  Ce  and  La  was  present  as  Ce-­‐La-­‐oxy-­‐sulfides  both  individually  and  on  Al-­‐Mg-­‐O  clusters.  

 

 

   

 

 

 

 

 

KEY  WORDS:  Stainless  steel;  Continuous  Casting;  Mold  Metallurgy;  REM-­‐clusters;  Electrolytic  Extraction.  

Page 4: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 4  

 

Table  of  Contents  

Preface/Acknowledgments  .......................................................................................................  2  

Abstract  ....................................................................................................................................  3  

1.  Introduction  ..........................................................................................................................  5  1.1  Background  ...................................................................................................................................  5  1.2  316  Stainless  steel  .........................................................................................................................  6  1.3  Steel  production  line  .....................................................................................................................  6  1.4  Principles  of  conventional  continuous  casting  ...............................................................................  7  1.5  Mold  metallurgy  ...........................................................................................................................  9  

1.5.1  The  CC-­‐mold  ...................................................................................................................................  9  1.5.2  Melt  flow  ......................................................................................................................................  10  1.5.3  Solidification  process  ...................................................................................................................  10  

1.6  Alloying  by  Ce  .............................................................................................................................  11  1.6.1  REM’s  role  in  steel  ........................................................................................................................  11  1.6.2  Formation  of  REM  clusters  ...........................................................................................................  12  1.6.3  Clogging  ........................................................................................................................................  13  1.6.4  Ce  effect  on  macrostructure  and  properties  ................................................................................  14  

1.7  Methods  of  addition  ...................................................................................................................  16  1.8  Purpose  of  study  .........................................................................................................................  18  

2.  Experimental  .......................................................................................................................  19  2.1  Setup  ..........................................................................................................................................  19  2.2  Method  .......................................................................................................................................  21  

2.2.1  Sample  preparation  ......................................................................................................................  21  2.2.2  The  EE-­‐process  .............................................................................................................................  21  2.2.3  SEM  investigation  of  inclusions  ....................................................................................................  22  2.2.4  Dissolution  of  wire  and  sampling  .................................................................................................  22  

3.  Results  and  Discussion  ........................................................................................................  25  3.1  FeSiRE  particle  size  distribution  ...................................................................................................  25  3.2  Dissolution  of  wire  ......................................................................................................................  26  

3.2.1  Wire  without  powder  ...................................................................................................................  26  3.2.2  Wire  with  powder  ........................................................................................................................  28  

3.3  Composition  analysis  ..................................................................................................................  30  3.4  Inclusion  formation  .....................................................................................................................  33  

4.  Conclusions  .........................................................................................................................  35  

5.  Future  work  ........................................................................................................................  35  

6.  Bibliography  ........................................................................................................................  36    

Page 5: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

5  

1.  Introduction  

1.1  Background  It  is  well  known  today  that  many  elements  with  a  strong  affinity  to  oxygen  are  very  useful  deoxidizers  as  well  as  contributing  to  increased  mechanical  properties  of  the  final  steel.  Ce  for  example,  is  one  of  the  rare  earth  metals  (REM)  and  can  be  added  in  small  amounts  to  (i)  promote  an  increasing  high  temperature  resistance  (ii),  control  the  shape  of  inclusions  and  (iii)  refining  the  microstructure  by  increasing  the  equiaxed  zone.  However,  since  it  is  hard  to  add  this  element  to  the  steel  due  to  that  clusters  and  inclusion  networks  are  easily  formed,  reducing  the  castability,  it  is  not  used  to  a  very  large  extent  today.  The  addition  of  such  active  elements  during  ladle  treatment  promotes  formation  of  non-­‐metallic  inclusions  in  the  liquid  steel  at  an  early  stage  of  the  process.  These  inclusions  then  have  a  possibility  to  grow  longer  and  to  form  large  clusters,  causing  clogging,  as  they  are  present  in  the  steel  during  ladle  treatment,  transport  and  final  casting.    

Clogging  occurs  in  narrow  transfer  parts  and  is  a  huge  problem  in  the  continuous  casting  industry  and  can  in  worst  case  scenarios  cause  a  complete  shutdown  of  the  process,  rendering  a  large  economic  loss  to  the  company  if  a  large  amount  of  steel  is  left  to  cast  in  the  ladle  or  tundish  [1].  Especially  vulnerable  is  the  outlet  of  the  tundish  in  the  SEN  part.  Earlier  studies  has  shown  that  nozzle  clogging  increases  drastically  with  increasing  concentrations  of  Ce  and  that  the  concentration  of  insoluble  Ce  determines  the  amount  of  inclusions  and  clusters  formed  in  the  steel.  It  has  also  been  concluded  that  clusters  containing  Ce  and  La  oxides  are  primarily  the  main  cause  of  clogging  for  the  steel  grades  studied  [2].  

Prevention  or  minimization  of  clogging  is  normally  done  by  a  modification  of  the  inclusions  in  the  steel  to  create  inclusions  that  are  less  likely  to  clog,  for  example  with  Ca-­‐modification,  or  by  replacing  the  continuous  casting  process  with  ingot  casting  (which  is  the  case  for  stainless  steel  grades  with  Ce  addition  today).  The  continuous  casting  process  is,  however,  a  very  effective  bulk  process  for  manufacturing  of  semi-­‐finished  products  of  standards  forms  in  large  series  [3].  Between  2010  and  2012,  this  process  accounted  for  95.6%  of  the  total  steel  production  in  the  world  and  is  a  big  producer  of  both  ordinary  steel  grades  as  well  as  stainless  steels  [4].  The  continuous  casting  machine  at  SANDVIK  in  Sandviken,  SWEDEN,  has  a  capacity  of  producing  310  000  ton/year  and  accounts  for  90%  on  the  total  bulk  production,  so  there  is  a  big  ambition  of  enabling  Ce  addition  to  this  process. [5]  

The  present  study  is  focused  on  the  high  temperature  stainless  steel  grade  316,  which  is  manufactured  by  continuous  casting  by  SANDVIK.  The  desire  from  SANDVIK  is  to  increase  the  high  temperature  resistance  of  this  steel  grade  by  alloying  with  Ce,  fed  as  wire  into  the  melt  in  the  CC-­‐mold.  By  adding  Ce  late  in  the  process,  it  would  decrease  the  time  for  Ce  to  form  a  large  number  of  oxide  inclusions,  which  can  sinter  together  and  form  clusters  causing  clogging.  The  wire  contains  a  FESiRE  powder  blend  and  is  coated  with  three  different  strips;  steel,  Cu  and  Al.  The  addition  is  done  in  a  2kg  melt  in  a  laboratory  scaled  induction  furnace  at  1500oC,  1510oC  and  1530oC  for  all  three  wires  to  estimate  the  dissolution  rates  of  each  wire.  Sampling  procedures  are  implemented  after  each  type  of  wire-­‐addition  in  order  to  analyse  the  chemical  composition  of  the  melt,  over  time,  as  well  as  inclusions  characteristics  in  high  Ce  content  zones.  More  specifically,  the  characteristics  of  Ce  inclusions  are  analyzed  on  a  film  filter  after  Electrolytic  extraction  (EE)  together  with  Scanning  Electron  Microscope  (SEM).  

 

Page 6: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 6  

1.2  316  Stainless  steel  Grade  316  is  the  standard  Mo-­‐bearing  grade,  second  in  importance  to  304  amongst  the  austenitic  stainless  steels.  It  is  an  austenitic  stainless  Ni-­‐Cr  steel  with  additions  of  Mo.  The  austenitic  stainless  steels  have  excellent  toughness,  even  at  cryogenic  temperatures  and  provide  great  form-­‐  and  weldability  as  well  as  resistance  to  corrosion.  The  addition  of  Mo  increases  the  general  corrosion  resistance,  improves  resistance  to  pitting  from  chloride  ion  solutions  and  provides  increased  strength  at  elevated  temperatures.    

Some  typical  applications  are:  

• Food  processing  equipment  • Boat  fittings  • Mining  screens  • Nuts  and  bolts  • Springs  • Medical  implants  • Laboratory  benches  &  equipment  • Heat  exchangers  

The  316  grade  is  also  available  in  high  (316H)  and  low  (316L)  carbon  variants  with  its  corresponding  composition  presented  in  table  1.  The  316L  is  immune  to  grain  boundary  carbide  precipitation  and  is  therefore  suitable  to  use  in  heavy  gauge  welded  components.  The  316H  is  advantageous  for  applications  in  elevated  temperatures  where  the  increased  carbon  content  delivers  a  greater  tensile  and  yield  strength  [6].    

                                     Table  1:  Typical  chemical  composition  of  the  steel  grade  316  [6].  

Elements  [wt%]   C   Mn   Si   P   S   Cr   Ni   N  316   0.08  max   2.0   0.75   0.045   0.03   16-­‐18   10-­‐14   0.1  316L   0.03  max   2.0   0.75   0.045   0.03   16-­‐18   10-­‐14   0.1  316H   0.1  max   2.0   0.75   0.045   0.03   16-­‐18   10-­‐14   -­‐  

 

1.3  Steel  production  line  There  are  two  different  production  routes  for  steel  production  (i)  ore-­‐based  with  reduction  on  the  blast  furnace  and  (ii)  scrap  based  with  melting  of  scrap  in  electric  arc  furnace  (EAF).    

In  ore-­‐based  steel  production,  pig  iron  is  extracted  from  iron  ore  using  coke.  The  iron  from  the  BF  is  then  further  refined  and  converted  to  steel  in  the  basic  oxygen  furnace  (BOF)  where  scrap  is  added,  about  20%  of  the  total  charge  in  order  to  regulate  the  temperature  and  for  alloying.  The  carbon  content  is  reduced  by  refining  with  oxygen  in  the  BOF  causing  a  lot  of  exothermic  reactions  which  is  necessary  for  the  temperature  increase  as  the  scrap  is  added.  The  melt  in  then  transported  for  ladle  treatment  where  the  final  alloying,  refining  and  temperature  is  adjusted.    

The  scrap  based  production  is  entirely  based  on  scrap.  The  scrap  is  melted  by  generating  an  electric  arc  between  three  electrodes  together  with  extensive  oxy  fuel  burners.  The  arc  temperature  can  reach  10.000-­‐15.000  oC  and  is  necessary  in  the  beginning  of  the  melting  process  because  of  the  high  melting  temperature  of  steel.  The  stainless  steel  production  uses  an  AOD-­‐process  for  decrease  of  carbon  content  

Page 7: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

7  

before  the  melt  is  transported  for  ladle  treatment  where  composition  and  temperature  is  adjusted  depending  on  requirements  of  the  specific  steel  grade  [7].  

There  are  two  casting  methods  used  in  the  steel  industry;  ingot  casting  and  continuous  casting.  Continuous  casting  is  the  most  efficient  method  when  time  and  economics  is  considered  and  the  product  will  also  be  more  homogenous  and  contain  fewer  casting  defects.  However,  the  ingot  casting  can  produce  larger  volumes  of  a  cast  object  and  shorter  series  of  products  and  the  casting  procedure  is  also  less  complicated.  Some  steel  grades  with  certain  types  of  alloying  elements,  such  as  REM,  can  only  be  casted  with  ingot  casting  due  to  production  problems  such  as  clogging.    

Theoretically,  all  steel  can  be  produced  using  the  EAF  route  today.  However,  at  present  there  is  not  sufficient  amount  of  scrap  available  in  the  word  to  fully  meet  today’s  demand  of  steel.  In  2013,  around  40%  of  all  steel  produced  in  Europe  was  from  using  the  EAF  route  and  in  Sweden  this  number  was  around  30%  [4].  Highly  alloyed  steels,  such  as  stainless  steels,  are  most  often  manufactured  by  the  EAF  process  since  a  great  discount  can  be  made  from  alloying  with  elements,  such  as  Cr  and  Ni,  from  scrap  instead  of  using  primary  alloying.  The  stainless  steel  316  for  example,  is  manufactured  via  the  scrap-­‐based  route  and  is  casted  as  typically  square  shaped  cross-­‐sections  in  the  continuous  casting  machine.    

1.4  Principles  of  conventional  continuous  casting  In  the  continuous  casting  process,  molten  metal  is  poured  from  a  ladle  down  into  a  tundish  and  then  through  a  submerged  entry  nozzle  into  a  mold  cavity,  figure  1.  The  tundish  acts  as  a  buffer  in  order  to  maintain  a  continuous  flow  of  melt  down  into  the  CC-­‐mold  during  ladle  exchange  and  attains  most  often  a  rectangular  shape.  Nozzles  are  located  along  its  bottom  to  distribute  liquid  steel  into  the  CC-­‐mold.  The  tundish  also  serves  several  other  functions  such  as  to  enhance  oxide  inclusion  refinement  by  slag  entrapment,  and  maintains  a  steady  metal  height  above  the  nozzles,  keeping  the  steel  flow  uniform  and  provide  a  more  stable  stream  of  melt  into  the  mold  [3].    

The  CC-­‐mold  is  water-­‐cooled  and  fabricated  from  a  high  purity  copper  alloy  with  an  inner  face  plated  with  Cr  or  Ni.  When  the  melt  enters  the  mold,  a  thin  solidifying  shell  is  established  along  the  mold  walls  with  a  thickness  strong  enough  to  maintain  the  strand  shape  as  it  passes  into  a  series  of  secondary  cooling  zones.  Right  below  the  mold,  through  which  the  strand,  consisting  mostly  of  a  liquid  core,  the  strand  is  sprayed  heavily  with  water  or  water  and  air  to  further  solidify.  Oscillation  of  the  CC  mold  is  done  throughout  the  entire  process  in  order  to  minimize  friction  and  sticking  of  solidifying  shell  [8].  Without  doing  this,  there  is  a  risk  of  shell  tearing  and  liquid  steel  breakouts  which  can  damage  the  equipment  and  cause  complete  shutdown  of  the  process  due  to  clean  up  and  repairs.  

