53
EUROPEAN COMMISSION Research Executive Agency Seventh Framework Programme Cooperation: Space Call 3 FP7-SPACE-2010-1 Grant Agreement: 262371 Enabling Access to Geological Information in Support of GMES D7.1.37 Geohazard Description for STOCKHOLM Version 1 4 th of March 2014 Dissemination Level: Public Author: Cecilia Jelinek, SGU Date: 4/3/2014 Checked by (WP Leader): Luke Bateson, BGS Date:6/3/2014 Approved by (Coordinator): [Coordinator, Organisation] Date: Date of Issue: 6/3/2014

EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

EUROPEAN COMMISSION

Research Executive Agency

Seventh Framework Programme

Cooperation: Space Call 3

FP7-SPACE-2010-1

Grant Agreement: 262371

Enabling Access to Geological Information in

Support of GMES

D7.1.37 Geohazard Description for STOCKHOLM

Version 1

4th of March 2014

Dissemination Level: Public

Author: Cecilia Jelinek, SGU Date: 4/3/2014

Checked by (WP Leader): Luke Bateson, BGS Date:6/3/2014

Approved by (Coordinator): [Coordinator, Organisation] Date:

Date of Issue: 6/3/2014

Page 2: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 2 of 53

CHANGE RECORD

Version X.X of [Date] to Version X.X of [Date]

Section Page Detail of change

Page 3: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 3 of 53

EXECUTIVE SUMMARY

The aim of this report was delineating areas in which there is a risk for ground surface movements in

Stockholm.

Stockholm is the capital of Sweden, situated on the east coast of Sweden where Lake Mälaren meets the

the Baltic Sea. The analysed area covers the municipality of Stockholm, with a total area of 208 km2 and a

population of 870 000.

Datasets used are primarily PSI-data, soil maps, the new national elevation model, the municipality

landslide overview, and material from Stockholm City – Office of City Planning.

PSI-data was used in the work, but due to the sparcity of points, and the fact that most points probably are

situated on stable buildings, whereas the ground around them might be subsiding, the interpretation was

difficult. Therefore, potentially unstable areas have mostly been delineated from soil maps.

Ten areas have been defined where ground movements have been observed, or where there is a large

potential for ground movement.

Page 4: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 4 of 53

TABLE OF CONTENTS

Change Record

Executive Summary

1 Författare och kontaktinformation ............................................................................................... 5

2 Introduktion .................................................................................................................................. 5

3 PGGH_STOCKHOLM_001 ............................................................................................................ 19

4 PGGH_STOCKHOLM_002 ............................................................................................................ 20

5 PGGH_STOCKHOLM_003 ............................................................................................................ 22

6 PGGH_STOCKHOLM_004 ............................................................................................................ 24

7 PGGH_STOCKHOLM_005 ............................................................................................................ 26

8 PGGH_STOCKHOLM_006 ............................................................................................................ 27

9 PGGH_STOCKHOLM_007 ............................................................................................................ 30

10 PGGH_STOCKHOLM_008 ............................................................................................................ 34

11 PGGH_STOCKHOLM_009 ............................................................................................................ 37

12 PGGH_STOCKHOLM_010 ............................................................................................................ 40

13 PanGeo Geohazard Glossary ....................................................................................................... 43

14 PanGeo Geohazard ordlista Engelsk-svensk/Svensk-Engelsk ..................................................... 50

15 Referenser ................................................................................................................................... 52

Page 5: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 5 of 53

1 FÖRFATTARE OCH KONTAKTINFORMATION

Cecilia Jelinek, Sveriges Geologiska Undersökning. (cecilia.jelinek(at)sgu.se).

2 INTRODUKTION

Den här rapporten handlar om markstabilitet i Stockholms kommun. Rapporten om markstabilitet är

framtagen av Sveriges geologiska undersökning och är ett stöd för PanGeo Markstabilitetslager för

Stockholm, Sverige (Pangeo Ground Stability Layer (GSL)).

PanGeo-projektets idé är att, för de största tätortsområdena i respektive land, kombinera geologisk

information med mätningar av markrörelser från satellit. Den geologiska informationen ska samlas ihop av

de nationella geologiska undersökningarna, medan processade satellitdata tillhandahålls via projektet.

2.1 BEGRÄNSNINGAR I PANGEO MARKSTABILITETSLAGER FÖR STOCKHOLM

SGUs del i PanGeo-projektet är att utifrån data över markrörelser i Stockholm och Göteborg ansätta

riskområden för skred, sättningar, ravinbildning med mera. Vad gäller Stockholm har bilden varit otydlig,

eftersom de satellitdata som erhållits, dels var mycket glesa, dels, där det fanns data, inte alls gav utslag i

kända områden med marksättningar. Detta beror troligen på att PSI-data är mätta på byggnader som

byggts med stabilitetssäkrande åtgärder, medan marken omkring sjunker. På grund av begränsningarna i

det erhållna satellitdatasetet har enbart potentiellt sättningsbenägna områden utsetts, baserade på SGUs

jordartskarta. En fördjupad analys av data och övrig information görs under våren 2014. När den är klar

kommer informationen att uppdateras.

