53
Assessing innovation capacity: fitting strategy, indicators and policy to the right framework Prof. Dr. Reinhilde Veugelers, DG ECFIN / Katholieke Universiteit Leuven Paper prepared for the Conference Advancing Knowledge and the Knowledge Economy National Academies, Washington 10-11 January 2005 January 2005 Very preliminary Please do not quote This paper does not reflect the view of EC-DGECFIN Abstract Growth performance has been the subject of increasing scrutiny over recent years, a problem that Europe has addressed very aggressively. The much debated analysis of the contribution to overall productivity growth from ICT production and use, indicates the EU’s difficulty in re-orientating its economy towards the newer, higher productivity, growth sectors such as ICT. At the same time, it raises the broader issue of whether the EU is insufficiently capable of creating and exploiting new technologies in general. For this, analysis must go beyond research inputs to include the capacity to link public and private knowledge creators and creators and users of knowledge. Sufficient ‘demand pull’ is needed for innovation to reward successful innovators, which requires sophisticated lead users willing to pay for innovations, effective intellectual property rights (IPR) schemes, a favorable macro-economic environment, well functioning financial markets, vigorous competition in output markets, and flexible 1

Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Assessing innovation capacity: fitting strategy, indicators and policy to the right framework

Prof. Dr. Reinhilde Veugelers, DG ECFIN / Katholieke Universiteit Leuven

Paper prepared for the ConferenceAdvancing Knowledge and the Knowledge Economy

National Academies, Washington 10-11 January 2005

January 2005

Very preliminaryPlease do not quote

This paper does not reflect the view of EC-DGECFIN

AbstractGrowth performance has been the subject of increasing scrutiny over recent years, a problem that Europe has addressed very aggressively. The much debated analysis of the contribution to overall productivity growth from ICT production and use, indicates the EU’s difficulty in re-orientating its economy towards the newer, higher productivity, growth sectors such as ICT. At the same time, it raises the broader issue of whether the EU is insufficiently capable of creating and exploiting new technologies in general. For this, analysis must go beyond research inputs to include the capacity to link public and private knowledge creators and creators and users of knowledge. Sufficient ‘demand pull’ is needed for innovation to reward successful innovators, which requires sophisticated lead users willing to pay for innovations, effective intellectual property rights (IPR) schemes, a favorable macro-economic environment, well functioning financial markets, vigorous competition in output markets, and flexible product and labour markets. Hence, tackling the deficient EU innovative capacity requires a broad systemic policy framework. These challenges the EU is facing has motivated it to develop the “Lisbon strategy”. The strategy involves a broad set of structural reforms to encourage employment and productivity growth to become a supremely competitive knowledge-based economy by 2010. It also entails a set of targets and indicators that can be continuously monitored to assess progress on these reforms. A broad systemic framework goes well beyond targeting R&D budgets but unfortunately includes many factors difficult to document with statistical indicators. We evaluate the assumptions behind the Lisbon strategy, i.e. the choice of policy priorities and structural reforms. We analyse the set of indicators chosen to evaluate progress. Are these the right indicators for informing improvement in innovative capacity? What are the interactions and complementarities between the various reforms and indicators? We also consider the need to monitor and evaluate the indicators – and whether this should be done individually or at a systemic level, at aggregate or sectoral levels, at EU, national or regional level.

1

Page 2: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

1. INTRODUCTION

Europe’s growth performance has been the subject of increasing scrutiny over recent years, most notably in the context of the Lisbon process and its efforts to encourage governments to introduce employment and productivity enhancing reforms. This reform agenda is all the more pressing given that the EU’s underlying growth rate has been trending downwards since the second half of the 1990’s.The medium to long term outlook points to a continuation of these trends. While many EU countries are understandably preoccupied with extricating their economies from the relatively prolonged short run downturn, many of the solutions to this slow growth problem require in fact a longer term policy perspective. A sustainable medium-term recovery process demands action on a wide structural reform agenda aimed at effectively addressing the EU’s fundamental growth challenges, presently posed by the accelerating pace of technological change, globalisation and ageing populations.

The much debated analysis of the contribution to overall productivity growth from ICT production and use, indicates the EU’s difficulty in re-orientating its economy towards the newer, higher productivity, growth sectors such as ICT. At the same time, it raises the broader issue of whether the EU is insufficiently capable of creating and exploiting new technologies in general. Tackling the deficient EU innovative capacity requires a broad systemic policy framework that goes well beyond targeting R&D budgets but unfortunately includes many factors difficult to document with statistical indicators. We evaluate the actual policy strategy developed to tackle the EU’s growth challenge, namely the Lisbon strategy. More particularly we examine the choice of policy priorities and structural reforms for tackling the deficiencies in the innovative capacity. In addition, we analyse the set of indicators chosen to evaluate progress. Are these the right indicators for informing improvement in innovative capacity? What are the interactions and complementarities between the various reforms and indicators? We also consider the need to monitor and evaluate the indicators – and whether this should be done at aggregate or sectoral levels, at EU, national or regional level.

2. ASSESSING THE PROBLEM: THE EU’S RELATIVE PRODUCTIVITY PERFORMANCE

Enhancing productivity growth is fundamental to realising the Lisbon ambition of making Europe the most competitive, knowledge based, economy in the world by 2010. It is also fundamental to sustain and possibly increase future living standards in a context of an ageing population, an accelerating pace of technological change and continued globalisation. Yet, productivity growth is the result of the interplay of a host of factors. Policy makers can only influence some of them and often only in an indirect way. The present section focuses on the nature and source of the deterioration in the EU’s productivity growth performance relative to that in the US since the mid-1990’s. It will serve the discussion in later sections on the policy approach to be adopted in order to remedy this situation. More particularly, this section will address the following questions:

o Firstly, in explaining recent EU-US divergences in productivity trends, to what extent is the EU’s relatively poor performance linked with its particular industrial structure and its difficulty in re-orientating its economy towards the newer, higher productivity, growth sectors such as ICT ?

2

Page 3: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

o Secondly, what is the contribution of ICT towards explaining the productivity trends, not only as a high-tech, high-productivity-growth sector, but also in its role as a General Purpose Technology increasing the productivity growth in other sectors?

O Thirdly, the analysis focuses on the specific role to be played by the production and absorption of new technologies in any overall strategy.

2.1. An industry level breakdown of labour productivity trends : Where are the EU’s problems coming from ?

Graph 1 zeros in on the sectoral productivity growth structure of the EU and US economies :

The EU has been doing reasonably well compared with the US in a wide range of manufacturing and service industries over the second half of the 1990’s. However the problem for the EU is that most of these industries, not being the high-growth sectors, are not making big contributions to overall productivity growth or do not have a large enough share of EU output to alter the EU’s overall productivity performance. In addition, for most of these industries not only are productivity growth rates low but they have been declining over the course of the 1990’s.

Regarding manufacturing, two sectors dominate the overall productivity patterns, namely semiconductors and office machinery. These are the two industries where the US is clearly ahead, with semiconductors contributing 5 times more to US productivity growth compared to the equivalent gains for the EU and with office machinery contributing more than twice as much.

The US is dominant in the private services industries category. Of the service industries which individually contributed significantly to overall productivity growth, the US is dominant in the financial services area, and wholesale and retail trade. Only, in communications, the EU holds the advantage.

For the EU, the productivity improvements which have been achieved in a number of the network industries took place when liberalisation efforts were most evident. The size of these industries is, however, not large enough to alter the overall EU picture in any significant way.

Finally, regarding the primary industries and public services, the striking feature is the vastly different performance of the EU and the US in health, education and social services where the US experienced large negative contributions compared with a positive / broadly unchanged position for the EU. Obviously, measurement problems could blur the picture here.