Rollers  are  used  to  move  the  strand  along  at  a  constant  rate  once  it  leaves  the  mold.  These  rollers  help  to  bend  the  strand  in  the  correct  direction  along  its  given  path  through  the  cooling  zones.  The  amount  of  water  per  unit  time  in  the  cooling  zones  often  decreases  with  the  distance  from  the  CC-­‐mold [9].    Another  set  of  rollers  will  later  be  used  to  straighten  the  strand  and  will  change  the  direction  of  flow  of  metal  from  vertical  to  horizontal.  During  unbending  of  the  strand,  the  solid  shell  outer  radius  is  under  tension  while  the  inner  radius  is  under  compression.  If  the  strain  is  excessive  it  can  cause  cracking,  which  can  seriously  affect  the  mechanical  properties  of  the  steel.  These  excessive  strains  are  minimized  by  progressively  increasing  the  radius  in  order  to  gradually  straighten  out  the  product  into  the  horizontal  plane [10].  The  strand  gradually  solidifies  throughout  this  transportation  and  is  fully  solidified  when  it  reaches  the  “metallurgical  length”,  which  is  the  distance  from  the  mold  to  where  the  strand  becomes  fully  solid.  For  stainless  steel  grade  316,  this  length  is  about  23m.  

Page 8: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 8  

Once  the  strand  in  straightened  it  is  transferred  on  roller  tables  to  a  cutting  machine.  The  cutting  machine  cuts  the  product  into  ordered  lengths,  either  by  torches  or  mechanical  shears,  and  is  then  transported  to  further  processing.  

   

Figure  1:  Schematic  illustration  of  the  continuous  casting  process [30].  

Page 9: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

9  

1.5  Mold  metallurgy  

1.5.1  The  CC-­‐mold  The  CC-­‐mold  and  the  process  in  the  CC-­‐mold  are  very  important  for  the  final  result  of  the  continuous  casting  product.  The  mold  has  basically  two  purposes;  it  should  (i)  define  the  shape  and  cross  section  of  the  casting  and  remove  heat,  and  (ii)  facilitate  formation  of  a  solid  shell.    

CC-­‐molds  are  typically  made  of  pure  Cu  because  of  its  good  thermal  conductivity  (401W/mK),  or  precipitation-­‐hardened  Cu  alloyed  with  Cr,  since  a  very  high  heat  flux  is  needed  in  order  to  quickly  start  to  solidify  the  outer  shell  of  the  casting  [11].  The  surface  is  coated  electrolytically  with  a  thin  layer  of  Ni  in  order  to  increase  the  wear  resistance.  The  mold  consists  of  water-­‐cooling  plates  where  the  water  circulates  through  slots  in  the  mold  to  extract  heat  from  the  liquid  steel.  The  upper  part  is  covered  with  burnt  brick  or  plating  which  protects  the  mold  from  damage  and  the  liquid  melt  is  protected  by  casting  powder.  There  are  generally  two  types  of  CC-­‐molds;  tube  CC-­‐  molds  and  block  or  plate  CC-­‐molds.  The  block  CC-­‐molds  are  used  for  larger  square  (>200cm2)-­‐  or  rectangular  cross  sections  and  is  illustrated  in  figure  2  [9].  

SANDVIK  uses  block  or  plate  CC-­‐molds  in  their  three-­‐stringed  casting  machine  in  Sandviken  which  basically  attends  an  open-­‐ended  box  structure  with  a  length  of  700mm  and  cast  dimensions  of  either  365  x  365  or  265  x  265  mm.  Table  2  shows  some  basic  casting  parameters  about  the  CC-­‐mold  when  casting  grade  316L.  The  casting  nozzles  are  made  out  of  graphitized  alumina  with  a  immersion  depth  of  215-­‐80=135mm  and  four  outlet  holes  directed  diagonally  upwards  [12].  (The  outlet  holes  are  placed  80mm  above  the  bottom  of  the  casting  nozzle).  Electromagnetic  coils  are  positioned  0.4  meters  under  each  mold  to  provide  stirring  of  the  melt,  parallel  to  the  casting  direction.  The  reason  for  this  is  to  destroy  the  dendritic  structure  that  forms  during  the  cooling  and  thereby  increasing  the  equiaxed  zone  at  the  middle  of  the  cast  strand. [5]  

 

   

Table  2:  Casting  parameters  for  grade  316L  [13].  

   

Continuous  caster  

Mold  width  (mm)   265  Mold  length  (mm)   365  

Steel  density  (kg/dm3)   7,7  Casting  speed  (m/min)   0,8  

Flow  rate  (kg/min)   596  

Figure  2:  Block  CC-­‐mold  [9].  

Page 10: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 10  

1.5.2  Melt  flow  The  melt  flow  in  the  mold  is  greatly  influenced  by  the  jets  from  the  casting  tube,  which  in  turn  is  dependant  on  the  geometry,  depths  and  dimensions  of  the  nozzle  exit.  The  jet  causes  forced  convection  in  the  mold  together  with  natural  convection,  which  is  always  present  during  the  solidification  process.  The  casting  nozzles  are  immersed  at  a  moderate  depth  and  are  often  designed  with  exits  on  the  sides  at  some  angle  between  0-­‐90degrees,  relative  to  the  vertical  axis,  in  order  to  avoid  inclusion  of  trapped  particles  at  the  solidification  front.  When  the  melt,  which  is  superheated  by  about  30oC,  enters  the  mold  it  is  split  into  two  strongly  circulation  flows  directed  upwards  and  downwards  [9].This  causes  violent  turbulent  motion  of  the  melt  and  contributes  strongly  to  a  homogenous  melt  in  terms  of  temperature  and  composition.  

Sandvik  Steels  has  developed  a  water  model  of  Sandviks  CC-­‐mold  in  order  to  simulate  flow  patterns  in  the  mold  during  casting.  Figure  3  presents  the  flow  conditions  obtained  in  the  study  using  a  immersion  depth  of  265mm,  casting  speed  of  1,2m/min  and  casting  nozzles  directed  horisontally  towards  the  walls.  As  the  water  leaves  the  holes  and  hits  the  walls  the  liquid  is  slowed  down  and  is  directed  either  upwards  or  downwards.  The  water  directed  downwards  creates  a  downward  stream.  According  to  the  study,  the  downward  stream  between  the  outlet  holes  increases  as  the  immersion  depth  increases. [12]  

 

 

 

 

 

 

 

 

 

1.5.3  Solidification  process  During  the  short  period  of  time  the  melt  stays  in  the  CC-­‐mold,  the  strand  has  to  solidify  rapidly  on  the  surface  to  get  such  thickness  that  it  can  resist  the  ferrostatic  pressure  from  the  melt  in  the  interior  and  be  drawn  out  of  the  mold  for  further  solidification  inside.  This  solidification  process  is  illustrated  in  figure  4.  The  solidification  starts  very  close  to  the  mold  at  the  upper  part  of  the  vertical  surface  of  the  melt.  At  first,  when  the  melt  gets  in  contact  with  the  mold  wall,  the  thickness  of  the  solidifying  shell  grows  rapidly  as  the  heat  transfer  rate  is  very  high.  As  the  shell  thickness  now  grows  continuously  down  the  vertical  mold  wall  its  power  to  resist  the  ferrostatic  pressure  from  the  core  increases  with  time.  As  soon  as  the  melt  start  to  solidify,  cooling  shrinkage  occurs  and  the  shell  contracts  and  start  losing  contact  with  the  mold  wall,  this  happen  initially  at  the  corners  where  the  cooling  is  strongest,  figure  4.  Finally  the  contact  between  the  mold  wall  and  shell  is  lost  and  an  air  gap  is  formed.  This  air  gap  decreases  the  heat  transport  strongly  since  the  metal  is  no  longer  in  contact  with  the  mold  wall  and  so  the  solidification  rate  decreases  

Figure  3:  Flow  pattern  in  CC-­‐mold  according  to  study  [12].  

Page 11: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

11  

since  heat  can  no  longer  be  removed  at  the  same  rate  as  before.  As  the  shell  moves  further  down  and  reaches  outside  the  mold  it  is  strongly  cooled  by  water.  

The  mold  is  made  in  a  somewhat  conical  shape  (upside  down  cone)  in  order  to  compensate  for  the  solidification  and  cooling  shrinkage  of  the  casting  strand  [9].  In  this  way  a  constant  air  gap  between  the  mold  wall  and  the  strand  can  be  achieved  instead  of  an  increasing  one.    

 

Figure  4:  Shell  growth  in  the  melt  close  to  the  CC-­‐mold  in  (a)  seen  from  the  side,  and  in  (b)  seen  from  above.  In  region  1  with  close  contact  between  the  shell  and  mold,  In  region  2  with  an  air  gap  between  shell  and  mold  and  in  region  3  outside  the  mold  where  the  shell  is  strongly  cooled  by  water  [9].  

1.6  Alloying  by  Ce    

1.6.1  REM’s  role  in  steel  Typical  for  rare  earth  elements  is  their  high  reactivity  and  strong  attraction  for  oxygen,  carbon,  nitrogen  and  sulfur  which  makes  them  interesting  in  steel  making.  REM  are  typically  found  associated  together  and  it  is  both  difficult  and  costly  to  separate  the  oxides  in  order  to  produce  a  pure  metal  of  any  of  the  rare  earths.  Therefore  what  is  used  most  widely  today  in  steel  making  is  to  add  REM  to  the  steel  either  as  (i)  mischmetal  or  as  (ii)  REM  silicides.  A  standard  composition  of  mischmetal  is;  50%  Ce,  25%  La,  15%  Nd  and  6%  Pd  and  the  rest  is  iron  and  residual  impurities  such  as  Al,  Ca  Mg,  O  and  Si  [14].  REM  silicides,  which  are  cheaper  to  produce  than  mischmetal,  consist  of  equal  portions  of  REMs,  Si  and  Fe [15].  

The  REMs  strong  affinity  to,  mostly,  oxygen  and  sulphur  makes  them  potent  deoxidizers  and  desulphurizers,  forming  compounds  according  to  reaction  1-­‐3.  However,  they  are  practically  never  used  for  this  reason  since  alternate  alloys  are  more  economical.  The  main  reason  for  alloying  with  REM  is  to  modify  the  shape  of  non-­‐metallic  inclusions  in  order  to  improve  the  mechanical  properties  of  the  steel,  so  called  “inclusions  shape  control”.  In  cast  steels,  the  negative  effect  of  sulphur  on  the  mechanical  properties  is  well  known.  The  sulfides  that  form  are  concentrated  at  the  grain  boundaries  during  solidification.  This  will  lower  the  ductility  of  the  steel  making  it  more  brittle  and  thereby  increasing  the  risk  of  fracture  on  working.  Sulphides  (in  particular  MnS),  oxide  and  silicates  can  be  soft  enough  to  deform  during  hot  working  temperatures  and  are  deformed  into  elongated  shapes  parallel  to  the  rolling  direction.  These  elongated  inclusions  are  especially  harmful  to  transverse  impact  strength  and  ductility  because  of  their  sharp  ends  that  acts  as  crack  initiators.    

Page 12: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 12  

Adding  REM  to  the  steel  captures  the  sulphur  content  into  stable  compounds  according  to  reaction  2  and  3.  These  compounds  tend  to  form  a  more  globular  or  spherical  shape  that  do  not  locate  at  the  grain  boundaries,  thus  enhancing  the  ductility  greatly  in  comparison  to  a  steel  that  has  not  been  REM  treated  [16].  

2𝑅𝑒   + 3𝑂 → 𝑅𝑒!𝑂!                         1  

𝑥𝑅𝑒 + 𝑦𝑆   →  𝑅𝑒!𝑆!                          (2)  

2𝑅𝑒 + 2𝑂 + 𝑆   → 𝑅𝑒!𝑂!𝑆    (3)  

Although  the  addition  of  REM  can  increase  the  mechanical  properties  of  the  final  steel,  it  also  brings  some  problems  with  it.  The  various  compounds  formed  by  REM  can  easily  attach  to  each  other  forming  large  clusters  that  are  hard  to  get  rid  of.  Ce  for  example  has  an  atomic  mass  of  almost  three  times  the  mass  of  iron  so  when  Ce  forms  oxides  and  sulphides,  these  molecules  are  hard  to  separate  from  the  liquid  melt  by  floating  up  to  the  surface  due  of  their  relatively  high  weight  compared  to  the  melt  [12].  Another  drawback  is  that  soluable  Ce  in  the  melt  can  easily  react  with  the  refractory  according  to  reaction  4.  The  Ce  is  reducing  the  alumina  and  forming  Ce-­‐oxide  inclusions  and  precipitation  of  REM-­‐oxides  on  the  furnace  walls,  wearing  the  refractory  wall  [2].  Because  of  its  high  affinity  to  oxygen,  Ce  can  also  react  with  slag  and/or  air  to  further  lower  the  yield  of  the  metal.  