2.2 STOCKHOLMS STAD

Stockholm är Sveriges huvudstad och ligger vid Mälarens utlopp i Östersjön. Staden grundades senast

under tidigt 1200-tal. Placeringen var strategisk både ur försvars- och handelssynpunkt, vilket starkt bidrog

till att Stockholm snabbt utvecklades till att få en ledande roll i Sveriges försvar och bli landets största och

viktigaste handelsplats. Stockholm fick stadsprivilegier den 1 maj 1436, vilket anses vara den dag då

Stockholm kom att fungera som Sveriges huvudstad.

Stockholms kommun har drygt 870 000 invånare och har en area av 208 kvadratkilometer, varav 187

kvadratkilometer landyta. Nästan hela landytan upptas av tätortsområde. Figur 1 visar en översiktsbild över

kommunen.

2.3 TOPOGRAFI OCH GEOLOGI

Markytan i Stockholms kommun är en mosaik av lera och bergkullar med mer eller mindre tunt

moräntäcke. Dessutom genomkorsas staden av en stor isälvsavlagring i nord-sydlig riktning,

Brunkebergsåsen. En översiktlig jordartskarta finns i figur 2.

Berggrunden utgörs av äldre och yngre graniter (Stockholmsgranit) och metasediment. Berggrunden

genomkorsas av många sprickzoner (figur 3).

Page 6: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 6 of 53

Figur 1. Översikt över det bedömda området, som innefattar Stockholms kommun.

Den jordartsgeologiska kartan visar jordarterna under de hårdgjorda ytorna kommunen. Kalt berg, eller

områden med tunt jordtäcke utgör cirka 28 % av landytan, och moränen täcker cirka 15 %. Jordarterna

inom kommunen domineras av lera - postglacial lera, 26 % av landytan, och glacial, cirka 19 % av landytan.

Kärr eller mosse utgör cirka 1.5 % av landytan. Trots att Brunkebergsåsen framträder så tydligt på

jordartskartan, utgör inte isälvssediment mer än drygt 2 % av landytan. Kommunen ligger under högsta

kustlinjen och jordlagren har därför utsatts för svallning från havet och omlagring i samband med

landhöjningen. I sluttningarna avlagrades det grövre materialet som svallsediment (främst sand), cirka 5 %

av landytan. Dessa täcker äldre avlagrade finsediment (silt och lera). Det mesta av finmaterialet har dock

förts ut med smältvattnet och sedimenterat på djupare vatten i en lugnare miljö i havet. I skyddade lägen,

t.ex. i havsvikar och sjöar förekommer en ökad halt av organiskt material, vilket medfört avsättning av

gyttjelera. Områden med gyttja, lergyttja eller gyttjelera täcker cirka 2 % av landytan. I dag är

landhöjningen i området cirka 4 mm/år. Utfyllnadsområden upptar enligt jordartskartan bara 1 % av ytan,

men i verkligheten betydligt mer, eftersom större delen av ytan täcks av tätortsbebyggelse.

Page 7: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 7 of 53

Figur 2. Översiktlig jordartskarta.

Page 8: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 8 of 53

Berggrundsytor

Kvarts-fältspatsrik sedimentär bergart (sandsten, gråvacka m.m.). Huvudsakligen gnejsig, 2850-1870 miljoner år.

Ultrabasisk, basisk och intermediär omvandlad bergart (amfibolit, eklogit m.m.). Huvudsakligen gnejsig, 2850-1870 miljoner år.

Sur intrusivbergart (granit, granodiorit, mozonit m.m.). Huvudsakligen gnejsig, 2850-1870 miljoner år.

Sur intrusivbergart (granit, granodiorit, mozonit m.m.). Ställvis gnejsig, 1880-1740 miljoner år.

Ultrabasisk, basisk och intermediär intrusivbergart (gabbro, diorit, diabas m.m.). Huvudsakligen gnejsig, 2850-1870 miljoner år.

Figur 3. Översiktlig berggrundskarta.

Page 9: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 9 of 53

2.4 MARKSTABILITET – EN ÖVERSIKT

Ofta förekommer större markrörelser i finkorniga jordarter och utfyllnadsområden. Man brukar skilja

mellan rörelser som ofta sker spontant, utan påverkan, t.ex. skred, ras, erosion och ravinbildning och

marksättningar som beror på yttre påverkan, t.ex. att marken lastats genom byggnation eller att

grundvattenytan sänks.

2.4.1 Marksättningar

Marksättningar är vanligt i postglaciala leror, lergyttja-gyttjelera och på organiska avlagringar, samt i

utfyllnadsmaterial (som ofta underlagras av finkorniga eller organiska avlagringar).

Många områden i Stockholms kommun har haft stora problem med marksättningar, dock har man sedan

lång tid tillbaka varit medveten om problemet och tagit hänsyn till detta vid byggnationer, speciellt vad

gäller större och tyngre bebyggelse, som normalt grundlagda på sådant sätt att sättningar inte uppstår.