Graph 1 : Contributions of the 56 Industries to Overall Labour Productivity Growth in the US + EU15 (1996-2000) (Source: ECFIN (2004), Annual Review)

3

Page 4: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

-0.2%

-0.1%

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

Sem

icon

duct

ors

Offi

ce M

achi

nery

Clo

thin

gC

hem

ical

sR

ubbe

r & P

last

ics

Text

iles

Mot

or V

ehic

les

Fur

nitu

reBa

sic

Met

als

Air

& Sp

acec

raft

Pulp

& P

aper

Met

al P

rodu

cts

Inst

rum

ents

Rai

lroad

Equ

ipm

ent

Insu

late

d W

ire S

hips

& B

oats

Leat

her

Tele

com

Equ

ipm

ent

Min

eral

Pro

duct

sO

il & N

ucle

ar F

uel

Prin

ting

& Pu

blis

hing

Rad

io a

nd T

VW

ood

& W

ood

Prod

ucts

Ele

ctric

al M

achi

nery

Mec

hani

cal E

ngin

eerin

gSc

ient

ific In

stru

men

tsFo

od, D

rinks

& T

obac

co W

hole

sale

Tra

de R

etai

l Tra

deR

eal E

stat

e Ac

tivitie

s A

ux.F

inan

cial

Ser

vice

s F

inan

cial

Ser

vice

sC

omm

unic

atio

ns R

entin

g of

Mac

hine

ryAi

r Tra

nspo

rt In

sura

nce

& Pe

nsio

nsAu

x.Tr

ansp

ort A

ctiv

ities

Res

earc

h &

Dev

elop

men

tLa

nd T

rans

port

Wat

er T

rans

port

Leg

al &

Adv

ertis

ing

Com

pute

r Ser

vice

sEl

ectri

city

, Gas

& W

ater

Oth

er B

usin

ess

Activ

ities

Mot

or S

ales

& R

epai

rsC

onst

ruct

ion

Hot

els

& R

esta

uran

tsAg

ricul

ture

Publ

ic A

dmin

& D

efen

ceFi

shin

gFo

rest

ryM

inin

g &

Qua

rryi

ngSo

cial

& P

erso

nal S

ervi

ces

Hea

lth &

Soc

ial W

ork

Educ

atio

n

USA EU15

Manufacturing Private Services Rest of Economy

4

Page 5: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

2.2. The contribution of ICT to EU-US growth differentials

One of the most popular explanations for the diverging productivity fortunes of the EU and the US has been the relative exposure of both areas to ICT.

As section 2.1 has demonstrated, a primary source of US productivity acceleration in the 1990s has been the increasing share of ICT production in the US, combined with extraordinary gains in productivity. However, given the General Purpose Technology characteristics of ICT, one should also see productivity gains from using that technology, further sustaining the ICT effect on aggregate productivity. In fact, both the ICT producing manufacturing and intensive ICT-using private services categories are causing the 1996-2000 divergences in EU-US productivity growth rates. It is precisely in these two areas of the economy where the EU fares most poorly relative to the US either in terms of the size of the respective industries (i.e. small shares of overall EU output) or having relatively low productivity growth rates.

Table 1 : Breakdown into ICT categories (ICT producing + Intensive ICT-Using) Hourly Labour Productivity

(Average % Change)Value Added Share Contribution to Total Change

in Hourly Labour Productivity1991-1995 1996-2000 1991-1995 1996-2000 1991-1995 1996-2000

1(a) ICT-Producing Manufacturing IndustriesEU (9.6) (17.1) 0.02 0.01 (0.2) (0.2)US (16.4) (26.0) 0.03 0.03 (0.4) (0.7)

1(b) Intensive ICT-Using Manufacturing IndustriesEU (2.6) (2.0) 0.07 0.06 (0.2) (0.1)US (-0.6) (1.4) 0.06 0.05 (0.0) (0.1)

2(a) ICT-Producing Service IndustriesEU (4.8) (6.8) 0.03 0.03 (0.2) (0.2)US (2.4) (0.8) 0.03 0.04 (0.1) (0.0)

2(b) Intensive ICT-Using Service IndustriesEU (1.8) (2.1) 0.20 0.21 (0.4) (0.4)US (1.6) (5.3) 0.23 0.25 (0.4) (1.3)SOURCE : ECFIN, ANNUAL REVIEW 2004.

Beyond the diffusion of ICT in the narrow sense (ICT capital deepening), the EU has not been able to reap the same benefits as the US in terms of TFP gains in the ICT using sectors (ICT diffusion in the broader sense). It must be emphasised that the most important gains occur in a narrow segment of the economy and here especially in service sectors (RT, WT, FS) where productivity is difficult to measure. 1In ICT using manufacturing, the relative TFP gains in the US are much smaller.

The fact that TFP accelerations in ICT using service industries are not observed in the EU could be –beyond measurement issues- either due to adjustment costs (EU is in an earlier stage of the transition) or it could be the result of institutional constraints in specific industries (e.g. land use regulations in wholesale and retail trade, less entry of new establishments) which prevents firms to reap the full benefits of the new technology in EU countries. It is

1 There is still a controversy on the size of the contribution coming from ICT using industries, with Gordon remaining sceptical whilst Stiroh / van Ark are more optimistic. Attempts to disentangle production and investment effects using different methodologies, different levels of aggregation and different datasets arrive at rather different results.

5

Page 6: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

important to keep in mind, however, in terms of the ongoing acceleration in ICT usage (or diffusion of ICT in a narrow sense in both WT and RT i.e. the actual purchases of ICT investment goods and services by these industries), there is no big difference between the EU and the US. It is the TFP gains in these two industries where the more important difference appears to be located (ECFIN, Annual Review 2004)).

2.3. The importance of knowledge production and diffusionThe analysis of the contribution to overall productivity growth from ICT production / ICT use in the previous section, has indicated a more general theme, namely the importance to the EU’s future productivity performance of an ongoing process of industrial restructuring aimed at boosting the production and absorption of new, more knowledge based, technologies.

An important question to examine is the extent to which the example of ICT is an isolated case or is likely to be replicated in other high-growth, high-tech industries. If this is a credible risk then the key question is whether the EU has specific problems in relation to its innovation infrastructure (in terms of the resources devoted, rates of return, industry focus) and whether the US has specific features / framework conditions which make it more likely to be the locus for the future breakthroughs in technology. 2The wider issue is why is it that the US seems to be better in creating and exploiting new (general purpose) technologies in general ? This requires broadening the discussion beyond ICT to consider why the US seems to have a better innovation capacity than the EU.

In overall terms when one assesses the evidence in relation to the manufacturing sector, it is fair to conclude that the overall R&D infrastructure of the US seems to dominate that of the EU’s. Not only does the US display a higher R&D intensity overall, it also has a larger weight of is production concentrated in R&D intensive sectors and it realizes a better growth performance in R&D sectors. Hence, differences in innovative capacity are a prime candidate to explain the EU-US differences in productivity growth performances, particularly in high-tech manufacturing industries

Table 2 : Comparison of EU-US differences in R&D spending and Productivity Growth (US=1)

 EU-US Gap in R&D

Spending

EU-US Gap in VA (Specialization)

EU-US Gap in Productivity Growth Rates

 

1991-1995 1996-1999 1991-1995 1996-2000 1991-1995 1996-2000  

2 This is a pertinent question if one accepts the contention of Gordon (2004), amongst others, that the US’s lead in ICT is not an isolated case. The US holds a comparative or absolute advantage also in other general purpose technologies, like its initial leadership in the electricity industry and in its exploitation of the internal combustion engine (Gordon 2004)).

6

Page 7: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Total High Technology

Manufacturing

0.686 0.621 0.825 0.826 0.48 0.41

 

(ICT) 0.552 0.411 0.45 0.42 0.23 0.27  (Non-ICT) 0.783 0.813 0.98 1.01 1.15 2.81  

(Source: DG ECFIN, 2004 Annual Review)

Within high-technology industries, we have to make a distinction between ICT and non-ICT high-tech sectors. As discussed in section 2, the US is more specialized in ICT industries as compared to other high-tech sectors and it has a higher productivity growth in these sectors. This higher productivity growth can be related to a higher spending in total on R&D; and getting a higher leverage out of its R&D investments. For non-ICT high-tech sectors, the picture is less devastating for the EU, particularly in the second part of the nineties. There is no difference in specialization in these industries, nor a productivity disadvantage. The gap in total expenditures on R&D is also smaller than in total. Unfortunately, these sectors, often being only medium to high-tech, have far less scope for productivity growth than the ICT industries.