2𝐶𝑒 + 𝐴𝑙!𝑂! = 𝐶𝑒!𝑂! + 2𝐴𝑙              (4)  

 1.6.2  Formation  of  REM  clusters  As  for  REM  clusters,  the  compounds  that  will  form  in  the  liquid  steel  depend  on  the  concentrations  of  Ce,  La,  Al,  O  and  S  dissolved  in  the  steel.  The  high  melting  temperature  and  contact  angle  between  oxide  and  melt  promotes  these  inclusions  to  form  large  clusters.  Characterisation  of  REM  clusters  was  studied  by  A.  Karasev,  Y.Bi  and  P.G.  Jönsson  in  “Three  dimensional  Evaluations  of  REM  Clusters  in  Stainless  Steel”.  In  this  study  a  pilot  trial  (250kg)  as  well  as  industrial  heats  (100t)  were  carried  out.  For  the  pilot  trial  (PT),  250kg  of  melt  were  melted  at  1470oC  in  an  alumina  crucible  in  an  induction  furnace  for  a  REM  alloyed  stainless  steel  grade  similar  to  the  316.  Samples  were  taken  at  different  holding  times  after  mischmetal  addition  and  after  10  minutes  of  holding  the  melt  was  started  to  be  cast.  A  complete  nozzle  clogging  occurred  after  about  15  minutes  after  the  mischmetal  addition.  Two  types  of  morphologies  of  clusters  were  found  in  the  samples  taken  from  the  PT,  named  type  A  (1.5  to  20μm)  and  type  B  (2.0  to  8.0μm),  table  3.  Type  A  clusters  consisted  of  big  size  (1  to  3.6μm)  irregular  and  regular  inclusions  and  small  size  (≤0.5μm)  spherical  inclusions.  The  spherical  inclusions  were  located  mainly  at  the  edge  of  the  irregular  and  regular  inclusions.  The  type  B  clusters  consisted  of  irregular  inclusions  only.  The  Ce  and  La  content  of  all  different  REM  clusters  was  shown  to  be  almost  stable  by  time  where  the  La  content  was  larger  than  the  Ce  content  in  all  samples  taken  and  there  were  no  obvious  difference  in  composition  between  type  A  and  B  clusters  [17].  

 

 

 

 

Page 13: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

13  

Table  3:  Inclusion  characteristics  found  in  the  study  [17].  

 

 

 

 

 

 

1.6.3  Clogging  Clogging  is  the  build-­‐up  of  material  in  narrow  transfer  parts  where  melt  is  transported  through  and  is  a  huge  problem  in  the  continuous  casting  process.  The  clogged  material  can  be  either  oxide  particles  from  the  melt,  or  material  that  are  a  product  from  reactions  between  the  steel  and  the  ceramic  lining  of  the  nozzle.  The  material  that  attach  to  the  wall  is  most  often  solid  particles  with  high  contents  of  Al,  Si,  Ti  or  REM  (in  particular  Ce).  In  general,  the  formation  of  clogging  can  be  assumed  to  follow  three  steps;  (i)  transportation  to  the  nozzle  wall,  (ii)  adhesion  to  the  nozzle  wall  and  (iii)  accumulation  of  a  clogging  network  [2].          

The  transportation  of  particles  to  the  nozzle  wall  depends  on  the  fluid  flow.  The  melt  flow  at  a  nozzle  is  turbulent  causing  recirculation  zones  because  of  the  shape  of  the  nozzle.  Within  a  recirculation  zone,  turbulent  velocity  fluctuations  oriented  in  all  directions  are  present  which  will  enhance  the  transportation  of  particles  to  the  nozzle  wall.  The  particle  will,  however,  only  stick  to  the  wall  if  it  has  correct  adhesion  properties  in  comparison  to  the  wall  properties.  The  particles  are  attached  to  the  nozzle  wall  by  surface  tension.  The  surface  tension  of  the  steel  creates  a  void,  which  leads  to  an  attractive  force  between  the  particle  and  the  wall.  Thereafter,  new  particles  will  attach  to  the  first  particles  and  a  network  is  built  up.  As  the  network  grows  the  attachment  of  particles  will  be  further  enhanced  by  sintering  bounds  between  each  other  and  after  a  sufficient  amount  of  time  this  network  will  be  big  enough  to  clog  the  nozzle [18]  [2].  Figure  5  shows  a  light  optical  microscope  (LOM)  image  of  a  typical  clogging  network  starting  at  the  nozzle  wall,  growing  inwards.  There  are  clear  differences  in  the  areas  depending  on  the  distance  from  the  wall.  Image  A  has  a  denser  network  whereas  C  shows  more  defined  clusters.  

 

 

 

 

 

 

 

 

Heat   Type   Type  A   Type  B          

PT    

       Typical  photo  

   Size  range  (μm)   1.5-­‐20.0   2.0-­‐8.0  

(a)   (b)   (c)  

Figure  5:  Image  of  three  layers  visible  in  the  clogged  material  in  a  nozzle  from  plant  trials.  The  nozzle  wall  is  to  the  left  layer  of  image  A  [2].    

 

Page 14: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 14  

There  are  many  methods  and  theories  today  of  how  to  avoid  clogging.  The  most  obvious  one  is  of  course  to  decrease  the  concentration  of  deoxidation  products  and  prevent  formation  of  reoxidation  product  (this  is  the  main  idea  behind  the  wire-­‐feeding  process  suggested  by  Sandvik).  Solid  particles  can  also  be  transformed  to  liquid  inclusions  by  Ca  treatment.  Adding  Ca  to  the  melt  prevents  formation  of  solid  alumnia  and  thus  reduces  their  ability  to  stick  to  the  nozzle  wall  or  get  caught  in  an  already  built  up  network.  However,  Ca  cannot  be  added  to  all  steel  grades  due  to  limitations  in  the  alloy  composition.    

It  is  also  possible  to  modify  the  material  and  geometry  of  the  nozzle  in  various  ways.  But  since  the  influence  of  nozzle  material  and  geometry  on  the  clogging  rate  has  not  been  part  of  this  work  as  this  work  is  founded  on  the  fact  that  the  metallurgy  and  deoxidation  of  the  melt  is  the  main  source  of  clogging,  this  theory  has  been  excluded.  

1.6.4  Ce  effect  on  macrostructure  and  properties  There  are  several  benefits  of  adding  Ce  to  steel.  By  alloying  with  Ce,  it  is  possible  to  modify  the  macrostructure  of  a  casting.  A  standard  macrostructure  of  a  continuously  cast  stainless  steel  bloom  is  shown  in  figure  6  and  is  typically  divided  into  three  zones;  Chill  zone,  Columnar  zone  and  Equiaxed  zone  [9]:    

.    

 

 

 

 

 

 

The  formed  Ce  inclusions  can  act  as  heterogeneous  nucleation  during  casting  refining  the  microstructure.  Ce  inclusions  form  during  low  undercooling  making  it  possible  to  grow  equiaxed  grains,  ahead  of  the  solidifying  front,  reducing  the  area  of  the  columnar  zone.  By  reducing  this  columnar  zone,  the  solidified  steel  will  have  larger  zone  of  equiaxed  smaller  grains  improving  the  mechanical  properties  of  the  steel.  Studies  has  shown  that  when  adding  0.05,  0.075  and  0.1  wt%  Ce  to  a  120  kg  casts  at  1525oC  and  1540oC,  the  columnar  zone  was  reduced  from  22mm  to  beeing  absent  and  a  linear  increase  in  both  yield  and  ultimate  tensile  strength  was  increased  with  increasing  amounts  of  Ce  for  both  temperatures  [19].  This  grain  refinement  has  also  been  achieved  when  adding  Ce  together  with  Al,  in  an  austenitic  high  manganese  steel,  and  the  types  of  Ce  containing  particles  formed  was  shown  to  depend  on  the  amount  of  Ce  added [20]  A  substantial  reduction  in  the  dendrite  arm  spacing  has  also  been  achieved  when  adding  Ce  via  the  master  alloy  Fe-­‐Cr-­‐Si-­‐Ce  to  a  S254-­‐SMO  austenitic  stainless  steel  grade.  This  Ce  addition  was  promoting  the  formation  of  Ce-­‐Al-­‐oxide  inclusions  in  the  liquid  steel  prior  to  solidification  [21].  

   

Figure  6:  Macrostructure  of  a  continuously  cast  stainless  steel  bloom  consisting  of  three  zones;  chilled  zone,  columnar  zone  and  equiaxed  zone  [3].  

Page 15: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

15  

Ce  can  also  be  added  in  small  amounts  to  certain  heat  resisting  grades  in  order  to  increase  the  resistance  to  oxidation  at  high  temperatures.  This  is  the  main  reason  for  the  316L  stainless  steel  grade.  By  Micro-­‐alloying  (MA)  with  Ce  and  Si,  it  is  possible  to  improve  the  properties  of  the  chromia  (Cr2O3)  scale  layer  that  provides  the  basis  of  oxidation-­‐  and  corrosion  resistance.  At  temperatures  above  1000oC  this  chromia  layer  becomes  unstable  and  start  to  crumble.  The  MA  promotes  a  thinner,  tougher  and  more  adherent  oxide  [22].  The  effect  of  REM  in  stainless  steels  was  studied  where  small  amounts  of  REM  additions  to  Fe-­‐10Cr  and  Fe-­‐20Cr  alloys  was  shown  to  significantly  improve  the  steel’s  resistance  to  high  temperature  oxidation  at  1000oC,  figure  7. [23]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There  are  various  mechanisms  proposed  to  explain  this  improvement  in  oxidation  resistance  when  adding  Ce  to  stainless  steels  [23]:  

• Ce  help  to  increase  the  attachment  of  the  created  chromia  layer  to  the  surface  of  the  steel  by  creating  a  phase  between  the  steel  and  the  oxide  layer.

• Ce  and  Ce-­‐oxides  can  act  as  nucleation  sites  on  the  surface  of  the  steel  to  promote  growth  of  the  chromia  oxide  layer.

• Ce  increases  the  strength  of  the  chromia  layer.

Figure  7:  The  effects  of  various  amounts  of  Ce  in  both  metal  and  oxide  form  on  the  high  temperature  oxidation  of  Fe-­‐20Cr  at  1000oC  [23].  

Page 16: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 16  

1.7  Methods  of  addition  Ingot  casting  In  ingot  casting,  REM  can  be  added  to  the  steel  either  as  REM  silicides  or  as  a  mischmetal  alloy.  Mischmetal  can  be  alloyed  to  the  molten  steel  by  plunging  precast  canisters  of  appropriate  weight  and  attach  these  to  the  end  of  a  billet  to  provide  deep  immersion  in  the  ladle.  REM  silicides  are  less  reactive  than  mischmetal  and  are  instead  added  to  the  second  pouring  ladle  when  reladling  a  heat,  or  into  the  ingot  mold.  This  addition  is  done  right  into  the  pouring  stream  to  insure  adequate  dispersion  and  mixing  as  the  mold  is  filled  with  melt  [24]  [15].    

Continuous  casting  (Wire  feeding  in  CC-­‐mold)  Today,  addition  of  REM  is  not  done  in  large  industrial  scales  because  of  the  metals  strong  affinity  to  oxygen  and  thereby  easily  form  inclusions  and  clusters  causing  clogging  in  the  various  transfer  parts  in  the  CC-­‐machine.  A  solution  to  this  problem,  suggested  by  Sandvik,  is  to  add  Ce  as  a  wire  into  the  melt  in  the  CC-­‐mold.  The  reason  for  this  is  to  avoid  reaction  with  oxygen  to  form  oxide  inclusions,  and  also  to  give  less  time  for  the  inclusions  to  form  large  clusters  before  the  strand  is  fully  solidified.  Less  time  to  form  clusters  will  reduce  clogging  during  the  transfer  of  the  melt.    Adding  Ce  late  in  the  process  eliminates  transfer  parts  where  clogging  may  occur  and  will  at  the  same  time  increase  the  yield,  compared  to  if  added  in  the  ladle.  This  would  also  result  in  a  more  cost-­‐effective  steel  production,  compared  to  ingot  casting,  in  terms  of  less  scrapping  of  steel,  which  especially  in  stainless  steel  making,  is  very  costly.  Less  scrapping  results  in  lower  energy  consumption  and  use  of  material  resources.    

Apart  from  process-­‐related  benefits,  it  should  be  mentioned  that  this  alloying  method  also  comes  with  other  benefits.  “inclusion  shape  control”  and  an  increased  zone  of  equiaxed  crystals  are  two  factors  that  Ce  can  contribute  with,  as  explained  earlier,  and  can  have  big  impact  on  the  final  mechanical  properties  of  the  steel.    

The  general  idea  is  to  feed  a  wire  of  FeSiRE  powder  blend,  coated  with  a  metal  strip,  into  the  melt  from  the  side,  figure  8.  The  wire  is  fed  through  a  supply  tube  with  a  predetermined  speed  set  by  the  feeder.  During  a  short  period  of  time,  the  strip  has  to  melt  easily  and  not  leave  any  alloying  effects  on  the  casted  material  and  the  powder  has  to  dissolve  completely  in  the  melt  and  spread  out  homogeneously  in  the  casted  cross-­‐section  of  the  strand.  

 

 

 

 

 

 

 

   

Figure  8:  Schematic  illustration  of  the  wire  feeding  process  by  Sandvik  [25].  

Page 17: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

17  

There  has  been  previous  trials  of  adding  REM  into  the  CC-­‐mold  by  companies  in  China;  Shanghai  no.1  steel  plant  in  1992,  Shoudu  iron  steel  company  in  1981  and  Daye  special  steel  company  in  1995.  Even  though  the  conditions  of  these  plant  trials  were  somewhat  different  in  terms  of  casting  temperature,  composition  of  steel,  casting  speed,  and  strip  material  common  results  were  presented  regarding  homogenous  distribution  of  Ce  in  the  cross-­‐section  of  the  casted  strand.  In  addition,  the  dendrite  arms  spacing  was  reduced  by  13%  in  the  Shoudu  iron  steel  company  trials  and  by  20-­‐40%  in  the  Daye  Special  steel  company,  respectively  [12].    

More  recent  trials  has  been  carried  out  by  Sandvik,  going  all  the  way  back  to  -­‐98.  These  attempts  involved  two  with  Ce  additions  and  one  with  Ca  addition  in  the  CC-­‐mold.  For  Ce,  the  overall  results  show  a  yield  of  Ce  of  50-­‐  and  70%  and  good  evenness  in  the  cross-­‐section  as  well  as  surface  finish  of  the  strand [25].    

The  wire  feeding  rate  needed  in  order  to  end  up  with  a  final  composition  in  the  strand  of  0.05wt%  can  be  theoretically  calculated  with  data  from  wires,  FeSiRE  powder  and  casting  parameters  from  Sandviks  continuous  caster  in  table  4,  7  and  2,  respectively.  By  assuming  a  metallurgical  yield  of  Ce  of  60%.  