Detta gäller även större och känsliga ledningar. Många byggnader är därför stabila medan marken kan

sjunka.

Stockholm är genomkorsat av tunnlar, ledningsgravar och allehanda undermarkskonstruktioner som kan

påverka grundvattennivån. Bergtunnlarnas leder bort grundvatten, vilket kan ge grundvattensänkningar,

ändrade strömningsmönster och större nivåvariationer i grundvattenmagasinet. Konsekvensen av detta kan

bli sättningar. Det kan vara svårt att avgränsa om en marksättning beror på enbart på kompaktion av

finkorniga sediment, eller om grundvattensänkning (till följd av tunnelbygge eller läckage av grundvatten in

mot ledningsdike/kulvert) kan ha påverkat. Mycket tung trafik gör också att vibrationer kan påverka.

Grundläggning i form av träkonstruktioner (rustbäddar, träpålar) kan vara grundvattenberoende även om

den inte ligger på sättningskänslig mark. Denna typ av grundläggning förekommer endast i äldre

bebyggelse. Ett exempel på marksättning till följd av tunnelbygge finns i avsnitt 2.6.2 nedan.

Grundförstärkning avsättningsdrabbade hus kan påverka närliggande hus så att skadorna istället ökar där.

2.4.1.1 Sättningsmätningar och kända områden med marksättningar i Stockholms stad

Stockholms stad har ett stort antal dubbar som mäts då och då. I innerstaden finns cirka 800 dubbar, och

cirka 1300 i Gamla Stan. Under år 2011 utfördes avvägning av 227 dubbar i innestaden och 726 i Gamla

Stan. Där har man uppmätt större sättningar främst i södra delen av Gamla Stan, och cirka 20 kvarter i

övriga innerstaden (Henricsson, 2011). Utpekade kvarter i Gamla Stan har markerats med kryss i figur 15.

Här stämmer mätningarna delvis överens med det område som urskiljts med hjälp av PSI-data. Utpekade

kvarter i City/Vasastan/Östermalm finns markerade med svart triangel i figur 4. PSI-data ger inget stöd i

dessa kvarter.

I Gamla Stan beror sättningarna delvis på att bebyggelse grundlagts på fyllning, t.ex. gammalt

hushållsavfall. Husen har ofta pålats ner till fast mark, men då pålningen varit gjord av trä har den delvis

ruttnat när träet hamnat ovan grundvattenytan på grund av landhöjning. Många fastigheter som står delvis

på fast mark, delvis på fyllning, har drabbats av sättningsskador. I figur 5 syns en sättningsskada på Norra

Bankohuset, där man ser gränsen mellan stabil och instabil grund.

Page 10: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 10 of 53

Figur 4. Området City/Vasastan/Östermalm, där Stockholms stads dubbmätningar visar på sättningar i

kvarter markerade med svart triangel. PSI-data visar inte på markrörelser i samma omfattning.

Figur 5. Norra Bankohuset, Stockholm, fasadskada, sättningsskada. Foto Holger Ellgaard. CC BY-SA.

Page 11: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 11 of 53

En kartläggning kommunen gjorde 1976 visar sättningsskadade hus och observerade marksättningar i

stadens ytterområden, d.v.s. Västerort och Söderort (Stockholms stad, 1976; figur 6).

Stockholms stad (2012) listar vägavsnitt med mera som behöver åtgärdas på grund av sättningsskador,

både centralt i Stockholm (på Söder och Östermalm), i Västerort (Tensta, Vällingby), och Söderort (Älvsjö,

Enskede, Skarpnäck, Hägersten, Farsta). I de flesta fall är de utpekade områdena belägna på postglacial

lera, och täcks därmed av de områden som angivits som potentiellt sättningsbenägna. Undantag är några

områden på söder, nära Götgatan, där underlaget enligt SGUs jordartskarta är isälvsmaterial eller svallsand,

samt några områden med glacial lera (Tenstagången i Tensta och Schlytersvägen i Hägersten). Vägavsnitt i

väster- och söderort är markerade med svarta streck i figur 6.

Andra exempel på områden med sättningsproblem är:

Båtbyggargatan i Hammarby sjöstad: Här gjorde man våren 2010 mätningar som visade att

gatorna sjunkit med som mest 50 cm på 10 år, vilket hotade ledningar som låg i gatorna.

Orsaken var att marken här innehåller mycket organiskt material som förmultnar och

sjunker ihop (Stockholm.se, 2013).