The main conclusion is that while there are examples of good performance, in particular sectors and particular Member States, overall the EU innovation environment remains weak in a number of key ‘input’ indicators; But in addition to much larger investments in R&D both by the public and the private sector (i.e. the basic innovation infrastructure), there are also other characteristics of the US innovation system which explain its ability to focus on the high productivity growth areas and to gain a higher rate of return from its knowledge investments. What are these factors that determine an economy’s “national innovation capacity” defined as the ability of a nation to not only produce new ideas but also to commercialize a flow of innovative technologies over the longer term?

3. WHAT DETERMINES A NATION’S INNOVATION CAPACITY?

Since Solow’s (1956) model of economic growth, an increasing emphasis has been placed on technical progress as a means for raising growth. However, already Solow stressed that far more needed to be known about the incentives that affect technology and technical change, and how it varied across time and between countries. Subsequent models have attempted to examine these influences through endogenizing technical progress (eg Aghion and Howitt (1992); Grossman and Helpman (1991); Jones (1995)). R&D can affect TFP growth since it produces innovations from which the expected flow of future profits creates an incentive for innovators to undertake further R&D activity. What these later models share in common is the mutually reinforcing relationship between the quantity of resources devoted to creating new ideas, say skilled researchers (Romer 1990), and the existing R&D ‘stock’ of ideas from which the researchers can draw upon to further their research work. In order to increase the ‘supply’ of ideas, strengthening the research base either in the public or private sector is therefore an important task for policy.

7

Graeme Fisher, 05/01/05,
Aghion, P and Howitt, P (19920 “A model of growth through creative destruction” Econometrica, March, 323-51
Graeme Fisher, 05/01/05,
Romer, P (1990) “Endogenous technical change” Journal of Political Economy, 98 (5), October: 71-102
Graeme Fisher, 05/01/05,
Jones, C (1995) “R&D-based models of economic growth” Journal of Political Economy, (103) August: 759-784
Graeme Fisher, 05/01/05,
Grossman, G and Helpman, E (1991) “Innovation and growth in the global economy” MIT Press
Page 8: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

But beyond the research inputs from the public and the private sector, the capacity to link private and public knowledge creators as well as linking the creators and users of knowledge is important to improve the diffusion of know-how. The premise that the performance of an economy in terms of innovation and productivity is not only the result of public and private investments in tangibles and intangibles by individual elements in the system, but is also strongly influenced by the character and intensity of the interactions between the elements of the system, is strongly advocated in the literature on “National Innovation Systems” (Freeman 1987; Lundvall 1992; Nelson 1993). In this view, innovation and technological development depend increasingly on the ability to utilise new knowledge produced elsewhere and to combine this with knowledge already available in the economy. The capacity to absorb new knowledge, to transfer and diffuse knowledge, and the ability to learn by interaction are crucial success factors in innovation which David & Foray (1995) a.o. term the "knowledge distribution power" of the innovation system.

Using the insights from macro, micro and systems models, applied economic theorists (e.g., Furman, Porter & Stern 2002) have synthesized what determines an economy’s “national innovation capacity” defined as the ability of a nation to not only produce new ideas, but also to commercialize a flow of innovative technologies over the longer term (see Box 1). From this perspective a range of factors are deemed to be important for effective innovation effort. A sufficiently developed ‘supply’ side of R&D (as reflected in the amount of R&D carried out or the number of skilled researchers) is a necessary but insufficient condition for successful innovation. Broader framework conditions are important as well, including a sufficient ‘demand’ for innovation to reward successful innovators. This requires sophisticated lead users willing to pay for innovations, effective intellectual property rights (IPR) schemes, a favourable macro-economic environment and effective competition in output markets, and especially market entry and exit processes. 3

But perhaps the most critical element in the framework is the interconnectedness of the agents in the system, linking the common innovation infrastructure to specific technology clusters. Through networking among firms, researchers and governments, the supply of new ideas diffuses through the economy. This requires a.o. good industry-science links and well functioning capital and labour markets, such that the human and financial capital inputs get allocated to their most efficient applications.

Box 1: National Innovation Capacity: An integrative framework

Common Innovation Infrastructure: cross-cutting institutions, resources and policieso Existing Stock of Technological Know-howo Supporting Basic Research and Higher Educationo Overall Science and Technology Policy

Technology/Cluster Specific Conditions:o Technology specific know-how : specialized R&D personnel

3 According to Baumol (2004), innovations in the US come from two distinct sources, firstly from the activities of large firms and secondly from the efforts of independent inventors and their entrepreneurial partners. Baumol asserts that the active presence of both groups enhances the overall innovation process since their activities are complementary, with the independent inventors / entrepreneurs specialising in breakthrough innovations and with the R&D departments of the larger firms enhancing these breakthroughs and adding to their overall usefulness. Jovanovic & Rousseau (2003) link the ICT’s arrival as a GPT to higher firm entry and exit rates, with the young, smaller firms doing better relative to old incumbent firms, indicating the importance of flexible product markets for the diffusion of new technologies.

8

Page 9: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

o Incentives for innovation : lead users, appropriation (IPR) and output market competition: (local) rivalry, openness

o Presence of related/supporting industries (clusters) Quality of Links bt clusters & common factors

Industry-Science Relationships Efficient labour & capital markets

Source: On the basis of Furman et al (2002)

In the National Innovation Capacity perspective, country differences with respect to innovation and growth might reflect not just different endowments in terms of labour, capital and the stock of knowledge, but also the varying degrees of the “knowledge distribution power” or the efficiency of the innovation system. Overall, this perspective warns against looking at statistical indicators individually to assess the performance of a National Innovation Capacity. Rather, a systemic approach should be taken to understand the relationships between STI and socio-economic development. The problem with this approach, however, is to approximate empirically the institutional framework and the “knowledge distribution power” of nations. What is available at present are only pieces of statistical evidence showing the importance of interactions, such as the availability of venture-backed financing, cooperation in R&D among firms and between science and industry, (international) co-patenting, the number of researchers employed by business,… (see for example, Furman et al. (2002), EPC (2002)).

These framework features, although more difficult to document with statistical indicators, need however to be taken into account when we want to understand the relative overall effectiveness of the US versus the EU innovative system, if not quantitatively, than at least qualitatively. The EPC (2002), from combining fieldwork evidence and an analysis of statistical indicators, concludes that ‘market pull conditions’ and knowledge networks are key areas of EU weakness. The EU generates a great deal of knowledge in its universities and research institutes and produces large numbers of skilled personnel. But often it does not exploit this knowledge and expertise for social and economic needs (the ‘European paradox’). The study shows that general framework conditions appear to be vital. Above all a highly competitive environment is essential. Gordon (2004) identifies a better connectedness in the US of science and industry with an openly competitive system of private and public universities and government subsidies to universities through peer-reviewed research grants, which result in a higher quality of the research base. Other important framework conditions present in the US are the advantage of a large, unified market unencumbered by differences in language, customs and standards; a clearer and stronger US Intellectual Property Rights system; more flexible financial markets, making available venture capital finance to innovating firms; and more flexible labour markets, affecting both internal migration and the international immigration of highly skilled people.

The overarching policy implication from all this is a call for improving the framework conditions, requiring a ‘systemic’ approach. This means not only having the right competition rules in place, but creating an environment in which smaller more nimble firms are able to grow extremely quickly and challenge less innovative incumbents to improve their performance. In addition, countries need to ensure that there are healthy fiscal and regulatory environments that promote innovation, a political environment which is encouraging of enterprise and scientific education, well-functioning capital markets, a well defined public-

9

Page 10: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

sector/private-sector interface, and an excellent education and scientific infrastructure. This requires unprecedented levels of cooperation among policy makers, both in terms of action at the EU level, and sharing good practice and understanding at the national level. It requires developing an EU innovation system where knowledge flows connect and network all member states.

10

Page 11: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

4. THE POLICY REACTION: THE LISBON AGENDA: A “SYSTEMIC APPROACH” ?

At the European Council of March 2000 in Lisbon, the EU launched a ten-year long comprehensive set of integrated structural reforms geared towards the general objective of becoming “the most dynamic and competitive knowledge-based economy in the world capable of sustainable economic growth with more and better jobs and greater social cohesion” as well as “an increasing respect for the environment”. With the adoption of the strategy of Lisbon as it became known, the European leaders acknowledged the need for profound reforms in the EU in view of the challenges of ageing, enlargement and globalisation. EU Heads of State and Government were well aware that such policy endeavour could only be effectively undertaken by a concerted approach involving all Member States and involving many policy areas.