Table  4:  Data  of  wires  used  in  industrial  trials  by  SANDVIK  [13].  

 

 

 

 

 

 

The  feeding  rate  of  the  wire  is  calculated  according  to  equation  5  and  gives  a  feeding  rate  of  the  wire  of  14.78m/min.  

(𝐶𝑒  𝑐𝑜𝑛𝑡𝑒𝑛𝑡  𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑𝑀𝑒𝑡𝑎𝑙𝑙𝑢𝑟𝑔𝑖𝑐𝑎𝑙  𝑦𝑖𝑒𝑙𝑑 )

𝑎𝑚𝑜𝑢𝑛𝑡  𝑜𝑓  𝐶𝑒  𝑖𝑛  𝐹𝑒𝑆𝑖𝑅𝐸𝑝𝑜𝑤𝑑𝑒𝑟∗

𝐹𝑙𝑜𝑤  𝑟𝑎𝑡𝑒 ∗ 1000𝑃𝑜𝑤𝑑𝑒𝑟  𝑤𝑒𝑖𝑔ℎ𝑡

= 𝐹𝑒𝑒𝑑𝑖𝑛𝑔  𝑟𝑎𝑡𝑒!"!!"#$    (5)            

(!.!!!"!.! )

!.!!∗ !"#∗!"""

!"#=  14.78𝑚/𝑚𝑖𝑛      (6)  

The  wire  has  to  be  fully  dissolved  at  an  immersion  depth  of  0.15m  in  the  CC-­‐mold  for  good  homogenization  from  the  turbulence  in  the  melt  flow [5].  This  gives  a  dissolution  time  of  the  wire  of  ≈0.6s  according  to  equation  7.  

𝐼𝑚𝑚𝑒𝑟𝑠𝑖𝑜𝑛  𝑑𝑒𝑝𝑡ℎ𝐹𝑒𝑒𝑑𝑖𝑛𝑔  𝑟𝑎𝑡𝑒

=  0.15𝑚0.25𝑚/𝑠

= 0.6𝑠                                (7)  

 

 

Cored  wire  addition  

Wire  diameter  (mm)   13,6   13,6   13,6  

Type  of  strip   steel   copper   aluminium  

Powder  weight  per  meter  (g/m)   210   210   210  Strip  weight  per  meter  (g/m)   168   195   60  

Strip  thickness  (mm)   0,4   0,4   0,4  

Page 18: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 18  

1.8  Purpose  of  study  Dissolution  rate  of  coated  wires  (Steel,  Cu  and  Al)  containing  FeSiRE-­‐powder.  The  wire  has  to  be  dissolved  at  a  level  where  the  powder  can  be  quickly  distributed  by  the  flow  in  the  CC-­‐mold  before  casting.  If  the  wire  dissolves  too  fast  it  could  mean  that  alloying  elements  end  up  in  the  slag  or  atmosphere  instead  of  the  melt,  lowering  the  yield  of  the  elements  added.  Too  long  dissolution  time  means  lack  of  alloying  elements  in  the  casted  product  and  possible  breakout  since  the  cooling  effect  of  the  wire  on  the  melt  will  be  increased.      Inclusion  characteristics  over  time  in  high  content  Ce  zones.  The  formation  of  REM  inclusions  and  clusters  over  time  is  important  for  understanding  of  inclusions  characteristics  that  are  formed  after  wire-­‐addition.  How  the  morphology,  composition  and  size  of  these  inclusions  change  as  a  function  of  time  and  how  they  may  affect  the  castablility  and  properties  of  the  final  steel.  

 

   

Page 19: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

19  

2.  Experimental  

2.1  Setup  A  vertical,  induction  furnace  is  to  be  used  as  heat  source  for  four  lab-­‐scale  experiments  in  order  to  evaluate  the  dissolution  of  the  three  different  strips  of  wire  (Steel,  Cu  and  Al)  as  well  as  the  FeSiRE  powder  added  to  the  melt,  table  5.  About  2  kg  of  solid  316  stainless  steel,  taken  from  two  charges,  is  placed  in  a  alumina  crucible  with  high  purity  (Al2O3  >  99.5%  ;  Fe2O3  <  0.01%)  to  fill  about  2/3  of  the  total  height,  appendix-­‐1.  The  crucible  is  lowered  down  into  the  bottom  of  an  induction  furnace.  A  lid  closes  the  furnace  once  the  melting  starts  and  an  Ar  nozzle  is  placed  through  the  lid  directed  towards  the  surface  of  the  melt  in  order  to  add  Ar,  with  0.5bar,  continuously  to  the  melt  surface  to  prevent  reoxidation  from  air.  A  thermocouple  (Al2O3  tube,  max  1600oC),  connected  to  a  live  temperature  display,  is  placed  in  between  the  crucible  and  the  furnace  to  symbolize  the  temperature  of  the  melt.  The  setup  is  schematically  illustrated  in  figure  9.  The  heat  rate  was  set  to  4oC/min  from  25oC  to  600oC  and  then  6oC/min  from  600oC  to  1500oC/1510oC/1530oC  (casting  temperature  of  316L  is  ≈1500oC).  When  the  melt  reached  the  final  temperature  it  is  isothermally  held  for  about  30  minutes  to  make  sure  the  temperature  is  stable  and  that  all  metal  is  melted  before  the  experiments  can  start.  The  extra  degrees  are  necessary  for  a  start  since  the  thermocouple  is  placed  outside  of  the  crucible  and  might  therefore  show  a  higher  temperature  than  in  the  melt.  Also  the  volume  of  the  melt  compared  to  the  wire  is  relatively  low  compared  to  industry  and  there  is  no  continuous  flow  of  melt,  which  means  that  the  wire  will  have  a  greater  cooling  effect  on  the  surrounding  melt.    

Table  5:  Setup  information  for  all  four  lab-­‐scale  experiments.    

Exp.  Number   Initial  weight  of  melt  (g)  

Temperature  of  melt  (oC)   Holding  time  (min)   Charge  nr.  

1   2128.1   1530   20   540676  2   2083.6   1530   24   540676  3   2028.9   1500   30   540676  4   1997.7   1510   78*   542169  

*  The  steel  in  experiment  no.  4  was  not  melted  during  60min  at  1500oC  and  thus  the  temperature  and  holding  time  had  to  be  increased.  

 

 

 

 

 

 

 

 

 

 

Figure  9:  Schemtic  illustration  of  the  experimental  setup.  

Page 20: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 20  

 

The  composition  of  the  three  different  wire  strips  and  the  charges  can  be  seen  in  table  6.  The  wires  (!13.6mm,  wall  thickness  0.4mm)  contain  the  same  type  of  FeSiRE  powder  blend  with  its  composition  presented  in  table  7.  

Table  6:  Composition  of  wire-­‐strips  and  charge  316L  taken  from  two  different  heats  [26].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  7:  Composition  of  powder  blend  [26].  

 

   

 

 

 

 

  Strip   316L  charge  nr.  Element   Aluminum   Copper   Steel   540676   542169  Fe(wt%)   0.27     99.682      C(wt%)       0.037   0.012   0.014  Ni(wt%)   ≤0.02       11.20   11.17  Cr(wt%)   ≤0.02       16.68   16.69  Cu(wt%)   0.015   99.9     0.3   0.3  Al(wt%)   96.4     0.026   0.003   0.003  Si(wt%)   0.15     0.01   0.62   0.57  Mn(wt%)   0.29     0.23   1.84   1.77  P(wt%)     0.01   0.01   0.029   0.028  S(wt%)       0.005   0.023   0.024  Ti(wt%)   0.025       <0.003   <0.003  Zn(wt%)   ≤0.02          Mg(wt%)   2.74          Sn(wt%)   ≤0.04          Pb(wt%)   ≤0.01          Mo(wt%)         2.05   2.02  N(wt%)         0.04   0.033  Ca(wt%)         0.0022   0.0028  W(wt%)         0.03    Co(wt%)         0.09    V(wt%)         0.052    Nb(wt%)         0.01    B(wt%)         0.0006    

Powder   Weight/m  of  wire  

REM(wt%)   Si(wt%)   Al(wt%)   Ca(wt%)   Ti(wt%)   B(wt%)  

FeSiRE   430g   25.37   31.45   0.3   0.25   <0.5   <0.05       (62.45%  Ce  

32.05%  La  5.54%  Pr,  Nd,  Sm)  

                       

Page 21: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

21  

2.2  Method  

2.2.1  Sample  preparation  Sampling  procedures  was  implemented  manually  with  quartz  tubes  for  each  type  of  wire  (Exp.  2.0-­‐Steel,  Exp.  3.0-­‐Cu  and  Exp.  4.0-­‐Al)  in  order  to  analyse  the  composition  of  elements;  Ce,  S,  Al,  O  and  Cu  over  time  as  well  as  inclusion  characteristics  for  the  Al-­‐wire  in  Exp.  4.0.  All  samples  taken  (appendix-­‐8)  were  sent  to  SANDVIK  for  composition  analysis  using  HFIR,  ICP  and  EXTR  techniques.  Samples  A1  and  A5  were  also  used  for  extraction  and  3D  investigations  of  non-­‐metallic  inclusions  (NMI)  in  Electrolytic  extraction  (EE)  after  addition  of  Al-­‐wire  to  the  melt.  About  20mm  was  cut  off  from  the  6mm  thick  cylindrical  samples  and  was  grinded  along  its  long  side  down  to  the  centre  surface,  which  was  to  be  extracted  in  the  EE  process.  

2.2.2  The  EE-­‐process  EE  was  applied  for  investigation  of  inclusion  characteristics  (such  as  size-­‐range,  morphology  and  composition)  for  sample  A1  and  A5.    In  EE,  inclusions  are  extracted  from  the  metal  surface  by  dissolving  a  small  layer  of  the  metal  matrix  in  an  electrolyte  with  presence  of  electric  current.  Non-­‐metallic  inclusions,  which  are  not  soluble  in  the  electrolyte,  remains  in  the  solution  and  is  collected  on  a  film  filter  after  filtration.  Figure  10  shows  a  schematic  illustration  of  the  EE  process.    

 

 

 

 

 

 

 

 

All  three  samples  went  through  similar  procedure;  First  off,  the  sample  surface  was  grinded  in  order  to  remove  impurities,  such  as  dust,  oxides  etc.  The  sample  was  then  very  carefully  weighed  before  lowered  down  into  the  jar  of  electrolyte  until  it  was  fully  underneath  the  surface.  Two  wires  were  connected  to  a  potentiostat  where  current,  voltage  and  electric  charge  could  be  regulated.  To  stop  the  process,  a  timer  was  set  to  terminate  the  experiment  when  500  coulombs  was  reached.  When  the  experiment  was  stopped,  the  solution  was  poured  through  the  filtration  system.  The  film  filter,  now  containing  inclusions  from  the  solution,  was  removed  and  ready  for  SEM  observation.  The  sample  was  weighed  again  in  order  to  calculate  the  dissolved  weight  from  the  extraction  process.  

This  EE  was  carried  out  using  250ml  of  2%  TEA  solution.  The  current  density  during  the  extraction  process  was  15-­‐50mA/cm2.  The  weight  of  the  dissolved  metal  during  the  extraction  was  0.08-­‐0.1  grams.  The  solution  containing  NMI  after  the  EE  was  filtrated  through  a  polycarbonate  film  filter  with  a  pore-­‐size  of  0.4μm.  Inclusions  were  analysed  on  the  surface  of  the  film  filter  using  a  SEM.    

   

Figure  10:  Schematic  illustration  of  the  EE  setup  and  filtration  [31].  

Page 22: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 22  

2.2.3  SEM  investigation  of  inclusions  Characterisation  of  inclusions  was  determined  by  observing  the  printed  SEM-­‐pictures.  A  composition  analysis  with  Eds  and  a  size  range  was  implemented  for  five  types  of  main  morphologies  that  were  found,  figure  11.  The  size  of  each  inclusion  was  measured  by  measuring  the  longest  length.  The  contrast  of  inclusions  in  the  pictures  can  indicate  which  main  elements  that  are  more  dominant;  white  color  is  an  indication  of  Ce  and  La  oxides,  light  grey  is  intermetallic  phase  and  grey  color  is  Al  or  Mg  oxides.  However,  the  contrast  between  these  different  types  of  compounds  was  shown  to  be  very  vague  and  it  was  thus  not  possible  to  estimate  frequency  in  a  good  way  only  by  looking  at  the  printed  pictures.  Also,  the  inclusions  found  was  shown  to  be  very  complex,  consisting  of  many  different  compounds  covering  each  other.  

2.2.4  Dissolution  of  wire  and  sampling  Experiment  1  100mm  of  wire,  without  any  powder  inside,  was  lowered  down  into  the  melt  to  evaluate  the  dissolution  time  of  the  three  different  strip-­‐materials  (Steel,  Cu  and  Al).  The  strip  is  put  down  into  the  melt  40mm  below  the  melt  surface  and  is  held  constant  for  a  predetermined  time.  After  that  the  strip  is  taken  up  from  the  melt  and  is  observed  to  see  if  fully  dissolved  or  not.  A  new  unexposed  strip  of  same  material  is  put  down  into  the  melt,  this  time  for  longer  or  shorter  time  depending  on  the  previous  observation.  The  strip  is  then  taken  up  again  and  is  observed  if  fully  dissolved  or  not.  This  cycle  is  done  repeatedly  with  different  time  intervals  for  all  three  strip-­‐materials  individually  until  an  as  close  dissolution  time  as  possible  has  been  found.  A  schematic  illustration  of  the  experimental  procedure  can  be  seen  in  figure  12.    

 

Figure  11:  Pictures  taken  in  SEM  showing  (a)  even  distribution  of  typical  inclusions  found  on  film  filter  and  (b)  Rem  cluster  with  presence  of  Al2O3.  