Södermalmsallén på Södermalm - All bebyggelse intill allén är byggd på pålar, medan själva

stråket har stora sättningar. Ramper till entréer har tillkommit där sättningarna varit som

störst

I Slussenområdet förekommer omfattande marksättningar, men skador på konstruktionen

har även andra orsaker. Skador på kajer har uppstått genom bottenerosion, marksättningar

samt nedbrytning av betong, träpålar och träsponter. I väntan på att ett beslut ska fattas

om hur Slussen ska byggas om görs endast akut underhåll, men Stockholms stad (2011)

menar att man, om ingenting görs, så småningom inte kommer att kunna använda

lokalerna under gatudäcken av säkerhetsskäl på grund av omfattande sättningar och på

grund av att byggmaterialen stål och betong inte klarar av de påfrestningar som sättningar

och laster orsakar. Pågående sättningar har även noterats söder om Slussen, t.ex. vid

Stadsgården 1 och fastigheter på Katarinaberget (Stockholms stad, 2011).

Liljevalchs konsthall på Djurgården var färdig år 1916. Byggnaderna har sedan allra första

början haft problem med sättningsskador pga. den dåliga grunden. Mätningar har visat att

golvnivån i konsthallsbyggnaden har sjunkit upp till 25 cm från nordöstra till det sydvästra

hörnet. Bygget av ett nytt hotell mm i grannfastigheten, tidigare Lindgården, har orsakat

stora sprickbildningar i Blå Portens murverk. På konsthallens fasader har uppstått några få

sprickor sedan den senaste fasadrenoveringen 1989 (Fastighetskontoret, Stockholms stad,

2013).

2.4.2 Skred, ras, erosion

Skred och ras är snabba rörelser i jord eller berg. Ett skred eller ras är i många fall en följd av en naturlig

erosionsprocess, men kan också utlösas av påverkan, mänskliga ingrepp i naturen. Förutsättningar för skred

kan sägas finnas där man har finkorniga jordarter med en viss släntlutning. Skred kan också förekomma vid

liten släntslutning om marken belastas. Lera kan låg hållfasthet, gyttja och dy ännu lägre.

Page 12: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 12 of 53

Scandiaconsult har 1999, på uppdrag av Räddningsverket, utfört en översiktlig kartering av

stabilitetsförhållanden i Stockholms kommun (Scandiaconsult, 1999). Här har man inte gjort en heltäckande

kartering, utan koncentrerat sig på vissa områden. Karterade områden är främst i Brunnsviken, och några

sträckor längs Mälaren i Västerort, Årstaviken, Drevviken. I de områden som Scandiaconsult avgränsat som

skred- eller erosionsbenägna har man antingen sett tecken på markrörelser, t.ex. lutande träd, eller

bedömt att stabiliteten inte är tillräckligt bedömd och behöver utredas ytterligare. Dessa områden finns

med i polygonskiktet som observerat skredkänsliga områden. Större riskområden för skred är längs

Karlbergs kanal och Bällstaån, Ulvsundasjöns vik in mot Lillsjön, Gröndal, Årstadal och sydöstra Södermalm,

Husarviken, Drevviken och Magelungen. Förutsättningar för erosion längs havskuster och Mälaren finns

främst inom områden i Stockholms kommun där jordmaterialet utgörs av sand och silt. Fartygstrafik i

Stockholms skärgård kan i vissa fall orsaka erosion i strandslänter, vilket kan påverka stabiliteten

(Scandiaconsult, 1999).

Statens Geotekniska Institut, SGI, har i sin skreddatabas fyra registrerade jordskred i Stockholms kommun,

samtliga längs sträckan Bällstaån - Karlbergs kanal. I SGUs egen databas över karterade skred finns endast

ett inom Stockholms kommun, en strandkant i Lövsta, Hässelby.

Ravinbildning är en typ av jordkrypning som inträffar främst i finkorniga jordarter, framförallt glacial lera, i

kuperad terräng. I SGUs egen databas över karterade skred finns två exempel på ravinbildning inom

Stockholms kommun, den ena i Sätra, i sluttningen ner mot Mälaren, den andra i en dalgång mellan sjöarna

Flaten och Drevviken. Dessa syns tydligt i höjddata, och finns med som observerade ravinbildningar i

polygonskiktet.

2.5 ANVÄNDA DATAMÄNGDER

Identifikationen av observerade och potentiella områden med stabilitetsproblem har gjorts genom en

kombinerad analys av PSI-data (se avsnitt 2.6), geologiska kartor, höjddata, terräng- och fastighetskartor.

Stockholms stads sammanställning över sättningsskador i kommunens ytterområden har använts, stadens

pegelmätningar från år 2011 och diverse andra rapporter.

Terrängkarta i skala 1:50 000

Fastighetskarta i skala 1:10 000

Ny nationell höjddatabas, rikstäckande höjdmodell med ett medelfel i höjd som är bättre än 0,5 m

för en 2 m grid

Jordartskarta i skala 1:50 000

Rapport från 1976 över observerade marksättningar, hus med sättningsskador och

grundläggningsförhållanden, Stockholms stad.

Sättningsmätningar utförda av Stockholms stad (pegelmätningar) 2011

SGUs databas över skredärr och raviner

Statens geotekniska instituts skreddatabas

Utredning över skredrisk utförd av Scandiaconsult på uppdrag av Räddningsverket 1999.

Andra rapporter, förtecknade i referenslistan.