The scope of the Lisbon strategy has been wide from the outset, not only in terms of objectives (sustainable economic growth, more and better jobs, greater social cohesion, environment), but also in terms of the policy tools to be used. The Lisbon European Council conclusions make reference to the need to apply an appropriate macro-economic policy mix, to modernise the European social model, to invest in people and combat social exclusion; to improve R&D and ICT policies, to stimulate competitiveness and innovation, and to complete the Internal Market.

The typology of Lisbon reforms and objectives in Scheme 1 permits to better appreciate the scope of the Lisbon strategy and to assess the economic consequences of reforms undertaken (Source: EC-ECFIN (2005)). The Lisbon reforms have been classified into five categories: product and capital market reforms; investments in the knowledge-based economy; labour market reforms; social policy reforms; and environmental reforms. The Lisbon objectives are classified in five categories as well: greater competitiveness; creation of a dynamic knowledge-based economy; increased employment; better jobs and greater social cohesion; and environmental sustainability.

11

Page 12: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Scheme 1: Typology to Lisbon reforms

Macroeconomic framework conditions LISBON REFORMS

Product and capital market reforms

Investments in knowledge-based economy

Labour market reforms Social policy reforms Environmental policy reforms

1. Improve the functioning of the Internal Market for goods and services

1. Invest in education and training

1. Improve incentives to participate and remain in the labour market

1. Modernisation of social protection systems

1. Improve understanding of environmental problems

2. Improve the business environment

2. Invest in R&D and innovation

2. Improve matching between human resources and vacancies

2. Improve working conditions and skill levels

2. Increase use of cost-benefit analysis

3. Promote EU financial integration

3. Encourage production and use of ICT

3. Increase labour market flexibility

3. Increase use of market-based instruments

Increased competition and efficiency

Increased innovative capacity Improved use and allocation of human resources

Reduction in the risk of social exclusion and creation of better jobs

Less costly, more effective environmental policies

COMPETITIVENESS DYNAMIC KBE MORE JOBS BETTER JOBS AND GREATER SOCIAL COHESION

ENVIRONMENTAL SUSTAINABILITY

PRODUCTIVITY GROWTH AND EMPLOYMENT CREATION

STANDARD OF LIVING

Economic sustainability LISBON OBJECTIVES

12

Page 13: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

The classification of reforms and objectives in Scheme 1 suggests a number of economic links between structural reforms and performance in terms of achieving the Lisbon objectives. It clearly illustrates that the Lisbon strategy embodies the idea that to yield maximum synergies from structural reforms, they are best implemented in a comprehensive and co-ordinated way. As the previous sections have documented, tackling the deficiencies in the innovative capacity, requires a systemic policy perspective. Investment and innovation benefit from a more competitive and entrepreneurial environment, fostered by structural reforms on product, capital and labour markets that improve the transfer of resources from low-productivity to higher productivity use. Therefore, beyond stimulating the research inputs from the public and the private sector, it is important that other structural reforms are part of the Lisbon agenda. With well functioning product markets, firms will have incentives to innovate and new firms, embodying new ideas can flow into the market. Furthermore, new business opportunities can only be taken advantage of if appropriately educated and skilled workers can be hired under the right conditions. This requires flexible labour markets providing innovators access to researchers and skilled human capital. Similarly, well functioning risk capital markets assure innovators access to financial capital to finance their risky projects. Especially high-tech start-ups, often an important source of breakthrough innovations, need open product markets with low entry barriers, access to capital, especially early stage financing of high risk ventures, and they also need flexible labour markets, esp researchers mobility between science and industry.

5. IMPLEMENTING THE STRATEGY: NEED FOR INDICATORS

One of the challenges to implement the Lisbon Strategy is to get the Member States involved. Since the structural reforms touch upon sensitive areas of national competence, the EU member states need to be incentivated to act on the reforms and to coordinate their policies. This is implemented through the “open method of coordination” which involves inter alia:

Agreements of targets with timetables Use of indicators and benchmarks Periodic evaluation of progress made.

The wide scope of the Lisbon strategy made it necessary to focus and identify a restricted well defined set of targets and policy measures necessary to achieve the objectives, and at the same time, a corresponding restricted set of indicators to monitor progress on the targets.

5.1. Defining the targets and policy measures

In the summer of 2004, the EPC4 attempted to compile a definitive list of targets and policy measures of the Lisbon strategy under six areas: economic performance; employment; education, innovation and research; economic reform; social cohesion; and environment/sustainable development. With respect to research and innovation, a key element of the Lisbon strategy has been to speed up the transition towards a knowledge-driven economy under the umbrella of a European Knowledge Area (EKA). Action has been shaped around a range of initiatives from e-Europe and the creation of a European Research Area to promoting innovation and establishing common objectives at EU level for national

4 Economic Policy Committee (2004), “Mid-term review of the Lisbon strategy: Progress Report by the Economic Policy Committee”, Annex B. The list presented by the EPC is largely based on information provided in the Commission Staff Working Paper in support of the 2003 Spring Report.

13

Page 14: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

education policies. For Innovation and Research, the following box summarizes the targets and policy measures with respect to the EKA (see Annex I for the full list on all areas).

Research Network national and joint research programmes on a voluntary basis around freely chosen

objectives Improve the environment for private research investment, R&D partnerships and high-technology

start ups Develop an open method of co-ordination for national research policies Roll out a world class research communications infrastructure Remove obstacles to the mobility of researchers, attract and retain high-quality research talent in

Europe Introduce a cost-effective Community Patent Harness new and frontier technologies, notably biotechnology and environmental technologies

(Stockholm) Full implementation of the e-Europe Action Plan by 2005

Information Society All teachers to have training in digital skills by 2003 Ensure access to widespread, world class communications infrastructure and ensure significant

reduction in the cost of using the Internet (local loop unbundling) Create conditions for e-commerce to flourish Prevent info exclusion Stimulate e-Government Support take up of 3G mobile communications and introduction of Internet Protocol version 6

Education Achieve a substantial increase in per capita spending on human resources Promoting lifelong learning Adapt skills base better to needs of knowledge society Better recognition of qualifications Promote learning of EU languages and introduce a European dimension to education Promote school twinning via Internet

This has been translated into specific and measurable targets for the European Knowledge Area:

Increase R&D spending with the aim of approaching 3% of GDP by 2010. The proportion financed by business should rise to two thirds of that total by 2010. 100% of schools to be connected to the internet by 2002 100% of teachers to have training in digital skills by 2003 Internet penetration in households should reach 30% by 2002 Basic governmental services should be 100% online by 2002

See Annex III for all major measurable targets of the Lisbon Strategy.

5.2 Indicators

(a) Structural Indicators

To monitor the progress on the targets of the Lisbon strategy, the Commission and the Council agreed on a list of 14 structural indicators. Member States’ performances on these indicators is continuously being assessed.

14

Page 15: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

GDP per capita Labour productivity per person employed Employment rate Employment rate of females Employment rate of older workers Educational attainment (20-24) R&D expenditures (% of GDP) Business Investment (as % of GDP) Comparative price levels At-risk-of poverty rate Long-term unemployment rate Dispersion of regional employment rates Greenhouse gas emissions Energy intensity of the economy Volume of transport.

For the European Knowledge Area, R&D expenditures as a % of GDP, with a target of 3% is the main indicator. But beyond this main indicator there are other (secondary) structural indicators of the EKA identified.

Spending on human resources (public expenditure on education) GERD (Gross domestic expenditure on R&D) GERD (Gross domestic expenditure on R&D) by source of funds Level of Internet access – households /enterprises Science and technology graduates – total/females/males Patents – EPO/USPTO Venture capital investments – early stage/expansion & replacement * ICT expenditure – IT/Telecommunications expenditure *

(b) Innovation Indicators

Beyond the structural indicators which cover all Lisbon areas, the Lisbon European Council also requested for the area of innovation and R&D, the development of the European Innovation Scoreboard (EIS) by DG Enterprise5. It focuses on high-tech innovation and provides indicators for tracking the EU’s progress towards the Lisbon goal. The 2003 EIS contains 19 main indicators, selected to summarize the main drivers and outputs of innovation. These indicators are divided into four groups: Human resources for innovation (5 indicators); the Creation of new knowledge (4 indicators); the Transmission and application of knowledge (3 indicators); and Innovation finance, output and markets (7 indicators). The EIS mainly uses Eurostat data, covering 32 countries. Six of the 19 indicators are drawn from the EU Structural Indicators.