L  

Page 23: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

23  

 

 

 

 

 

 

 

Experiment  2  A  sampling  procedure  was  implemented  according  to  figure  13  for  trial  (2.1.t1),  which  was  done  in  a  clean  and  unexposed  melt,  before  dissolution  rate  experiments,  figure  14.  Same  procedure  was  implemented  as  in  experiment  1  but  this  time  the  strips  contains  FeSiRE  powder  and  thus  the  holding  times  are  different.  The  ends  of  the  wires  are  sealed  by  two  different  methods  in  order  to  keep  the  powder  inside  the  strips;  (*)  “standard”  closing  with  a  polymer  and,  (**)  “para-­‐film”  with  aluminium  foil.  The  “para-­‐film”  method  was,  unfortunately,  proven  to  be  unsuccessful  due  to  fire  and  thus  those  trials  are  not  included  in  the  results.  When  the  experimental  procedure  was  finished  the  furnace  was  shut  off  and  a  cooling  rate  was  registered,  appendix-­‐7.    

 

 

 

 

 

 

 

 

   

Figure  12:  Holding  times  of  wires  without  powder  inside  at  1530oC.  The  numbers  inside  the  brackets  are  aimed  times  but  due  to  freezing  of  metal  the  strips  were  unable  to  get  out  from  the  holes  of  the  lid  and  thus  the  holding  times  were  delayed.  

Figure  14:  Holding  time  of  wires  with  powder  inside  at  1530oC.  The  numbers  inside  the  brackets  are  aimed  times  but  due  to  freezing  of  metal  and  fire  from  the  para-­‐film  sealing  the  wires  were  unable  to  get  out  from  the  holes  of  the  lid  and  thus  the  holding  times  were  delayed.  

Figure  13:  Sampling  procedure  for  steel-­‐wire  at  1530oC.  

Page 24: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 24  

Experiment  3  A  sampling  procedure  was  implemented  according  to  figure  15  for  trial  (3.1.t1),  which  was  done  in  a  clean  and  unexposed  melt,  followed  up  by  dissolution  rate  experiments,  figure  16.  Same  procedure  is  implemented  as  in  experiment  2  but  has  been  somewhat  optimized  in  terms  of;  (i)  only  standard  sealing  is  used  and  (ii)  wires  with  a  length  of  240mm  instead  of  100mm  was  used  in  order  to  prevent  the  upper  edge  of  the  wire  from  getting  stuck  in  the  lid  when  taking  the  wire  up  from  the  melt,  figure  1.  A  temperature  of  1500oC  in  the  melt  was  set  since  the  thermocouple,  from  experiment  number  2,  was  shown  to  symbolize  the  real  temperature  of  the  melt  better  than  expected.  

 

Figure  15:  Sampling  procedure  for  Cu-­‐wire  at  1500oC.  

 

 

 

 

 

 

   

 

Experiment  4  A  sampling  procedure  was  implemented  according  to  figure  17.  After  the  last  sample  was  taken  the  melt  was  cooled  down  with  a  cooling  rate  of  4oC/min,  which  corresponds  to  the  actual  average  cooling  rate  of  a  316L  strand  in  Sandvik’s  continuous  casting  machine,  appendix-­‐2.  Inclusion  characteristics  are  to  be  analysed  in  samples  A1  and  A5.  

Figure  16:  Holding  times  of  wires  with  powder  inside  at  1500oC.    The  numbers  inside  the  brackets  are  aimed  times  but  due  to  freezing  of  metal  the  wire  were  unable  to  get  out  from  the  holes  of  the  lid  and  thus  the  holding  times  were  delayed.  

Figure  17:  Sampling  procedure  for  Al-­‐wire  at  1510oC.  

Page 25: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

25  

3.  Results  and  Discussion  

3.1  FeSiRE  particle  size  distribution    

 

 

 

 

 

 

 

 

 

 

110.87grams  of  FeSiRE  powder,  from  wire,  was  sieved  through  three  different  levels  (0.5mm,  1mm,  and  1.4mm)  in  a  sieving  machine  for  9  minutes.  From  figure  18  it  is  clear  that  >55wt%  of  all  powder  has  a  size  smaller  than  0,5mm.  This  means  that  the  powder  has  a  large  overall  reaction  surface  and  thereby  also  a  relatively  high  dissolution  rate,  since  smaller  particles  can  dissolve  much  faster  than  larger.  This  is  a  good  thing  because  the  powder  needs  to  be  dissolved  and  homogenously  distributed  during  a  very  short  period  of  time  in  the  CC-­‐mold.  However,  a  large  reaction  surface  also  means  a  large  exposed  area  for  the  powder  to  be  oxidized  on,  which  is  particularly  critical  in  this  case  since  the  powder  contains  many  elements  with  a  strong  affinity  to  oxygen.  This  can,  in  turn,  bring  some  unwanted  oxides  into  the  melt  during  casting  that  can  be  harmful  for  the  mechanical  properties  of  the  final  steel.  

 

 

 

     

0  

10  

20  

30  

40  

50  

60  

wt(%)  

Paracle  size  (mm)  

Paracle  size  distribuaon  

                         0                0.5            1                1.4

Figure  18:  Particle  size  distribution  for  FeSiRE-­‐powder,  

Page 26: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 26  

3.2  Dissolution  of  wire  

3.2.1  Wire  without  powder  The  results  obtained  from  the  dissolution  of  wires,  without  any  powder  inside,  are  presented  in  figure  19.  Pictures  of  the  dissolved  strips  can  be  seen  in  appendix-­‐4.  

 

 

 

 

 

 

 

 

 

 

 

All  strips  were  lowered  down  40mm  below  the  surface  of  the  melt  and  were  held  constant  for  the  given  time.  Strip  number  3  for  steel  and  4  for  Cu  was  accidently  put  down  50mm  below  the  melt  surface.  This  minor  deviation  does  however  play  less  of  a  role  and  should  not  have  any  effect  on  the  out  coming  results.  

For  steel  All  trials,  except  for  trial  1.1.t1,  experienced  freezing  of  metal  on  the  outside  of  the  wire,  making  it  impossible  to  take  the  wire  up  through  the  furnace  lid  at  the  aimed  times  and  the  holding  times  were  therefore  extended.  This  could  be  somewhat  expected  since  the  steel-­‐strip  is  a  low-­‐alloyed  steel  with  a  carbon  content  of  0.037wt%  and  has  a  melting  point  close  to  1500oC.  For  trial  1.1.t3  and  1.1.t4  one  can  notice  some  build  up  of  solidified  melt  near  the  dissolved  edge  when  in  contact  with  the  melt  which  confirms  this  phenomenon,  appendix-­‐3.  

For  Cu  The  results  show  that  the  strips  below  the  melt  surface  dissolved  completely  for  all  holding  times.  In  addition,  the  part  above  the  surface  remained  solid  in  all  trials  except  for  except  for  1.2.t1  where  the  long  holding  time  dissolved  an  additional  20mm  above  the  melt  surface,  figure  20.  The  strips  for  trial  1.2.t2,  1.2.t3  and  1.2.t4  has  all  very  distinct  edges  at  the  dissolved  ends,  indicating  that  the  dissolution  of  the  strip  only  occurs  when  Cu  is  in  contact  with  the  melt  and  not  above.  

 

Figure  19:  Dissolved  lengths  of  strip-­‐materials  during  different  holding  times  for  Exp.1.1-­‐1.3  at  1500oC.  

Page 27: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

27  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For  Al  Only  2  trials  were  performed  since  the  strip  was  shown  to  dissolve  very  fast.  This  can  be  explained  by  the  fact  the  melting  point  of  aluminium  is  less  than  half  of  the  temperature  of  the  melt.  It  is  clear  that  for  both  trials  a  significant  length  above  the  melt  surface  has  dissolved  almost  completely,  appendix-­‐4.  

The  trials  for  Al  gives  interesting  information  for  the  wire  feeding  process  regarding  the  yield  of  Ce  added.  If  the  strip  melts  20-­‐30mm  above  the  melt  surface  during  such  short  time  intervals  there  is  a  great  risk  of  FeSiRE  powder  ending  up  in  the  casting  powder  or  atmosphere,  instead  of  in  the  melt,  lowering  the  yield  of  Ce  added.  Cu  however  shows  more  promising  results  because  of  the  distinct  edges  at  the  dissolved  ends  for  short  holding  times.  This  indicates  that  the  FeSiRE  powder  will  stay  inside  the  strip  above  the  melt  surface,  unlike  with  Al  whereas  the  powder  might  escape  before  entering  the  melt.  However,  since  this  experiment  was  executed  without  powder  inside  the  wire  might  behave  differently  in  terms  of  dissolution  time  compared  to  with  powder  inside,  which  is  evaluated  in  upcoming  experiment  2,3  and  4.  

When  the  experiment  was  finished  the  furnace  was  shut  off  and  a  cooling  rate  was  registered  manually  and  is  plotted  in  appendix-­‐9.  It  is  shown  that  at  TS,  which  is  around  1390oC  for  grade  316  (Thermo-­‐calc),  the  cooling  rate  drastically  decreases  due  to  that  the  metal  is  fully  solidified.  This  indicates  that  the  temperature  registered  by  the  thermocouple  corresponds  very  well  to  the  actual  temperature  inside  of  the  melt.  

 

Figure  20:  Dissolution  of  Exp.1.2.t1-­‐1.2.t4  at  1530°C.  Trial  1.2.t4  was  accidentily  put  down  50mm  below  the  melt  surface.  

Page 28: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 28  

3.2.2  Wire  with  powder    The  results  obtained  from  the  dissolution  of  wire-­‐strips,  with  powder  inside,  are  presented  in  figure  21.  Pictures  of  the  dissolved  wires  and  samples  taken  can  be  seen  in  appendix-­‐5,  appendix-­‐6  and  appendix-­‐7.  All  wires  were  lowered  down  40mm  below  the  melt  surface  and  were  held  constant  for  a  specific  amount  of  time.  For  experiment  2  the  wires  that  were  closed  with  the  “para-­‐film”  method  was  fired  immediately  when  it  got  in  contact  with  the  melt  and  thus  these  trials  failed  and  are  not  included  in  the  results.    

 

 

 

 

 

 

 

 

 

 

 

 

For  steel  The  trials  done  at  1530oC  shows  that  the  dissolution  time  of  the  Steel-­‐wire  is  between  5  and  15s.  A  more  exact  dissolution  time  was  not  able  to  get  because  of  the  fire  from  the  para-­‐film  sealing.  At  1500oC  there  is  a  slight  increase  in  dissolution  time  to  between  18  and  20s,  which  is  to  be  expected  because  of  the  lower  temperature  of  the  melt.  

For  Cu  The  trials  done  at  1530oC  shows  that  the  dissolution  time  of  the  Cu-­‐wire  is  between  10  and  11s.  For  1500  and  1530oC  holding  times  of  2,  5  and  10s  was  set  but  due  to  freezing  of  metal  on  the  outside  of  the  wire  it  was  not  able  to  get  the  wire  up  through  the  furnace  lid  at  the  aimed  time  and  thus  the  holding  times  were  extended  to  20,  10  and  11s  respectively.  There  seem  to  be  no  significant  difference  in  dissolution  time  when  increasing  the  temperature  30oC.  

For  Al  Only  one  trial  was  done  at  1530oC  and  it  was  shown  to  fully  dissolved  10mm  above  the  melt  surface  after  only  2  seconds.  Based  on  these  results,  holding  times  of  1s  and  less  was  executed  at  1500oC  to  try  to  estimate  a  more  exact  dissolution  time,  figure  22.  The  results  show  that  a  dissolution  time  between  0.5  and  1s  is  needed  in  order  for  the  Al-­‐wire  to  be  fully  dissolved  below  the  melt  surface.  These  results  

Figure  21:  Dissolved  lengths  of  wires  at  different  holding  times  for  Exp.  2.1-­‐2.3,  3.1-­‐3.3  and  4.0  at  1530,  1500  and  1510oC,  respectively.  

Page 29: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

29  

correspond  very  well  to  aimed  dissolution  time  of  0.6s  with  a  feeding  rate  of  0.25m/s,  equation  7,  set  by  SANDVIK.  One  can  also  conclude  that  the  feeding  rate  should  by  no  means  be  decreased  since  this  will  result  in  that  the  wire  will  dissolve  above  the  melt  surface.  By  doing  that  there  is  a  great  risk  of  FeSiRE  powder  ending  up  in  the  slag  or  atmosphere,  instead  of  the  melt,  lowering  the  yield  of  the  elements  added.  It  should  also  be  noted  that  even  though  the  Al-­‐strip  has  not  dissolved  completely  for  trial  3.3.t3,  all  the  40mm  of  powder  inside  has  still  been  able  to  escape  through  local  melted  zones  of  the  Al-­‐strip  and  the  melted  edge  of  the  wire  is  not  as  sharp  as  for  Cu  and  Steel,  Appendix-­‐6.    

 

The  behaviour  of  how  the  wires  and  powder  inside  dissolve  is  therefore  also  an  important  factor  to  consider  and  is  most  likely  different  when  the  wire  is  fed  (as  in  the  industry)  compared  to  when  held  constant.  It  should  also  be  pointed  out  that  the  holding  times  less  than  1s  is  not  very  exact  since  the  timer  and  handling  of  wire  was  done  manually,  by  hand.  