Page 13: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 13 of 53

a

b

Figur 6. Gröna ytor markerar områden i Stockholms kommuns ytterområden som markerats ha marksättningar och hus med sättningsskador i rapport från Stockholms stad (1976). Svarta streck markerar vägavsnitt med sättningsproblem enligt rapport från Stockholms stad (2012).

Page 14: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 14 of 53

2.6 PSI-DATA

PSI-data är radarmätningar från satellit av avstånd till reflekterande föremål på marken. PSI står för

Persistent Scatterer Interferometry, där Persistent Scatterers är de reflekterande föremålen (PS) och

Interferometry beskriver hur man beräknat hastigheten med vilken de reflekterande föremålen förflyttar

sig mot eller från satelliten. Föremålen kan vara vägräcken, hustak, och klippor, med mera. I områden med

ytor utan konstruktioner finns inga eller få reflektorer och därmed få PSI-punkter. Det som mäts från

satelliten är inte det absoluta avståndet till den reflekterande punkten, utan fasskillnaden hos en sinusvåg

som skickas fram och tillbaka till satelliten. Avståndet beräknas sedan ur detta. Samma fasskillnad kan dock

fås från flera avstånd, multipler av sinusvågens våglängd, i det här fallet cirka 14 mm. En plötslig förflyttning

över större avstånd, t.ex. ett skred, detekteras inte med PSI, eftersom reflektorn så att säga försvinner från

sin plats och inte längre kan detekteras som samma reflektor.

2.6.1 PSI-data från Stockholms kommun

PSI-data från Stockholm har bearbetats av NPA Satellite Mapping. De mätningar som använts vid analysen

är utförda av satelliterna ERS1 och ERS2, som passerat med cirka 35 dagars mellanrum från augusti 1992 till

november 2000, med uppehåll från oktober 1993 till april 1995. I många fall har inte tillräckligt bra data

kunnat uppnås, och därför ha man bara använt 45 bilder för analysen, i många fall är tidsspannet mellan

analyserna därför mer än 35 dagar. Punktnoggrannheten i xy-led är cirka 10 meter. Satelliten har mätt snett

ner åt höger, och de avstånd som mäts är i satellitens synvinkel, alltså inte vertikalt uppåt eller nedåt. Detta

innebär till exempel att en ojämn sättning som får en konstruktion att luta mot satelliten ger positivt utslag

(det ser alltså ut som att konstruktionen förflyttar sig uppåt istället för nedåt).

För analysen har 46366 PSI-punkter i Stockholms kommun erhållits (figur 7). De jämförs med en lokal

referenspunkt, vilket innebär att regionala förändringar (som t.ex. landhöjning) inte påverkar analysen.

De allra flesta punkterna, 89 %, visar på ingen eller liten förflyttning (mindre än 1,5 mm per år, mot eller

från satelliten). Cirka 6 % av punkterna har förflyttat sig mer än 1,5 mm/år mot satelliten, medan 5,5 % av

punkterna har förflyttat sig mer än 1,5 mm/år från satelliten. Av de punkter som förflyttat sig från satelliten

(”sjunkit”) är det bara cirka 230 som har en förflyttning av 6 mm/år eller mer. De högsta uppmätta värdena

är knappt 14 mm/år förflyttning mot satelliten respektive knappt 13 mm/år förflyttning från satelliten.

Förflyttning från satelliten har i de flesta fall bedömts vara marksättningar.

Punktdensiteten i Stockholmsområdet är relativt låg, ofta finns enstaka punkter som visar på markrörelser.

PSI-punkterna visar på få signifikanta områden med markrörelser. Tidsserier över enskilda reflektorer visar

ofta på spridning och ofta ingen klar trend. Ett mått på hur bra data följer en given modell (t.ex. jämn

sättningstakt eller stabilt läge), är punktens koherens. För vissa PSI-punkter i Stockholm är koherensen

dålig, vilket kan bero på att feltolkningar har gjorts så att man fått ett fel för enskilda punkter i tidserien

med 14 mm eller så mycket som 28 mm. Den angivna medelhastigheten för markrörelsen i mm/år bör dock

stämma bra, eftersom tolkningen görs utifrån alla 45 bilder tillsammans. Figur 8 visar på en punkt med dålig

koherens, medan figur 9 visar på en PSI-punkt med tydlig sjunkning och bra koherens.

Page 15: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 15 of 53

Figur 7. PSI-data som legat till grund för bedömningar av markrörelser. Magnituden av förflyttningen är

angiven i mm/år, i satellitens synvinkel. 2.6.2 Tidigare projekt

Golder Associates (Bono och Pickard, 2008) har tidigare gjort en validering av samma dataset då man dels

tittade översiktligt på hela datasetet (som då omfattade stora delar av Stockholms län), dels tittade i detalj

på ett mindre område.