1. Human resources

1.1 S&E graduates (‰ of 20 - 29 years age class) 1.2 Population with tertiary education (% of 25 - 64 years age class) 1.3 Participation in life-long learning (% of 25 - 64 years age class) 1.4 Employment in medium-high and high-tech manufacturing (% of total workforce)1.5 Employment in high-tech services (% of total workforce)

5 In addition, in the framework of enterprise and industrial policy, there is the complementary Enterprise Policy Scoreboard. Several indicators in both scoreboards are identical,

15

Page 16: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

2. Knowledge creation2.1 Public R&D expenditures (GERD - BERD) (% of GDP) 2.2 Business expenditures on R&D (BERD) (% of GDP)2.3.1 EPO high-tech patent applications (per million population) 2.3.2 USPTO high-tech patent applications (per million population) 2.4.1 EPO patent applications (per million population) 2.4.2 USPTO patents granted (per million population)

3. Transmission and application of knowledge3.1 SMEs innovating in-house (% of manufacturing SMEs and % of services SMEs) 3.2 SMEs involved in innovation co-operation (% of manuf. and services SMEs) 3.3 Innovation expenditures (% of all turnover in manufacturing and services)

4. Innovation finance, output and markets

4.1 Share of high-tech venture capital investment 4.2 Share of early stage venture capital in GDP 4.3.1 SMEs sales of 'new to market' products (% of all turnover in manufacturing and services SMEs) 4.3.2 SME sales of 'new to the firm but not new to the market' products (% of all turnover in manufacturing and services SMEs) 4.4 Internet access/use 4.5 ICT expenditures (% of GDP) 4.6 Share of manufacturing value-added in high-tech sectors4.7 Volatility-rates of SMEs (% of manufacturing and services SMEs)

(c) Research Indicators

The European Research Area initiative (ERA) aimed to create a single market for research, achieving more coherence between research policies conducted throughout Europe, in order to reinforce their overall impact. This necessitates a better knowledge of those policies and the identification of good practices, as well as the establishment of collective learning processes across Europe. To this aim, DG Research was entrusted with a mission to produce a set of indicators and a methodology for benchmarking research policies in the Member States. A set of 20 indicators was proposed to help monitor and report on progress towards the ERA. Most of the indicators are already used in other Commission publications. Eight indicators are also used in the European Innovation Scoreboard. (Source: DG RESEARCH, Investing in research: an action plan for Europe).

Investment Share of gross domestic expenditures on R&D (GERD) in GDP GERD as a % of GDP by source of fund Share of business enterprise expenditures on R&D (BERD) in GERD Share of BERD financed by government Share of SMEs in BERD financed by government R&D intensity (R&D expenditures as % of GDP) across industries in

manufacturing R&D intensity (R&D expenditures as % of GDP) in some high-tech sectors

16

Page 17: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Human Resources Share of total tertiary education expenditure in GDP Share of researchers (RSEs) in population Share of R&D personnel in labour force by institutional sector R&D expenditures by RSE by institutional sector Number of yearly new S&T PhD in 25-34 population Breakdown of employed HRST according to native country

Innovation potential Number of patents with EPO and USPTO Number of High-Tech patents at EPO and USPTO per capita

Business Innovation Share of seed& start-up venture capital in GDP Share of seed& start-up in venture capital for all sectors and for high-tech sectors Expenditure on innovation in turnover of manufacturing industry SMEs innovating inhouse (% of manufacturing SMEs) Innovative co-operating SMES (% of manufacturing SMEs)

Competitiveness Technology Balance of Payments per capita High-tech products imports and exports per capita

17

Page 18: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

6. EVALUATING PERFORMANCE ON THE SELECTED INDICATORS

Presently at mid-term, the Lisbon strategy is under review (Kok report (2004)). It is clear that the objectives are far from being achieved. Halfway to 2010 the overall picture is very mixed and much needs to be done in order to prevent Lisbon from becoming a synonym for missed objectives and failed promises. Annex III provides a mid-term assessment of the main targets identified in the Lisbon strategy.

Over the last four years, the overall growth performance of the European economy has been disappointing. In fact, after having peaked in the mid-1990’s at around 97% of US levels, EU labour productivity per hour is projected to deteriorate to around 88% in 2005, which is close to its relative level in the early 1980s. This post 1995 deterioration in relative productivity levels reflects a sharp decline in EU productivity growth rates relative to those of the US over the period in question. Net job creation largely slowed down considerably in recent years and the risk is apparent that the 2010 target of 70 % employment rate will not be reached. The same applies to the target of 50 % for older workers. However, despite disappointments Lisbon is not a picture of unrelieved gloom. There has been significant progress in employment between the mid-1990s and 2003. European governments have introduced measures that cumulatively have attempted to remove obstacles to the employment of low-paid workers, stepped up their active labour market polices, and permitted the growth of temporary employment and employment by females and older workers (DG ECFIN (2005)).

One of the most disappointing aspects of the Lisbon strategy to date is however the performance on R & D. On the R & D target, only two countries (Finland, Sweden) currently have R & D spending exceeding 3 % of GDP; in these same two countries business is achieving the goal of spending the equivalent of 2 % of GDP on R & D. The rest are behind on both scores. Progress in providing every teacher with digital training is very disappointing. On a positive note, Member States have progressed in the spread of ICT and Internet use in schools, universities, administration and trade. Household Internet penetration, for example, has risen rapidly, with 12 Member States meeting the targets.

The little progress that has been made on R&D is all the more remarkable taking into account that the Lisbon European Council rightly recognised that Europe’s future economic development would depend on its ability to create and grow high value, innovative and research-based sectors. One of the preconditions for any increase in European productivity growth is to increase R & D spending.

However, the knowledge society is a larger concept than just an increased commitment to R&D expenditures. Further zooming in on innovation and R&D, Table 3 provides a look at a selected combination of indicators from the Innovation Indicators discussed supra for the EU15 relative to the US and Japan (see Annex IV for an assessment of all 2003 European Innovation Indicators for all Member States).

As Table 3 indicates, Europe lags behind the US and Japan on several indicators. Although S&T graduates show no gap, both Japan and the US have significantly more working population with tertiary education. Both government-, but especially business- expenditures on R&D are considerably lower within Europe. Moreover, growth rates differentials reveal a similar trend, suggesting a further widening of this gap in the near future. Also with respect to

18

Page 19: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

invested venture capital, within Europe, the amounts of resources available (divided by GDP) are clearly lower.

This difference in the level of S&T ‘inputs’ between the EU and the US is accompanied by lower levels of technological output. Both the US and Japan outperform Europe in terms of technological performance as measured by the number of patents per million inhabitants; this ‘gap’ being even more pronounced for high tech patents. Similarly, in terms of the share of added value within manufacturing industries, especially the difference with the US is striking; while high tech sectors account for about a quarter of (manufacturing) added value in the US, in Europe this is only 14%.

Table 3 : Selection of Main EIS Indicators – A Triad Comparison

EU15 US JPN1. S&E Graduates 11.3 10.22. Work Pop with 3th Educ 21.5 37.2 33.83. Public R&D expenditures (GERD-BERD) (% of

GDP) 0.69 0.76 0.81

4. Business expenditures on R&D (%of GDP) 1.30 2.04 2.285. Early stage venture capital in GDP 0.037 0.2181. EPO patent applications (per million population) 161.1 169.8 174.72. USPTO patent applications (per million population) 80.1 322.5 265.23. EPO high-tech patent application (per million

population) 31.6 57.0 44.9

4. Share of high-tech sectors in manufacturing value added

14.1 23.0 18.7

5. ICT expenditures (%GDP) 7.0 8.2 9.0Source: European Commission (2004), "2003 Innovation Scoreboard," Commission Staff Working Paper. EC, Brussels.