The  results  at  1500oC  confirm  that  the  use  of  Al-­‐wire  is  probably  the  best  choice  regarding  the  dissolution  time  set  by  SANDVIK  with  the  given  diameter  of  the  wire  of  13.6mm.  However,  an  alternative  could  be  to  use  the  Cu-­‐wire  instead  because  of  the  finer  melting  at  the  edges  and  less  escape  of  powder  from  the  not  fully  dissolved  lengths  of  the  wire.  In  this  case  the  diameter  of  the  wire  has  to  be  increased  and  the  feeding  rate  has  to  be  decreased  in  order  to  end  up  with  the  same  amount  of  FeSiRE-­‐powder  added  into  the  melt.  Based  on  the  results  the  dissolution  time  of  the  Cu  wire  is  around  10s.  By  using  the  same  immersion  depth  of  0.15m,  a  new  feeding  rate  was  calculated  according  to  equation  2.  By  knowing  the  feeding  rate  for  both  Al  and  Cu  wire,  and  the  dimensions  of  the  Al  wire,  it  is  possible  to  calculate  the  diameter  of  the  Cu  wire  by  looking  at  the  individual  volume  flows,  equation  9  and  10.  

𝐹𝑒𝑒𝑑𝑖𝑛𝑔  𝑟𝑎𝑡𝑒!"!!"#$ =𝐼𝑚𝑚𝑒𝑟𝑠𝑖𝑜𝑛  𝑑𝑒𝑝𝑡ℎ𝐷𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑡𝑖𝑚𝑒

=0.15𝑚10𝑠

= 0.015𝑚/𝑠              (8)    

𝑉𝑜𝑙𝑢𝑚𝑒  𝑓𝑙𝑜𝑤 =   (𝑟! ∗  𝜋 ∗ ℎ)/𝑠              (9)  

𝑉𝑜𝑙𝑢𝑚𝑒  𝑓𝑙𝑜𝑤!"!!"#$ =  𝑉𝑜𝑙𝑢𝑚𝑒  𝑓𝑙𝑜𝑤!"!!"#$    (10)            

0.0068! ∗  π ∗ 0.25 =   𝑟!"!!"#$! ∗  π ∗ 0.015  è  𝑑!"!!"#$ = 0.0304𝑚      (11)  

 

Figure  22:  Dissolved  lengths  of  Exp.  3.1  at  1500oC.  

Page 30: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 30  

 According  to  the  calculations  it  is  possible  to  use  the  Cu-­‐wire  instead  of  the  Al-­‐wire  but  that  would  demand  a  feeding  rate  of  0.015m/s  and  a  diameter  of  30.4mm.  One  thing  to  consider  though  is  the  alloying  effect  of  the  Cu-­‐strip  on  the  mechanical  properties  of  the  final  steel.  Cu  promotes  an  austenitic  microstructure  and  is  added  to  in  the  stainless  steel  grade  316  (0.3wt%)  in  order  to  enhance  the  corrosion  resistance  in  certain  acids  and  to  decrease  work  hardening  for  improved  machine  –and  formability  [27].  However,  the  presence  of  more  than  0.2wt%  Cu  in  the  steel  can  leave  a  Cu-­‐enriched  zone  containing  a  low  melting  phase  located  on  the  grain  boundaries [28].  During  forging  and  hot  rolling  over  1090oC  this  phase  can  in  severe  cases  melt,  leaving  cavities  in  the  steel  making  it  unworkable.  Fortunately,  the  degree  of  this  effect  can  be  decreased  by  preheating  the  melt  in  a  non-­‐oxidizing  atmosphere  and/or  with  increased  Ni-­‐content  in  the  steel  and  should  thereby  not  be  a  big  problem  when  casting  the  316L  steel  grade  in  the  CC-­‐machine.  

This  type  of  calculation  can  of  course  be  implemented  for  steel-­‐wire  as  well  but  because  of  its  relatively  high  dissolution  time  this  would  demand  a  very  slow  feeding  rate  with  large  diameter.  However,  the  steel  wire  is  perhaps  most  convenient  when  looking  at  alloying  effects  the  wire  has  on  the  final  steel  and  there  are  more  parameters  that  can  be  changed  to  optimize  this  feeding  process.  For  example  by  decreasing  the  wall  thickness  of  the  Steel-­‐wire  and/or  increasing  the  amount  of  Ce  in  the  powder.  

3.3  Composition  analysis  The  results  from  the  composition  analysis  by  Sandvik  from  samples  taken  in  the  melt  over  time  for  Steel,  Cu  and  Al-­‐wires  are  presented  in  figure  23.  

 

Figure  23:  Composition  analysis  from  samples  taken  in  melt  at  -­‐1,  1,  3,  5,  10  and  29minutes  after  wire  addition.  

     

0  

0,02  

0,04  

0,06  

0,08  

0,1  

-­‐1   4   9   14   19   24   29  

wt(%)  

ame  (min)  

Exp.2.0  Steel-­‐wire  

0  

0,02  

0,04  

0,06  

0,08  

0,1  

-­‐1   4   9   14   19   24   29  

wt(%)  

ame  (min)  

Exp.3.0  Cu-­‐wire  

0  

0,02  

0,04  

0,06  

0,08  

0,1  

-­‐1   4   9   14   19   24   29  

wt(%)  

ame  (min)  

Exp.4.0  Al-­‐wire  Ce  

S  

Al  

O  

Page 31: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

31  

40mm  of  wire  (2.73g  of  Ce)  was  added  into  the  melt  for  all  three  experiments.  The  amount  of  Ce  in  the  melt  one  minute  after  wire  addition  was  shown  to  be  significantly  low  in  the  Al-­‐wire  case  (<0.02wt%)  compared  to  the  Cu-­‐wire  (0.033wt%)  and  Steel-­‐wire  (0.052wt%).  This  gives  a  yield  of  Ce  of  41.9%  for  the  steel  wire,  followed  by  25%  for  the  Cu-­‐wire  and  <14.8%  for  the  Al-­‐wire,  calculated  according  to  appendix-­‐3.  This  behaviour  could  be  explained  by  the  sampling  procedure  and  the  dissolution  rate  of  the  wires.  All  samples  were  taken  at  40mm  immersion  depth  (10mm  from  the  bottom  of  the  crucible).  Since  the  Al-­‐wire  was  shown  in  the  dissolution  rate  experiments  to  dissolve  very  fast  (0.5-­‐1s  at  1500oC,  figure  21)  the  powder  might  have  escaped  through  the  strip  just  above  or  below  the  melt  level.  This  means  that  the  powder  is  not  immersed  as  deep  into  the  melt  before  it  start  to  dissolve,  resulting  in  an  uneven  distribution  of  Ce.  The  same  goes  for  the  Cu-­‐wire,  but  since  the  dissolution  time  is  longer  than  for  Al,  a  higher  yield  of  Ce  is  obtained  at  the  sampling  level.  The  steel-­‐wire  has  the  longest  dissolution  time  resulting  in  highest  yield  of  Ce  when  comparing  the  three  wires.  

For  the  Al-­‐wire,  the  high  peak  of  Al  when  wire  is  added  can  be  explained  by  the  wire-­‐strip.  As  the  Al  is  added  into  the  melt  the  amount  of  total  Al  will  increase.  Directly  after  this  addition,  Al  will  start  to  react  with  O  to  form  inclusions  and  clusters  that  float  up  to  the  surface  and  thereby  decrease  the  Al  content  continuously  throughout  the  experiment.    

Figure  24  shows  the  behaviour  of  Cu  in  Exp.3.0  and  is  the  same  plot  as  in  figure  23  but  with  extended  vertical  axis.  It  is  clear  that  the  Cu-­‐content  increases  drastically  after  the  first  minute  after  wire  addition  from  0.3-­‐0.9wt%  and  is  then  more  or  less  kept  constant  throughout  the  whole  sampling  procedure  and  does  not  seem  to  react  with  any  other  element.  

 

 

 

 

 

 

 

 

 

 

 

 

   

 

   

0  

0,2  

0,4  

0,6  

0,8  

1  

-­‐1   4   9   14   19   24   29  

wt(%)  

ame  (min)  

Exp.3.0  Cu-­‐wire  

Ce  

S  

Al  

O  

Cu  

Figure  24:  Composition  analysis  from  samples  taken  in  melt  at  -­‐1,  1,  3,  5,  10  and  29minutes  after  Cu-­‐wire  addition.  

Page 32: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 32  

Regarding  the  O  content,  it  decreases  rapidly  in  the  start  and  then  increases  slightly  until  it  seems  to  reach  almost  constant  values  in  all  experiments.  The  reason  for  this  increase  in  O  content  is  most  likely  due  to  reoxidation.  Another  interesting  aspect  in  to  look  at  the  oxygen  level  before  and  1  minute  after  wire  addition  to  see  if  the  FeSiRE-­‐powder  is  oxidized  or  not  before  added  to  the  melt.  A  normal  oxygen  level  in  the  316L  steel  is  50-­‐60ppm  but  due  to  remelting  the  initial  oxygen  content  in  these  experiments  are  a  few  times  higher.  By  calculating  the  difference  in  O  content  before  and  after  wire  addition  according  to  equation  12,  it  is  clear  that  the  values  are  positive  in  all  three  experiments.  This  gives  an  indication  to  that  the  FeSiRE-­‐powder  blend  is  not  very  oxidized  before  added  to  the  melt  and  also  that  the  reoxidation-­‐conditions  in  the  melt  are  good.  The  difference  in  initial  oxygen  content  for  the  three  experiments  can  be  explained  by  the  difference  in  holding  time  of  melt,  table  5.  Longer  holding  time  means  that  more  oxygen  and  air  can  come  to  the  surface  and,  since  the  Ar  protection  is  not  ideal,  the  melt  is  therefore  more  oxidized.    

𝑂!"!#!$%  –𝑂!  !"#$%&  (12)  𝑆𝑡𝑒𝑒𝑙 − 𝑤𝑖𝑟𝑒: 209𝑝𝑝𝑚 − 199𝑝𝑝𝑚 = 10𝑝𝑝𝑚      (13)  

𝐶𝑢 − 𝑤𝑖𝑟𝑒: 334𝑝𝑝𝑚 − 170𝑝𝑝𝑚 = 164𝑝𝑝𝑚      (14)  

𝐴𝑙 − 𝑤𝑖𝑟𝑒: 444𝑝𝑝𝑚 − 169𝑝𝑝𝑚 = 275𝑝𝑝𝑚      (15)    

 

 

   

Page 33: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

33  

3.4  Inclusion  formation  A  total  of  30  spectrum  points  were  analysed  on  typical  morphologies  found  in  sample  A1  and  A5  from  SEM  observation.  Inclusion  characteristics  (morphology  and  composition)  is  presented  in  table  8.  As  can  be  seen  in  the  table,  a  lot  of  complex  inclusions  were  found  with  similar  contrasts  and  a  wide  range  in  composition,  which  made  it  hard  to  estimate  frequency  and  number  of  inclusion  morphologies  only  by  observing  the  SEM  pictures.  In  order  to  get  more  accurate  information  about  this,  more  time  is  needed  in  the  SEM  to  analyse  a  higher  number  of  inclusions  and  check  the  composition  on  every  single  one  of  them.  It  should  also  be  noted  that  SEM  spectrum  analyses  a  depth  of  1µm,  which  means  that  in  some  cases  the  film  filter  contributes  to  an  increased  O  and  C  content  in  spectrum  point  analysis.  In  order  to  eliminate  this,  the  values  of  each  element  were  normalized  with  respect  to  the  composition  of  the  film  filter  before  printed  in  table  8.  

Table  8:  Inclusion  characteristics  from  sample  A1  and  A5.  

 

 

   

Type   1   2   3   4   5  

Morphology  

         

Size  range  (μm)   1   6.74  –  8.85   2.1  –  11.8   1  -­‐  5.4   2  -­‐  4  

Main  elements   (Ce-­‐La-­‐S-­‐O)  (Ce-­‐La-­‐S-­‐O)  

(MgO-­‐Al2O3)  

(MnS(Cu))  

 (Fe-­‐Cr-­‐Mo-­‐Ni)  (MnS(Cu))  

(  Al2O3)  

(  Mn-­‐Si)  

Compo

sitio

n  rang

e  of  non

-­‐metallic  in

clusions  

(wt%

)  

Ce:  ~  59  

La:  ~  12  

S:  ~  14  

O:  ~  8  

Ce:  26  ~  28  

La:  15  ~  16  

S:  1~10  

 

Mn:  1  ~  5  

S:  1  ~  3  

Cu:  1  ~  5  

Mn:  22  ~  37  

S:  ~25  

Cu:  6  ~  37  

Al:  17  ~  31  

O:  52  ~  76  

 

 

Mg:  1  ~  9  

O:  24  ~  70  

Al:  7  ~  17  

 

Fe:  41  ~  66  

Ni:  7  ~  10  

O:  0  ~  2  

Mo:  3  ~  16  

Cr:  17  ~  26  

 

Mn:  0  ~  13  

Si:  0  ~  9  

 

 

 

Page 34: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 34  

Ce  and  La  was  found  presented  in  spherical  and  cluster-­‐shaped  morphologies  (type  1  and  2),  which  is  confirmed  by  previous  studies.  From  observation  in  SEM  the  clusters  was  shown  to  consist  of  moslty  Ce-­‐La  oxides  and  Ce-­‐La-­‐oxy-­‐sulphides  with  the  presence  of  Al  and  Mg-­‐oxides.  This  was  to  be  expected  since  Ce  and  La  has  a  high  affinity  to  both  O  and  S  and  thereby  forms  inclusions  in  forms  of  Ce-­‐La-­‐oxy-­‐suplhides  from  the  Ce,  La  S  and  O  dissolved  in  the  melt.  Ce  also  reduces  the  already  present  aluminium  and  Mg-­‐  oxide  in  the  melt,  and  is  thereby  present  on  Al-­‐Mg-­‐O  clusters.  The  composition  analysis  shows  that  type  1  and  2  was  only  found  in  sample  A1  and  A5,  respectively.  This  could  be  an  indication  to  that  the  small  size  REM  inclusions  have,  by  time,  agglomerated  to  larger  clusters  from  the  natural  convection  in  the  melt.  However,  the  REM  inclusions  found  were  not  as  frequent  as  expected,  considering  the  relatively  high  amount  of  Ce  added  to  the  melt  from  wire.  But,  due  to  the  low  yield  of  Ce  from  adding  the  Al-­‐wire,  presented  in  chapter  3.3,  this  has  its  explanation.  