I det detaljstuderade området (figur 10) jämförde man PSI-data med 100 precisionsinmätta dubbar

installerade i asfaltsytor, brandposter och brunnslock. Den aktuella perioden var från mitten till slutet av

1990-talet, under tiden då Södra länken byggdes. Precisionsavvägningarna visade på sättningar med i

många fall 4 mm/år och mer, men dessa sättningar detekterades inte i PSI-mätningarna från samma

tidsperiod. Slutsatsen då var att PSI-punkterna ofta sitter på byggnader som grundlagts med pålar och

dylikt, och därför var stabila, även om marken i sig inte var det. Projektets valideringsdata baserades på

markrörelser (på marknivå) och dataseten är därför svåra att jämföra.

Page 16: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 16 of 53

Den generella analysen var densamma, dels att PSI-data var glesa och därmed leder till stora osäkerheter i

tolkningen, dels att de punkter som finns ofta är belägna på stabila strukturer och inte på markytan som rör

sig.

Figur 8. Tidsserie för PSI-punkt 135822, med sämst koherens (0,62). Medelhastigheten är -1,457 mm/år

(standardavvikelse 0,976).

Figur 9. Tidsserie för PSI-punkt 97357 i Spånga, som visar på kontinuerlig sättning under hela tidperioden.

Medelhastighet -6,451 mm/år (standardavvikelse 0,328), koherens 0,95.

-25.000

-20.000

-15.000

-10.000

-5.000

0.000

5.000

10.000

1991/09/19 1993/01/31 1994/06/15 1995/10/28 1997/03/11 1998/07/24 1999/12/06 2001/04/19

-60.000

-50.000

-40.000

-30.000

-20.000

-10.000

0.000

1991/09/19 1993/01/31 1994/06/15 1995/10/28 1997/03/11 1998/07/24 1999/12/06 2001/04/19

Page 17: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 17 of 53

Figur 10. I områdena markerade med blå ram har Golders dubbmätningar visat på betydande

marksättningar under byggnationen av Södra Länkens tunnlar. I samma områden finns bara enstaka PSI-punkter som påvisar markrörelser under samma period. Topografiskt underlag från Lantmäteriet. För teckenförklaring se figur 12.

2.7 TOLKNING AV DATA

På grund av svårigheten att samla ett sammansatt dataset över kända sättningsskador i Stockholms

kommun och de glesa PSI-datasetet, har en mycket bristfällig tolkning av riskområden gjorts. Alla områden

som enligt SGUs jordartskarta täcks av postglacial lera, lergyttja-gyttjelera, gyttja och fyllning har ansatts

som potentiellt sättningsfarliga (figur 11). Här kan man misstänka att sättningar har skett eller kan komma

att ske. Sättningar i dessa jordarter orsakas till exempel av ändrad belastning på marken, eller av

grundvattenavsänkning.

I bearbetningen skiljdes ett antal mindre områden ut, där PSI-data visar på sättningar. Dessa områden är

dock små och få och visas ej, då de skulle kunna leda till en underskattning av sättningsproblematiken i

Stockholms kommun. Exempel på PSI-avgränsade ytor finns dock med i beskrivningen av de potentiellt

sättningsfarliga områdena.

De områden som Scandiaconsult (1999) utpekat som känsliga för skred eller erosion, eller otillräckligt

undersökta, finns med i polygonskiktet som observerat skredkänsliga områden. De skred som finns i SGIs

och SGUs databaser ligger inom de områden som avgränsats av Scandiaconsult.

De två raviner som finns med i SGU databas över skredärr och raviner är också utmärkta som observerade

ravinbildningar.

Alla polygoner och tillhörande attribut är klassificerade och kategoriserade enligt INSPIRE (Natural Risk

Zones), som också har använts i PanGeos portal (Bateson m.fl., 2012).

Page 18: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 18 of 53

Figur 11. Urskiljda områden med observerade eller potentiella stabilitetsproblem. För översättning av

engelska termer, se ordlista.

Page 19: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 19 of 53

3 PGGH_STOCKHOLM_001

3.1 TYP AV RÖRELSE

Insjunkning

3.2 BESKRIVNING AV OMRÅDET

Postglacial lera

Yta: 46,37 km2

3.3 TYP AV GEOHAZARD

Naturliga markrörelser – Marksättning

(Antropogen markinstabilitet – avsänkning av grundvattennivån)

3.4 METOD VID AVGRÄNSNING

Potentiellt instabilt område - Erfarenhetsmässig bedömning.

3.5 KONFIDENS I TOLKNIGNEN

Förutsättningar för sättningar finns i området. Åtgärder för att minska eller förhindra sättningar har

vidtagits i delar av området men är inte med i bedömningen.

3.6 GEOLOGISK TOLKNING

Sättningar av byggnader, järnvägs- och vägbankar är vanliga när dessa ligger på postglaciala sediment.

Sättningar kan orsakas både av ändrade belastningsförhållanden och av avsänkning av grundvatten.

3.7 BEVIS FÖR STABILITETSPROBLEMEN

Ett område vid Gamla Bromstensvägen, Bällsta är ett exempel på område med observerade

sättningsproblem i postglacial lera (figur 12).