Broadly speaking, a picture emerges from the indicators where the EU continues to lag behind on the level of technological performance and related –technology intensive – economical activity. All this confirms the analysis of the deficiency of the EU’s innovative and growth capacity underlying the rationale for the Lisbon strategy, as discussed in sections 2 & 3. Hence, the conclusion seems unescapable that Lisbon as yet has failed to deliver wrt improving the EU’s innovative capacity.

7. CONCLUSIONS: EVALUATING THE POLICY PROCESS

7.1. Lisbon as a systemic approach?

At mid-term it is clear that the Lisbon strategy has not delivered what was expected, particularly with respect to the knowledge economy. While the worldwide and particularly European macroeconomic climate may have contributed to this situation, the slow pace of policy reforms and of their implementation by the Member States has held back economic growth.

Is the Lisbon strategy too ambitious? The answer of most mid-term reviewers is no, on the contrary. Even if every target were to be hit on schedule, Europe would not be on safe

19

Page 20: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

ground. Structural reforms are even more important with the challenges of globalisation, ageing and enlargement.

Is Lisbon the wrong strategy? The economic literature on the impact of Lisbon-type reform ranges wide and is not easy to summarise (see DGECFIN 2005). Nevertheless, a clear impression emerges that Lisbon-type reforms have substantial positive economic effects and are what is needed to get the EU growth performance on track again.

Is Lisbon too broad ? A broad agenda is necessary to exploit the existing complementarities between reforms undertaken simultaneously in different domains. A ‘systemic’ approach builds on complementarities among reforms: in order to reach maximum effectiveness measures in one reform domain need to be accompanied by flanking measures in another domain. Measures that increase the level of competition in product markets, for example, often lead to economic restructuring implying job losses in some sectors and employment creation in others. Well functioning labour markets and sufficient social support would tend to facilitate such a transition. Similarly, a full exploitation of the potential benefits of EU financial integration would require an efficient competition regime, increased transparency of financial information and macro-stability. Hence, in view of the complementarities, Lisbon should be broad, ie cover multiple policy areas.

Lisbon not only needs to cover multiple policy areas, Lisbon is also a strategy that is best pursued collectively by all Member States if maximum benefits are to be reaped. In order to ensure these benefits, Member States must take their responsibility and take ownership of the process.

The problem is, however, that the Lisbon strategy has become too broad to be understood as an interconnected truly ‘systemic’ endeavor. Lisbon is a collection of policy initiatives, rather than a truly integrated view. A major deficiency of the Lisbon strategy is the governance of the policy process, with a lack of peer pressure at the level of the Member States and poor communication about the benefits to all actors involved.

This is why the mid-term reviewers have called for more focus (Kok report (2004)). For Europe to increase its living standards, it needs to focus on employment and productivity growth. But in line with the systemic approach, this needs to be done through a wide range of reform policies as well as a wider macroeconomic framework as supportive as possible of growth. No single action will deliver higher growth. Rather, a series of interconnected initiatives and structural changes are needed. In line with a “systemic perspective”, the Kok report calls for action across five areas of policy:

• the knowledge society: increasing Europe’s attractiveness for researchersand scientists, making R & D a top priority and promoting the use of information and communication technologies (ICTs);• the internal market: completion of the internal market for the free movement of goods and capital, and urgent action to create a single market for services;• the business climate: reducing the total administrative burden; improving the quality of legislation; facilitating the rapid start-up of new enterprises; and creating an environment more supportive to businesses;• the labour market: rapid delivery on the recommendations of the European Employment Taskforce; developing strategies for lifelong leaning and active ageing; and underpinning partnerships for growth and employment;

20

Page 21: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

• environmental sustainability: spreading eco-innovations and building leadership in eco-industry; pursuing policies which lead to long-term and sustained improvements in productivity through eco-efficiency.

This plan of action clearly carries as a priority for growth, progress on the knowledge society;

At the same time, the mid-term reviewers have called for an improvement in the governance of the Lisbon process. An ambitious and broad reform agenda needs a clear narrative, in order to be able to communicate effectively about the need for it. So that everybody knows why it is being done and can see the validity of the need to implement sometimes painful reforms. The task is to convince Europe’s leaders and public intellectually of Lisbon’s case;

7.2. Evaluating the indicators and targets for improving the Innovative capacity

Are the set of indicators chosen to evaluate progress, the right indicators for informing improvement towards the Lisbon objectives? The set of indicators -both the structural indicators, and those specific for research and innovation- although being restricted by data availability, clearly look like being inspired by the specific weaknesses of the EU innovative capacity and the ‘systems’ approach towards improving this capacity.

Although R&D spending is a central structural indicator, it fits into a set of other structural indicators allowing integration with labour, capital, and product market reforms. The targets in other areas are key to improving the innovative capacity. For instance assessing the ease of entry of new firms and their survival is important to have new ideas coming to market. For this, targets like the Risk Capital Action Plan, lowering the cost of doing business, further opening up of markets, are important to assess. But also targets like livelong learning, and the reduction of barriers to labour mobility between Member States, will improve the human capital resources necessary for implementing innovation strategies. Even sustainable development targets, when directed towards green technology development, could be developed into a EU strength.

Are we measuring the right indicators for informing improvements in innovative capacity? The systemic view seems to have been underlying the selection of research & innovation indicators. A key message from a systemic approach is that the effectiveness of innovation systems depends on the balanced combination of creative capacity, diffusion capacity and absorption capacity. It is well recognized that human and social capital are the necessary oil in the system: in a knowledge-based economy, they represent the most important resource; The structural indicators and Lisbon targets selected for the European Knowledge Area, beyond R&D expenditures, reflect the importance of a highly educated labour force as central in EU’s creative but also distributive capacity. It also reflects the specific importance of ICT in the EU’s growth agenda as a General Purpose Technology and recognizes the importance of financing for innovation.

The area of indicators that is least represented is Scientific Performance and Industry Science Links. Especially the lack of Industry Science Link Indicators is disturbing since this is one of the particular deficiencies of the EU innovative capacity (cf European Paradox). What we are missing in the set of main indicators are those on Industry-Science Links, such as for

21

Page 22: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

instance, cooperation between firms and research institutes, co-patenting & co-publishing, researcher mobility between industry and science, private research funding of basic research, patenting by universities and public research institutes, spin-offs…This is partly due to a lack of systematic data on this, but clearly more could be done here (Gault (2005)).

Another criticism is the highly aggregate level of the indicators. Underlying any aggregate innovation indicator, is the structural make up of the economy, which differs greatly between EU countries. Such structural differences can have an important role in explaining some of the differences in innovation performance. The main reason is that there is a great deal of diversity amongst industrial sectors in terms of innovation process, innovation inputs and outputs. First, technological opportunities differ across sectors with ICT as a prime example of the high growth sector with huge opportunities for technological advance. Another major difference across sectors is the size of the innovating unit, which is typically large in certain industries such as Chemicals, Motor vehicles, and Aircraft, and small in Machinery, Instruments and Software. Moreover the objectives of innovation are different amongst sectors. In Pharmaceuticals and Machinery sectors the main aim is to introduce product innovations, in the Iron and Steel industry the major objective of innovative activity is to come up with process innovations, and in the Motor vehicles industry both are important. There is a great deal of diversity amongst the sources of innovation. In Agriculture and Traditional Manufacturing industries (such as Textiles, Wood and Paper) suppliers are important source of innovative ideas, in Instruments, Machinery and Software, users play this role. In-house R&D laboratories are important in the Chemicals industry and many parts of the Electronics industry. In Pharmaceuticals a major source of innovative ideas is basic research. This implies that there will be major differences across sectors in many of the indicators used in the EIS, for example those based on R&D, patenting, SMEs and innovation expenditures. Since the systemic approach operates at the specific technology or sectoral level, this implies that indicators should be traced at technology/sectoral level. The single most important constraint is the lack of data at the sector level for some key variables. Nevertheless, the main conclusion from an exploratory analysis of the EIS indicators at sectoral level is that there is a great deal to be gained by analysing innovation performance across sectors 6

Another area of over-aggregation is the geographical dimension. Regional level data are of value for two reasons. First, innovation policies are often developed and implemented at the regional level, in addition to national and EU level policies. Regional indicators can help inform these policies. Second, many innovative activities are strongly localized into clusters of innovative firms, sometimes in close co-operation with public institutions such as research institutes and universities. The effective design and implementation of cluster policies therefore depend on identifying both highly innovative regions and less innovative regions that might have future potential. Some regions may need diffusion-oriented policies that focus on the adoption rather than the creation of new technology, while others, with high-level

6 For the restricted set of indicators that are available at sectoral level, the results show that a country with a high ranking in high technology industries is also likely to have a high ranking in medium-high, medium-low, and low technology industries. Thus Finland is ranked 2nd amongst the EU countries in high technology and 1st in medium-low technology industries. The countries that have above average performance in all four sectors are the Netherlands, Finland, Sweden, Germany, and Belgium. The countries that lag behind most EU countries in all four sectors are Greece, Spain and Portugal. France, UK, Ireland, Italy show heterogeneous performances across the different industries. Source: DG Enterprise, 2003 European Innovation Scoreboard:Technical Paper No 4 Sectoral Innovation scoreboards.