Type  3,  consisting  of  mostly  Fe,  Ni,  Cr  and  MnS  was  often  encountered  in  both  samples.  This  “MnS-­‐intermetallic  phase”  often  attended  a  shape  similar  to  the  REM  clusters,  making  it  hard  to  separate  them  two  without  using  composition  analysis.  The  presence  of  Cu  is  because  Cu  is  easily  dissolved  from  the  metal  matrix  during  extraction  and  the  dissolved  Cu  that  ends  up  in  the  electrolyte  start  to  precipitate  on  NMI.  These  covered  NMI  should  therefore  be  analysed  carefully  and  might  not  represent  the  actual  composition  of  the  entire  inclusion.    

The  presence  of  the  intermetallic  phase  is  unknown  but  a  theory  could  be  that  the  phase  has  a  higher  melting  temperature  than  the  rest  of  the  melt,  which  means  that  this  phase  start  to  solidify  faster  than  the  surrounding  melt  when  the  cooling  starts.  

The  Al-­‐oxides  and  Al-­‐silicates  found,  type  5,  can  be  explained  by  the  Al  and  Si  added  to  the  melt  (from  the  wire  strip  and  FeSiRE-­‐powder)  and  from  the  possible  reduction  of  Al2O3  on  the  crucible  wall  caused  by  Ce,  equation  4.  As  the  Al2O3  from  the  crucible  is  reduced,  Al  reacts  with  the  dissolved  O  in  the  melt  and  form  aluminium  oxides.    

The  presence  of  Mn  on  the  Al-­‐oxides  is  most  likely  due  to  precipitation  during  solidification.  AlO  has  a  higher  melting  temperature  than  Mn  and  is  already  presented  in  the  liquid  steel.  As  the  steel  start  to  solidify,  Mn  start  to  precipitate  on  and  around  the  surface  of  the  Al-­‐oxides.  

 

 

     

Page 35: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

35  

4.  Conclusions  • The  majority  of  the  weight  (~55wt%)  of  the  FeSiRE-­‐powder  has  a  particle  size  smaller  than  0,5mm.  • Dissolution  rate  of  wires,  with  powder:  

Steel-­‐wire:  1530oC  5-­‐15s                                            1500oC  18-­‐20s  Cu-­‐wire:          1530oC  <20(2)s                                          1500oC  ≤10(5)s  Al-­‐wire:            1530oC  <2s                                          1510oC  <1s                                          1500oC  0,5-­‐1s  

• The  yield  of  Ce  1  minute  after  wire  addition  was  highest  for  steel-­‐wire  (41.9%)  followed  by  Cu-­‐wire  (25%)  and  Al-­‐wire  (<14.8%)  

• REM(  Ce  and  La)  was  present  as  Ce-­‐La-­‐oxy-­‐sulfides  both  individually  (type  1)  and  on  Al-­‐Mg-­‐O  clusters  (type  2)  

5.  Future  work  Regarding  the  dissolution  rate  experiments,  the  behaviour  of  the  wires  should  be  observed  more  in  detail  during  dissolution  in  order  to  observe  if  the  powder  is  immersed  properly  into  the  melt  or  is  dropped  on  surface.  This  was  not  possible  to  do  in  this  study  because  of  a  furnace  lid  blocking  the  sight  of  the  melt  surface.  Sampling  should  be  implemented  at  shorter  times  since  the  composition  analysis  results  show  that  the  content  of  Ce  in  the  melt  varies  only  the  first  three  minutes.  Some  sort  of  stirring  should  also  be  implemented,  in  addition  to  the  natural  convection,  in  order  get  better  homogenization  of  the  melt  during  sampling.  

As  for  the  inclusion  characterisation,  larger  number  of  inclusions  needs  to  be  analysed  in  order  to  get  more  accurate  results  regarding  size  range  and  composition.  The  inclusions  formed  were  shown  to  be  very  complex  and  more  time  in  the  SEM  is  therefore  needed  for  deeper  understanding.  

 

 

   

Page 36: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 36  

6.  Bibliography  [1]  E  Roos,  A  Karasev,  and  P  G  Jönsson,  "Effect  of  Si  and  Ce  Contents  on  the  Nozzle  Clogging  in  a  REM  Alloyed  

Stainless  Steel,"  Steel  Research,  vol.  85,  no.  9999,  pp.  1-­‐10,  2015.  

[2]  E  Roos,  "A  Study  of  Factors  Influencing  Nozzle  Clogging  of  Special  Steel  Grades  during  Continuous  Casting,"  KTH  Royal  Institute  of  Technology,  Stockholm,  Lic  Thesis  2014.  

[3]  T  R  Vijayaram,  "Metallurgy  of  Continuous  Casting  Technology,"  in  Proc.  of  the  Intl.  Conf.  on  Advances  in  Civil,  Structural  and  Mechanical  Engineering  -­‐-­‐  CSM  2013,  Chennai,  2013,  pp.  65-­‐84.  

[4]  World  Steel  Association  2013,  "World  Steel  In  Figures,"  Beijing,  2013.  

[5]  B  Rågberg,  "Interview,"  February  2015.  

[6]  TechniCable.  [Online].  http://www.tecni-­‐cable.co.uk/s.nl/ctype.KB/it.I/id.138/KB.36576/.f  

[8]  B  Kozak  and  J  Dzierzawski.  (2015)  SteelWorks.  [Online].  http://www.steel.org/Making%20Steel/How%20Its%20Made/Processes/Processes%20Info/Continuous%20Casting%20of%20Steel%20-­‐%20Basic%20Principles.aspx  

[7]  Jernkontoret,  Scrap-­‐based  Steelmaking,  2014.  

[9]  H  Fredriksson  and  U  Åkerlind,  Materials  Processing  during  Casting.:  John  Wiley  &  Sons,  Ltd,  2006.  

[10]  

The  Library  Of  Manufacturing.  [Online].  http://thelibraryofmanufacturing.com/continuous_casting.html  

[11]  

The  Engineering  Toolbox.  [Online].  http://www.engineeringtoolbox.com/thermal-­‐conductivity-­‐d_429.html  

[12]  

L  Hennix,  "Tillsats  av  Ce  i  Kokill  vid  Stränggjutning  av  Rostfria  Stål,"  Sandviken,  Master  Thesis  2003.  

[13]  

SMT,  "Excelark,"  2014.  

[14]  

A  R  Jha,  Rare  Earth  Materials:  Properties  and  Applications.:  CRC  Press,  2014.  

[15]  

L  A  Luyckx,  "The  Rare  Earth  Metals  in  Steel,"  pp.  43-­‐78,  1981.  

[16]  

N  Krishnamurthy  and  C  Kumbar  Gupta,  Extractive  Metallurgy  of  Rare  Earths.:  CRC  Press,  2004.  

[18]  

K  G  Rackers  and  B  G  Thomas,  "Clogging  in  Continuous  Casting  Nozzles,"  in  78th  Steelmaking  Conference  Proceedings,  vol.  78,  Illinois,  1995,  pp.  723-­‐734.  

Page 37: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

37  

[17]  

Y  Bi,  A  Karasev,  and  P  G  Jönsson,  "Three  Dimensional  Evaluations  of  REM  Clusters  in  Stainless  Steel,"  ISIJ  International,  vol.  54,  no.  6,  pp.  1266-­‐1273.  

[19]  

E  S  Dahle,  "Grain  Refinement  of  High  Alloyed  Steel  With  Cerium  Addition,"  Materials  Science  and  Engineering,  Norweigan  University  of  Science  and  Technology,  Trondheim,  Master  Thesis  2011.  

[20]  

F  Haakonsen,  J  K  Solberg,  O  S  Klevan,  and  C  van  der  Eijk,  "Grain  Refinement  of  Austenitic  Manganese  Steels,"  in  AISTech,  vol.  2,  Trondheim,  2011,  pp.  763-­‐771.  

[21]  

C  van  der  Eijk,  J  Walmsley,  Ö  Grong,  and  O  S  Klevan,  "Grain  Refinement  Of  Fully  Austenitic  Stainless  Steels  Using  A  Fe-­‐Cr-­‐Si-­‐Ce  Master  Alloy,"  in  59th  Electric  Furnace  and  19th  Process  Technology  Conferences,  Phoenix,  2001.  

[22]  

Outokumpu.  (2013,  December)  High  Temperature  Stainless  Steels.  [Online].  http://www.outokumpu.com/sitecollectiondocuments/austenitic-­‐high-­‐temperature-­‐153ma-­‐253ma-­‐stainless-­‐brochure.pdf  

[23]  

H  J  Grabke,  T  N  Rhys-­‐Jones,  and  H  Kudielka,  "The  Effects  of  Various  Amounts  of  Alloyed  Cerium  and  Cerium  Oxide  on  The  High  Temperature  Oxidation  of  Fe-­‐10Cr  and  Fe-­‐20Cr  Alloys,"  Pergamon  Journals  Ltd,  vol.  27,  no.  1,  pp.  49-­‐73,  1987.  

[24]  

(2009)  AMG  Vanadium.  [Online].  http://www.metallurgvanadium.com/ceriumpage.html  

[25]  

O  Sundqvist,  "PPT  -­‐  Planeringsmöte  Kokillmetallurgi  -­‐  SANDVIK,"  Feb.  2015.  

[26]  

S  Gerardin,  "Affival  ,"  2015.  

[28]  

MetallurgVanadium.  [Online].  http://www.metallurgvanadium.com/copperpage.html    

[27]  

Outokumpu,  Handbook  of  Stainless  Steel.  Avesta,  Sweden:  Outokumpu  Oyj,  2013.  

[29]  

J  Elfsberg,  "Oscillation  Mark  Formation  in  Continuous  Casting  Process,"  KTH,  Royal  Institute  of  Technology,  Stockholm,  Lic.  Thesis  2003.  [Online].    

[30]  

Indiamart.  [Online].  http://www.indiamart.com/gateway-­‐international-­‐indore/industrial-­‐raw-­‐materials.html  

[31]  

H  Doostmohammadi,  "A  Study  of  Slag/Metal  Equilibrium  and  Inclusion  Characteristics  during  Ladle  Treatment  and  after  Ingot  Casting,"  Materials  Science  and  Engineering,  Royal  Institute  of  Technology,  KTH,  Stockholm,  PhD  Thesis  2009.  

 

   

Page 38: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 38  

Appendix-­‐1      

 

 

 

 

 

 

 

From  the  dimensions  given  from  figure  A1,  a  total  weight  of  the  liquid  metal  required  to  fill  2/3  of  the  total  height  of  the  crucible  was  calculated.  Equation  A1  gives  the  general  expression  for  a  volume  of  a  frustum,  equation  A2  gives  the  required  volume  of  the  melt  and  equation  A3  gives  the  acquired  amount,  in  weight,  needed  for  each  heat.  

𝑉!"#$%#& =𝜋 ∗ ℎ3

∗ 𝑅! + 𝑅 ∗ 𝑟 + 𝑟!        (𝐴1)  

𝑉!"#$ =𝜋 ∗ 80 ∗ 23

3∗ 45! + 45 ∗ 34.5 + 34.5! = 285884.9𝑚𝑚!         𝐴2  

𝑊!"#$ = 𝜌 ∗ 𝑉 = !.!!"!!!! ∗ 285884.9𝑚𝑚! = 2001𝑔 ≈ 2𝑘𝑔        (A3)  

Appendix-­‐2    In  order  to  be  able  to  simulate  the  formation  of  REM  clusters  in  a  solidified  strand  casted  by  Sandvik,  a  cooling  rate  was  calculated  from  the  temperature  of  the  melt  in  the  Cu-­‐mould  to  the  solidus  temperature  of  the  316  stainless  steel.  The  casting  temperature  of  the  316  steel  is  1500oC  and  the  solidus  temperature  is  1390oC,  according  to  Thermo  Calc.  This  gives  a  temperature  interval  of  110oC.  By  knowing  the  metallurgical  length  (23m)  and  the  casting  speed  (0,8m/min)  of  a  316  strand  it  is  possible  to  calculate  the  maximum  amount  of  time  clusters  can  form,  equation  A4.  In  addition,  a  cooling  rate  can  be  calculated,  equation  A5.  

𝑀𝑒𝑡𝑎𝑙𝑙𝑢𝑟𝑔𝑖𝑐𝑎𝑙  𝑙𝑒𝑛𝑔𝑡ℎ𝐶𝑎𝑠𝑡𝑖𝑛𝑔  𝑠𝑝𝑒𝑒𝑑

=  23𝑚

0.8𝑚/𝑚𝑖𝑛= 28.75min = 28min 45𝑠      (𝐴4)  

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑡𝑖𝑚𝑒

=110!𝐶28.75

= 3.82!𝐶/min ≈ 4!𝐶/  𝑚𝑖𝑛              (𝐴5)  

 

   

Figure  A1:  Inner  dimensions  of  crucible  and  outer  diameter  of  wire,  in  mm.  The  thickness  of  the  strip  is  0.4mm.  

Page 39: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

39  

Appendix-­‐3  40mm  of  wire  was  dissolved  in  each  of  the  three  experiments.  By  knowing  the  powder  weight  and  the  amount  of  Ce  in  the  FeSiRE-­‐powder,  table  7,  the  total  amount  of  Ce  added  can  be  calculated  according  to  equation  A8  (following  calculations  is  for  Steel-­‐wire,  Exp.2.0,  but  same  calculation  procedure  is  implemented  for  Cu-­‐wire,  Exp.3.0,  and  Al-­‐wire,  Exp.  4.0,  as  well)  

𝑃𝑜𝑤𝑑𝑒𝑟  𝑤𝑒𝑖𝑔ℎ𝑡: !"#!!