Page 20: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 20 of 53

4 PGGH_STOCKHOLM_002

4.1 TYP AV RÖRELSE

Insjunkning

4.2 BESKRIVNING AV OMRÅDET

Torv; kärr, Torv; mosse eller Gyttja

Yta: 3,93 km2

4.3 TYP AV GEOHAZARD

Antropogen markinstabilitet – Oxidation av organiska sediment pga. Grundvattenavsänkning

Figur 12. PGGH_STOCKHOLM_001. Vänstra bilden: Gamla Bromstensvägen, Bällsta. Exempel på område

med observerade sättningsproblem i postglacial lera. Den yttre heldragna linjen visar område med sättningsskador avgränsat av Stockholms stad (1976). Den inre blåmarkerade linjen visar område avgränsat från PSI-punkter med cirka 4 mm/år sjunk under observationsperioden 1992-2000. Topografiskt underlag från Lantmäteriet. Högra bilden: Teckenförklaring. PSI-punkternas förflyttning gäller från (negativt) eller mot (positivt) satelliten.

4.4 METOD VID AVGRÄNSNING

Potentiellt instabilt område - Erfarenhetsmässig bedömning.

Page 21: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 21 of 53

4.5 KONFIDENS I TOLKNINGEN

Förutsättningar för sättningar finns i området. Åtgärder för att minska eller förhindra sättningar har

vidtagits i delar av området men är inte med i bedömningen.

4.6 GEOLOGISK TOLKNING AV RÖRELSEN

Sättningar av byggnader, järnvägs- och vägbankar är vanliga när dessa ligger på organiska sediment.

4.7 BEVIS FÖR STABILITETSPROBLEMEN

Två områden vid Fartygsgatan och Båtklubbsgatan, Hammarby, är ett exempel på ett område med

observerade sättningsproblem i gyttja (figur 13).

Figur 13. PGGH_STOCKHOLM_002. Fartygsgatan och Båtklubbsgatan, Hammarby. Områdena med blå ram

ligger på gyttja. Det norra området har tre observerade PSI-punkter med 7-10 mm/år i sjunk under observationsperioden 1992-2000. I det södra området var insjunkningshastigheten 2,5-5 mm/år enligt PSI-data. Topografiskt underlag från Lantmäteriet. För teckenförklaring se figur 12.

Page 22: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 22 of 53

5 PGGH_STOCKHOLM_003

5.1 TYP AV RÖRELSE

Insjunkning

5.2 BESKRIVNING AV OMRÅDET

Lergyttja-gyttjelera

Yta: 4,20 km2

5.3 TYP AV GEOHAZARD

Naturliga markrörelser – Marksättning

Antropogen markinstabilitet – Oxidation av organiska sediment pga. grundvattenavsänkning

5.4 METOD VID AVGRÄNSNING

Potentiellt instabilt område - Erfarenhetsmässig bedömning.

5.5 KONFIDENS I TOLKNINGEN

Förutsättningar för sättningar finns i området. Åtgärder för att minska eller förhindra sättningar har

vidtagits i delar av området men är inte med i bedömningen.

5.6 GEOLOGISK TOLKNING AV RÖRELSEN

Sättningar förekommer ställvis i glaciala leror, framförallt om inte grundläggningen har gjorts riktigt.

Sättningar kan orsakas både av ändrade belastningsförhållanden och av avsänkning av grundvatten.

5.7 BEVIS FÖR STABILITETSPROBLEMEN

Ett område öster om Gasverksvägen, Hjorthagen, är ett exempel på ett område med observerade

sättningsproblem i lergyttja-gyttjelera (figur 14).

Page 23: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 23 of 53

Figur 14. PGGH_STOCKHOLM_003. Det blåmarkerade området öster om Gasverksvägen i Hjorthagen ligger på lergyttja-gyttjelera och har fem PSI-punkter med 8-9 mm/år i insjunkning under perioden 1992-2000. De östra och södra områdena ligger enligt jordartskartan på postglacial lera. Topografiskt underlag från Lantmäteriet. För teckenförklaring se figur 12.

Page 24: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 24 of 53

6 PGGH_STOCKHOLM_004

6.1 TYP AV RÖRELSE

Insjunkning

6.2 BESKRIVNING AV OMRÅDET

Fyllning

Yta: 2,76 km2

6.3 TYP AV GEOHAZARD

Antropogen markinstabilitet – Marksättning i utfyllnadsmassor

6.4 METOD VID AVGRÄNSNING

Potentiellt instabilt område - Erfarenhetsmässig bedömning.

6.5 KONFIDENS I TOLKNINGEN

Förutsättningar för sättningar finns i området. Åtgärder för att minska eller förhindra sättningar har

vidtagits i delar av området men är inte med i bedömningen.

6.6 GEOLOGISK TOLKNING AV RÖRELSEN

Sättningar av byggnader, järnvägs- och vägbankar är vanliga när dessa ligger på fyllning. Fyllningen

underlagras ofta av postglaciala sediment. Sättningar orsakas både av ändrade belastningsförhållanden och

av avsänkning av grundvatten.