22

Page 23: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

knowledge creation activities, might be best served with policies focusing on spin-offs and high-tech clusters creation. 7

Beyond the selection of indicators and the level at which they should be evaluated, there is also the issue of the systemic approach to evaluating the indicators. Since multiple dimensions need to be measured for innovation capacity, multiple indicators need to be developed and assessed simultaneously. The recognition of the need to measure multiple dimensions has led to an emerging call for composite indicators (Grupp & Magee (2004)). Also the EU had advocated the use of composite indicators. The EIS 2003 for instance, contains 2 such composite indicators as well as the 3% Action Plan. However the use and implementation of composite indicators are currently merely seen as a way of summarizing different indicators, rather than as reflecting the need for a systemic evaluation of indicators. This is clear since mostly the weighing of indicators is statistical rather then guided by a clear conceptual model.

7.3. Implications for STI policies?

Enhancing horizontal policy coordination: STI policies should not be designed in isolation from each other (research policies, innovation and education policies) and in close interaction with other policy areas (financial markets, labour markets, product markets, macro-economic stability, environmental policies). Increasing the efficiency of STI policies implies improving the policy arena in terms of co-ordination among various policy makers. Close co-operation among decision-making instances or even integration should be explored to guide prioritisation processes and to better exploit synergies.

Enhancing vertical policy coordination: The natural tendency for R&D resources to concentrate geographically should be reflected in a regional policy design, but this should be accompanied by coordination of policies among regional, national and international policy makers. The Lisbon strategy and the ERA should not be thought of as a harmonization process: innovative and productive structures’ differ across countries and regions. A decentralized policy approach implies more possibilities of adaptation to local specific needs in order to better align the various complementary local actors. Flexibility of policy measures is needed at the various administrative levels, especially between national and regional levels. Nevertheless, coordination among the various policy levels is important. Nation-based RTD policy can be more effective if part of a European policy design. The progressive opening of national programs, cross-fertilization measures and international mobilization of human resources need to be promoted. The idea is to facilitate co-operation and to boost diffusion and uptake of knowledge by increasing the efficiency of the resources used.

7 One of the expansions of the 2002 EIS was the development of a Regional Innovation Scoreboard (RIS). The 2002 RIS was limited to those indicators from the EIS for which regional data were available and to a static comparison only. RIS uses regional data for 13 innovation indicators plus per capita GDP at the regional level for the EU member states. The available regional innovation indicators provide good coverage of the innovation categories Human resources (4 indicators), Knowledge creation (4 indicators) and Transmission and application of knowledge (4 indicators). The coverage of Innovation finance, output and markets is limited to only one indicator. Hence, due to data limitations, the regional indicators are better at identifying strong innovative regions than regions with future potential, or regions that require diffusion-oriented policies.

23

Page 24: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Improving the management of the policy framework. Well-developed skills and competencies are needed within the policy world itself. Inventiveness and creativity in policy building will be enhanced if policy makers can access experiences of other countries, provided these are presented in their context and evaluated properly. Benchmarking exercises involving policy makers, should be conceived as “learning-by-interacting” exercises rather than “diffusion of best practices”. STI policies need to be supported by monitoring and evaluation (scientific, external) practices, which then feed back into the policy process. Involving stakeholders in policy-making is necessary. Policy design processes that are inclusive (i.e. associate stakeholders to the decision-making process) are more suited to the challenges of a systemic approach to the Lisbon strategy, because they take better into account all the elements of the system and the relationships between them. This emphasizes the importance of an appropriate governance system for policy.

24

Page 25: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

ReferencesAghion, P. and P. Howitt, 1992, A model of growth through creative destruction, Econometrica, 60, 323-351.

Bresnahan, R. and M. Trajtenberg, 1996, General purpose technologies: engines of growth? Journal of Econometrics, 65, 83-108.

Cohen, W. & D. Levinthal, 1989, Innovation and learning: the two faces of R&D, Economic Journal, 99, 569-596.

David, P. and D. Foray, 1995, Accessing and expanding the Science and Technology knowledge base, STI Review, 16.

European Commission, 2003, 3th Science & Technology Indicator Report, DG Research.

European Commission 2003, European Innovation Scoreboard: Technical Papers No 1-4.

European Commission 2004, The EU Economy: 2004 Review, European Economy.

Economic Policy Committee, 2004, “Mid-term review of the Lisbon strategy: Progress report by the Economic Policy Committee”, Annex B

Furman, J., M. Porter, S. Stern, 2002, The determinants of national innovation capacity, Research Policy, 899-934.

Freeman, C., 1987, Technology and Economic Performance, Lessons from Japan, Pinter, London.

Gordon, R., 2004, Why was Europe left at the station when America’s productivity locomotive departed?, CEPR Discussion Paper 4416.

Gordon, R., 2004, Five puzzles in the behaviour of productivity, investment and innovation, CEPR Discussion Paper, 4414.

Gordon, R., 2004, Two centuries of Economic growth: Europe chasing the American Frontier? CEPR Discussion Paper 4415.

Grossman, G. and E. Helpman, 1999, Innovation and Growth in the global economy, MIT Press, Cambridge MA.

Jones, C. I. (2002), Sources of US economic growth in a world of ideas, American Economic Review, Vol. 92, pp. 220-239.

Jovanovic, B. and P. Rousseau, 2003, General Purpose Technologies, in Aghion (Ed.) Handbook of Economic Growth, forthcoming

Lundvall, B-A, (Ed.), 1992, National Systems of Innovation. Towards a theory of innovation and interactive learning, Pinter, London.

Nelson, R. (Ed.), 1993, National Innovation Systems. A comparative analysis, Oxford University Press, Oxford.

Romer, P. (1990), Endogenous technological change, Journal of Political Economy, Vol. 98, pp. S71-S102.

Stern, S., Porter, M. E. and J. Furman (2000), The determinants of national innovative capacity, NBER Working Paper, No 7876.

25

Page 26: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Annex I: List of Lisbon targets and reformsEconomic Performance

The Lisbon strategy does not set particular targets for economic performance. However, a sound economy is a precondition for achieving the objectives of the strategy. That is why particular emphasis has been placed on the Stability and Growth Pact and on structural reforms intended to raise the growth and employment potential of the Union.