∗ 0.04𝑚 = 17.2𝑔    (A6)    

𝑆𝑡𝑟𝑖𝑝  𝑤𝑒𝑖𝑔ℎ𝑡: !"#!!

∗ 0.04𝑚 = 6.72𝑔      (A7)  𝐴𝑚𝑜𝑢𝑛𝑡  𝑜𝑓  𝐶𝑒  𝑎𝑑𝑑𝑒𝑑: 17.2𝑔 ∗ 0.2537 ∗ 0.6245 = 2.73𝑔  𝐶𝑒      (A8)  

The  total  weight  can  be  calculated  from  table  4  and  5.    

𝑇𝑜𝑡𝑎𝑙  𝑤𝑒𝑖𝑔ℎ𝑡   𝑆𝑡𝑒𝑒𝑙 + 𝑤𝑖𝑟𝑒 = 2083.6𝑔 + 17.2𝑔 + 6.72𝑔 = 2107.52𝑔    (𝐴9)    

The  teoretical  amount  of  Ce  in  the  melt  can  now  be  calculated  according  to  equation  A10.  

!.!"!!"#$.!"!

=  0.00129 = 0.129𝑤𝑡%        (A10)  

By  knowing  the  amount  of  Ce  1  minute  after  wire  addition  (sample  S1=  0.054wt%  of  Ce)  the  yield  of  Ce  in  the  melt  is  thus:  

!.!"#!.!"#

= 0.4186   ≈ 𝟒𝟏.𝟗%      (A11)  

   

Page 40: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 40  

Appendix-­‐4  (Exp.1.1-­‐1.3)    

 

   

Figure  A2:  Dissolution  rate  experiments  at  1530oC  for  (b)  Steel-­‐strip,  (c)  Cu-­‐strip  and  (d)  Al-­‐strip.    

(a)  

Page 41: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

41  

Appendix-­‐5  (Exp.2.1-­‐2.3)      

 

 

 

Figure  A3:  Dissolution  rate  experiments  at  1530oC  for  (b)  steel  wire,  (c)  Cu-­‐wire  and  (d)  Al-­‐wire.  Trial  2.1.t2  and  2.2.t1  was  sealed  with  para-­‐film  and  are  excluded  from  the  results.    

(a)  

Page 42: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 42  

Appendix-­‐6  (Exp.3.1-­‐3.3)    

 

 

   

 

 

 

 

 

 

(a)  

Page 43: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

43  

 

 

 

 

 

 

 

 

Appendix-­‐7  (Exp.4.0)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  A4:  Dissolution  rate  experiments  at  1500oC  for  (b)  Steel-­‐wire,  (c)  Cu-­‐wire  and  (d)  Al-­‐wire.    

Figure  A5:  Dissolution  rate  experiments  at  1510oC  for  (a)  Al-­‐wire.  

 

Page 44: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 44  

Appendix  8  (samples  from  Exp.2.0,  3.0  and  4.0)  

Appendix-­‐9    

 

 

 

 

 

 

 

 

 

 

Figure  A7:  Cooling  rate  registered  by  thermocouple  for  all  four  experiments.  

Figure  A6:  Samples  taken  according  to  the  sample  sceheme,  for  (a)  steel  wire:  S0=  19,3g  S1=  20,5g  S3=  22,1g  S5=  22,5g  S10=  14,5g  and  S29=  20,8g,  (b)  Cu-­‐wire:  C0=24,82g  C1=  17,56g  C3=  21,06g  C5=  21,3g  C10=  24,77g  C29=16,78g,  and  (c)  Al-­‐wire:    A0=21,83g  A1=  19,9g  A3=  18,83g  A5=  19,68g  A10=  23,07g  A29=21,22g.  

(a)   (b)   (c)  

Page 45: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

45  

Trip  Report  26/2  2015  

Purpose  The  purpose  of  this  trip  was  to  get  introduced  to  the  main  persons  from  Sandvik  that  is  involved  in  this  project  and  to  get  a  deeper  understanding  of  this  new  idea  of  alloying  in  the  continuous  casting  machine.  Another  important  reason  for  me  personally  was  to  be  able  to  get  in  contact  with  the  industry  to  get  a  new  perspective  and  see  how  things  are  handled.      

Content  The  trip  started  off  at  12.00  with  lunch  where  I  was  introduced  to  Bo  Rågberg  and  Olle  Sundqvist.  Later  I  was  given  a  tour  around  Sandviks  research  division  FOU  and  sat  down  with  Bo  who  presented  some  previous  master-­‐thesis  work  done  in  this  field,  going  all  the  way  back  to  -­‐98.  We  also  discussed  my  own  work  and  I  asked  some  questions  regarding  my  own  experiments  and  the  amount  of  steel  that  I  need.  At  14.30  I  was  invited  to  a  meeting  regarding  planning  of  future  plant  trials  of  wire  feeding  into  the  CC-­‐mould.  The  meeting  included  a  background  about  the  project  where  some  decisions  were  presented  regarding  a  meeting  in  nov  -­‐14  with  Affival+Ferrox.  The  conclusions  from  that  meeting  were  that  Affival  delivers  the  wire  and  examines  the  possibility  of  delivering  a  feeder  that  can  feed  two  wires  at  the  same  time.  Affival  is  also  expected  to  join  the  plant  trials  in  2015.  After  that,  the  meeting  proceeded  with  some  important  discussions  regarding  the  feeding  process,  such  as;  

• How  and  where  the  wire-­‐feeding  pipe  should  be  mounted,  either  to  the  bottom  of  the  tundish,  or  on  a  deck  from  a  higher  level.  

• Dimensions  of  the  wire-­‐feeding  pipe.  • Where  the  feeder  should  be  positioned  depending  on  placing  of  wire-­‐feeding  pipe  • How  the  wire-­‐feeding  pipe  is  going  to  be  connected  to  the  feeder  • Where  the  wire-­‐feeding  pipe  outlet  is  going  to  be  positioned  relative  to  the  mould  

Some  questions  where  answered  whereas  most  of  them  was  still  left  to  be  answered  during  the  practical  trials  to  see  what  method  work  out  the  best.  The  meeting  also  included  some  practical  matters  of  delegating  tasks  for  the  crew  in  order  to  move  on  and,  hopefully,  start  doing  some  feeding  experiments,  without  any  melt,  next  Thursday  (5th  of  March)  when  the  continuous  casting  machine  is  under  maintenance.    This  is  provided  that  the  feeder,  which  is  borrowed,  will  arrive  on  time.  

After  the  meeting  I  was  given  a  personal  tour  in  the  steel  plant  from  Bo  Rågberg.  The  tour  included  the  entire  steel  process  route  all  the  way  from  the  EAF  to  finished  casted  slabs.  Since  the  continuous  casting  process  was  under  maintenance  this  day,  we  were  able  to  take  a  very  close  look  at  some  extra  interesting  and  project-­‐related  process  steps,  such  as  the  CC-­‐mould  and  tundish,  that  normally  is  impossible  to  get  close  to  when  the  process  is  on-­‐going.  Bo  showed  some  potential  placing’s  of  the  feeder  and  how  the  feeding  process  briefly  would  be  performed.  We  also  had  a  look  inside  the  cooling-­‐room  where  the  three  cooling  zones  where  positioned.  Later  we  moved  on  and  visited  the  area  where  the  tundish  and  SEN-­‐nozzles  are  preheated  and  also  to  the  CC-­‐mould  workshop  to  see  the  shape  of  the  mould  and  typical  wear  of  the  inner  mould  lining.  The  tour  ended  at  16.00  and  that  also  wrapped  up  the  visit  for  this  time.  

Summary  This  visit  met  the  expectations  and  more.  Except  for  getting  introduced  to  the  project  and  meet  all  the  involved  people.  I  also  got  a  personal  tour  around  the  plant  which  was  very  interesting  for  me.  Bo  also  presented  an  instrument  called  ”XXX”  for  analyzing  of  small  samples  that  I  could  use  to  get  the  overall  composition  for  my  time  dependant  quartz-­‐tube  samples.  

Page 46: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 46  

Meeting  28/4  2015  

Purpose  The  purpose  of  this  meeting  was  to  present  work  done  by  KTH  and  SMT  this  far  in  the  project  and  also  to  inform  and  discuss  about  previous  and  future  industrial  trials.  

Content  The  content  of  the  meeting  followd  folowing  agenda:  

1. Minutes  from  the  last  meeting  2. Work  done  by  KTH  

• Ying  Yang  • Oscar  Juneblad  • Haji  Muhammad  

3. Work  done  by  SMT  4. Hire  of  wire  feeder  5. Planning  of  full  scale  project  6. Application  for  Vinnova  7. Miscellaneous  

I  held  a  presentation  of  15minutes  presenting  my  results  this  far  and  what  work  I  have  ahead  of  me  in  the  near  future  before  summer.  After  my  presentation  I  was  asked  by  Bo  to  recalculate  a  new  diameter  and  feeding  rate  of  the  Cu-­‐wire  in  order  for  it  to  be  fully  dissolved  at  an  immersion  depth  of  15cm.  

SMT  presented  the  results  from  the  first  plant  trial  (15th  of  April),  which  was  at  the  very  end  of  a  heat.  

Some  data  for  this  trial:  Steel  grade:  Duplex  stainless  steel  Casting  speed=  0,8m/min  Wire  feed=  13-­‐14m/min  

The  result  from  this  trial  was  a  breakthrough  after  78m  of  fed  wire  and  the  main  cause  of  this  problem  was  freezing  of  the  meniscus.  It  was  discussed  how  this  problem  arose  and  the  main  conclusion  was  due  to  a  too  low  superheat  of  the  melt  before  the  wire  was  added.  Samples  were  taken  on  the  casted  blooms  and  Ce,  Al  and  Si  was  analysed  at  different  locations  in  the  cross-­‐section  of  the  bloom.    

A  desire  is  to  have  0.05wt%  of  Ce  in  the  finished  cast  product  but  however  most  of  the  samples  showed  too  low  levels  of  Ce  i.e.  low  yield  of  Ce.  

The  hiring  of  wire-­‐feeder  could  be  prolonged  to  the  30th  of  May,  which  was  good  news  in  order  to  be  able  to  perform  upcoming  trials:  

Trial  2  (29th  of  April):  Steel  grade  316L  Single  casting  

Trial  3  (end  of  May):  All  blooms  of  2  strands  in  an  entire  heat  

At  the  end  of  the  meeting  I  was  personally  invited  by  Bo  to  come  up  to  Sandviken  for  observation  of  trial  3.  Lastly,  a  telephone  meeting  was  arranged  on  the  6th  of  May  at  13.00.  

Page 47: Evaluation of Ce Addition by Different Wire in Liquid 316 ...853804/FULLTEXT01.pdf · KTH - School of Industrial Engineering and Management Evaluation of Ce Addition by Different

 

47  

Summary  It  was  nice  for  me  personally  to  meet  all  persons  involved  in  this  project,  both  from  KTH  and  from  out  in  the  industry.  Also,  the  progress  from  both  my  colleagues  at  KTH  and  SMT  was  very  interesting  to  see.  Especially  Ying  Yang’s  simulations  since  she  had  simulated  same  experiments  as  I  had  performed  practically.    

Telephone  meeting  6/5  2015  

Purpose  The  purpose  for  this  meeting  was  how  the  project  proposal  should  be  carried  out  for  application  for  future  on  going  project  to  Vinnova  and/or  RFCS.  Assuming  that  this  proposal  is  successful,  potential  areas  needs  to  be  discussed  regarding  future  phD  work  in  this  project.  It  was  also  informed  about  trial  nr  2.  

Content  The  meeting  started  of  with  a  discussion  regarding  the  application  of  this  project  that  has  a  budget  of  20-­‐25milion  SEK.  SMT  questioned  KTH  regarding  if  it  was  possible  to  write  down  a  project  proposal  before  the  2nd  of  June  in  order  to  send  it  in  before  summer  and  start  the  project  the  upcoming  autumn.  People  at  KTH  however  had  opinions  that  the  pre-­‐study  from  previous  plant  trials  done  this  year  is  not  evaluated  completely  yet  and  this  should  be  done  before  making  an  application.  It  was  finally  decided  that  the  project  should  be  divided  into  two  steps:  

Step  1  (send  a  application  to  Vinnova  as  a  more  limited  project):  

-­‐ 1  steel  grade  -­‐ only  looking  at  one  element  (Ce)  -­‐ Finish  the  analysis  -­‐ Include  pre-­‐sudides  done  my  previous  master  thesis  worker  showing  great  results  of  distribution  

and  composition  of  Ce  in  casted  product  -­‐ 1year,  2  people,  full  time  

 Step  2  (send  a  more  general  application  to  RFCS):  

-­‐ More  steel  grades  -­‐ Invite  more  companies  

At  the  end  of  the  meeting  it  was  decided  that  KTH  and  SMT  should,  individually,  come  up  with  workpackage  of  potential  areas  and  questions  that  can  be  worked  with  in  future  as  phD  thesis  etc.  SMT  will  focus  on  more  industrial  questions  and  KTH  on  more  scientifically.  SMT  mentioned  one  big  question  right  away  regarding  analysing  of  mould  flux  composition  when  adding  of  Ce-­‐wire  in  the  CC-­‐mould  and  how  to  modify  the  mould  flux  for  this  new  mould  metallurgy  technique.    

Trial  nr.2  was  successfully  executed  in  terms  of  breakthrough  or  stopping  of  process  but  the  casted  strands  had  not  yet  been  analysed.  

Next  telephone  meeting  was  schedueled  to  the  21st  of  May  at  14.00  

Summary  The  project  was  decided  to  be  divided  into  two  seperate  steps  where  the  first  step  accounts  for  a  more  limited  project  in  order  to  focus  on  one  steel  grade  and  element.  Hopefully,  this  will  get  good  enough  results  for  applying  for  step  number  2  to  continue  the  project  in  a  larger  scale.