The Lisbon approach implies: That if the Lisbon measures are implemented against a sound macroeconomic background an

average growth rate of around 3% per year should be a realistic prospect Member States’ budgets close to balance or in surplus over the medium term, ensuring the long-

term sustainability of public finances Redirecting public expenditure towards increasing the relative importance of capital accumulation

(physical and human) and supporting R&D, innovation and IT

Employment (more and better jobs)

Lisbon has set an overall target of bringing the Union back towards full employment. This means for the Union: An overall employment rate of 70% in 2010 (67% in 2005) A female employment rate of 60% in 2010 (57% in 2005) An employment rate for older workers (55-64) in 2010 of 50% An increase by 2010 of five years in the average age at which people stop working Availability of childcare by 2010 for 90% of children (3 years+) and 33% of under 3s

As well as action at EU level to: Remove barriers to mobility between and within Member States (e.g. recognition of qualifications,

pension portability, better provision of information, etc.) Improve quality in work, in particular the working environment and health and safety

For Member States: Reduction of tax burden on low-wage earners Make work pay within tax and benefit systems National labour institutions and collective bargaining to take account of relationship between wage

developments and labour market conditions in order to bring wage developments in line with productivity

Review employment contract regulations in order to strike a proper balance between flexibility and security

Remove disincentives for female participation in workforce, promote active ageing and reduce early retirement incentives for individuals and companies

Reduce the informal economy

26

Page 27: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Education, Innovation and Research (European Knowledge Area)

Under the umbrella of a European knowledge area, a key element of the Lisbon strategy has been to speed up the transition towards a knowledge-driven economy. Action has been shaped around a range of initiatives from e-Europe and the creation of a European Research Area to promoting innovation and establishing common objectives at EU level for national education policies. This has been translated into targets such as: Increase R&D spending with the aim of approaching 3% of GDP by 2010. The proportion financed

by business should rise to two thirds of that total (target set at Barcelona) 100% of schools to be connected to the internet by 2002 (target set at Lisbon)

Research Network national and joint research programmes on a voluntary basis around freely chosen

objectives Improve the environment for private research investment, R&D partnerships and high-technology

start ups Develop an open method of co-ordination for national research policies Roll out a world class research communications infrastructure Remove obstacles to the mobility of researchers, attract and retain high-quality research talent in

Europe Introduce a cost-effective Community Patent Harness new and frontier technologies, notably biotechnology and environmental technologies

(Stockholm) Full implementation of the e-Europe Action Plan by 2005

Information Society All teachers to have training in digital skills by 2003 Ensure access to widespread, world class communications infrastructure and ensure significant

reduction in the cost of using the Internet (local loop unbundling) Create conditions for e-commerce to flourish Prevent info exclusion Stimulate e-Government Support take up of 3G mobile communications and introduction of Internet Protocol version 6

Education Achieve a substantial increase in per capita spending on human resources Promoting lifelong learning Adapt skills base better to needs of knowledge society Better recognition of qualifications Promote learning of EU languages and introduce a European dimension to education Promote school twinning via Internet

27

Page 28: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Economic Reform

The Lisbon strategy has identified a wide range of structural economic reforms, often translated into requests for the adoption of specific legislative proposals by a given deadline. The following specific targets have been set: Ensure full implementation of the Risk Capital Action Plan by 2003 and the Financial Services

Action Plan by 2005 (target set at Lisbon) Increase the percentage of Internal Market directives transposed into national law to 98.5% (target

set at Stockholm) Increase the percentage of Internal Market directives, which are more than two years overdue,

transposed into national law to 100% (target set at Barcelona) Ensure the opening of energy markets for business customers in 2004 and subsequently for

domestic users (target set at Barcelona) Ensure cross-border energy transmission capacity equivalent to at least 10% of installed production

capacity by 2005 (target set at Barcelona) Achieve a single European sky by 2004 (target set at Barcelona)

In addition, the Lisbon strategy calls for economic reforms to: Increase the supply of venture capital (including via EIB/EIF support) Further opening of market for postal services, railway and port services, and agreement on rules for

public service contracts in transport Increase the openness of public procurement Complete the internal market for services Lower the costs of doing business and reduce red tape Introduce an improved impact assessment system for Community proposals Continue downward trend in state aid as a percentage of GDP and redirect aid towards horizontal

objectives Promote a competitive business environment by eliminating harmful tax competition for businesses Promote quality public services

Social Cohesion (Social Policy Agenda)

The approach to improving cohesion, particularly social cohesion, is strongly focused on implementing the European Social Policy Agenda launched in Nice, but it also recognises the importance of basic education and training as a stepping stone to the labour markets. Targets for the Union include: Halving by 2010 the number of early school leavers who do not continue with further education Efforts to reduce by 2010 the numbers of people living at risk of poverty by setting appropriate

national targets in the 2003 National Action Plans Stimulating the take up of lifelong learning

In addition, other policies should contribute to: Strengthening equal opportunities for the disabled, Promoting gender equality, a good working environment and involve of the social partners in

managing change Promote corporate social responsibility Adapting pension and healthcare / long-term care systems to an ageing population with twin

objectives of ensuring quality and financial sustainability

28

Page 29: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Environment/Sustainable Development

The Göteborg European Council agreed on a sustainable development strategy that underpins the whole of the Lisbon strategy and adds to it an environmental strand. Importance is attached to how decisions are taken and prepared, and to “getting prices right” in order to provide consumers and producers with better incentives to make the right choices for their activities. Four specific priorities were identified in Göteborg which translate in targets such as:Climate change Reduction in greenhouse gas emissions (i.e. Kyoto targets) with visible progress by 2005 Progress towards an indicative target for 2010 of 22% for electricity generated from renewable

sources Set national indicative targets consistent with the reference value of 5.75% for the use of bio-fuels

by 2010 for transport purposesSustainable transport Decoupling GDP and transport growth, in particular by a shift from road to other modes of

transport Tackling rising traffic volumes and congestion, noise and pollution Encourage use of environmentally friendly transport (shift from road) and give priority to investing

in environmentally friendly infrastructurePublic health Respond to citizen’s concerns about safety and quality of food, use of chemicals, infectious

diseases and antibiotic resistanceResource management Decoupling resource use and generation of waste from growth

29

Page 30: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Annex III: The main Lisbon targets (Oct. 2004)Progress of Member States on the MeasurableTargets of the Lisbon Strategy 1

Lisbon Strategy Target Target year

Reference year 2

EU 15 average

EU-15: target

achieved

EU 25 average

EU-25: target

achieved

Employment              

Overall employment rate 67% 2005 2003 64.4% 7 62.90% 8

Overall employment rate 70% 2010 2003 64.40% 4 62.90% 4

Female employment rate 57% 2005 2003 56.00% 9 55.10% 14

Female employment rate 60% 2010 2003 56.00% 7 55.10% 8

Employment rate for workers aged 55-64 50% 2010 2003 41.70% 4 40.20% 6

Increase in average effective retirement age

by 5 years to EU average 65 2010 2001-2002 60.8 0 60.4 0

Available childcare for pre-school children over three 90% 2010 2004 81.30% 4 n.a. n.a.

Available childcare for children under three 33% 2010 2004 24.50% 2 n.a. n.a.

Research, Innovation, Information and Society              

R&D spending/GDP 3% 2010 2003 1.99% 2 1.93% 2

Business participation in R&D spending 2/3 2010 2003 55.90% 3 n.a. 3

All schools with internet connection 100% 2002 2002 93.00% 1 n.a. n.a.

All teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a.

Internet penetration in households 30% 2002 2004 40.00% 11 n.a. 11

eGovernment: basic services online 100% 2002 2002 56.80% 0 n.a. n.a.

Economic Reform              

Transposition rate of internal market directives 98.50% 2002 2004 97.80% 5 92.90% n.a.

2 years time limit for transposition of internal

market directives0 directives 2002 2004 n.a. 4 n.a. n.a.

Open electricity markets for business customers 100% 2004 2003 75.90% 7 59.40% 7

Open gas markets for business customers 100% 2004 2003 82.30% 6 63.30% 6

Cross-border energy transmission capacity relative

to installed production capacity

10% 2005 2003 n.a. 11 n.a. 19

Social Cohesion              

Reduce the number of early school-leavers by 50% 2010 2000-2003 -6.70% 0 n.a. n.a.

Environment/Sustainable Development              

Visible progress at reducing greenhouse gas emissions

Reach EU average of 92% of the 1990 level 2008-2012 2002,

1990=100 97.10% 3 respect national targets

n.a. 10 respect

national targets

30

Page 31: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

Contribution of electricity produced from renewable energy sources to gross electricity consumption

Reach EU-15 average of 22% and EU-25

average of 21%2010 2002 13.60%

0 respect national targets

12.70% 0 respect national targets

n.a.= not available

1- October 2004 data2-if data not available for reference year, earlier data has been taken for some Member States

31

Page 32: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

32

Page 33: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

33

Page 34: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

34

Page 35: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

35

Page 36: Europe’s growth performance has been the subject of ... · Web viewAll teachers to have training in digital skills 100% 2003 2002 56.80% 0 n.a. n.a. Internet penetration in households

36