6.7 BEVIS FÖR STABILITETSPROBLEMEN

Gamla Stan är exempel på ett område med observerade sättningsproblem i fyllning (figur 15). I Gamla Stan

beror sättningar till stor del också på att pålningen ruttnar.

Page 25: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 25 of 53

Figur 15. PGGH_STOCKHOLM_004. Gamla Stan. Områdena med blå gräns har urskiljts med hjälp av PSI-data. I det östra området, mellan Munkbrogatan och Lilla Nygatan, finns 10 PSI-punkter med insjunkning på 1,5-3 mm/år. I det västra området vid Skeppsbron finns 7 PSI-punkter med insjunkning på cirka 4 mm/år, och 2 punkter som sjunker cirka 3 mm/år. Dubbmätningar från Stockholm stad (2011) visar också på betydande sättningar i Gamla Stan, störst i de kvarter som markerats med svart kryss. Topografiskt underlag från Lantmäteriet. För teckenförklaring se figur 12.

Page 26: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 26 of 53

7 PGGH_STOCKHOLM_005

7.1 TYP AV RÖRELSE

Krypning

7.2 BESKRIVNING AV OMRÅDET

Sätra, sluttning ner mot Mälaren.

Glacial lera

Yta: 0,029 km2

7.3 TYP AV GEOHAZARD

Naturlig markinstabilitet – Jordkrypning, Ravinbildning

7.4 METOD VID AVGRÄNSNING

SGUs databas över skredärr och raviner. Observerad i Lantmäteriets höjddata.

7.5 KONFIDENS I TOLKNINGEN

Hög

7.6 GEOLOGISK TOLKNING AV RÖRELSEN

Ravinbildning är vanligt i kuperad terräng, framförallt i områden med finkorniga sediment, i samband med

mer eller mindre temporärt vattendrag.

7.7 BEVIS FÖR STABILITETSPROBLEMEN

Se figur 16.

Page 27: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 27 of 53

8 PGGH_STOCKHOLM_006

8.1 TYP AV RÖRELSE

Krypning

8.2 BESKRIVNING AV OMRÅDET

Dalgång mellan sjöarna Flaten och Drevviken. Smal dalgång mellan bergshöjder.

Glacial lera och sandigt svallsediment.

Yta: 0,005 km2

8.3 TYP AV GEOHAZARD

Naturlig markinstabilitet – Jordkrypning, Ravinbildning

Page 28: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 28 of 53

Figur 16. PGGH_STOCKHOLM_005. Ravinen som sträcker sig från Sätra, längs Alsätravägen, i sluttningen

mot Mälaren. Övre bilden: Ravinen syns väl i höjddata. Nedre bilden: Avgränsad polygon markerad i blått, ovanpå topografisk karta. Pillinjen i polygonens mitt är ravinen som den är representerad i SGUs databas över skredärr och raviner. Höjddata och topografisk information från Lantmäteriet. För teckenförklaring se figur 12.

Page 29: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 29 of 53

8.4 METOD VID AVGRÄNSNING

SGUs databas över skredärr och raviner. Observerad i Lantmäteriets höjddata.

8.5 KONFIDENS I TOLKNINGEN

Hög

8.6 GEOLOGISK TOLKNING AV RÖRELSEN

Ravinbildning är vanligt i kuperad terräng, framförallt i områden med finkorniga sediment, i samband med

mer eller mindre temporärt vattendrag.

8.7 BEVIS FÖR STABILITETSPROBLEMEN

Se figur 17.

Figur 17. PGGH_STOCKHOLM_006. Ravinen som sträcker sig från sjön Flaten i norr till Drevviken i söder.

Högra bilden: Ravinen syns väl i höjddata. Den röda markeringen på kartan är ravinen som den är representerad i SGUs databas över skredärr och raviner. Vänstra bilden: Avgränsad polygon markerad i blått, ovanpå topografisk karta. Ravinen är cirka 350 meter lång. Höjddata och topografisk information från Lantmäteriet. För teckenförklaring se figur 12.

Page 30: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 30 of 53

9 PGGH_STOCKHOLM_007

9.1 TYP AV RÖRELSE

Skred och erosion

9.2 BESKRIVNING AV OMRÅDET

Västerort. Flera områden utskiljda av Scandiaconsult (1999) på uppdrag av Räddningsverket, nuvarande

Myndigheten för Samhällsskydd och beredskap (MSB). För mer information, se rapport som finns att tillgå

på MSB:s hemsida.

Total yta: 0,68 km2

Delområden:

9.2.1 Bällstaån från Lunda till Bällstaviken

Sträckan är totalt cirka åtta kilometer (figur 18). Den största delen är utpekad som instabil. Dalgången

varierar i bredd, från att ån går nära uppstickande bergkullar, till att vara bred och sedimentfylld. Bitvis är

ån kulverterad.

Jordarterna är postglacial lera och lergyttja-gyttjelera. Långa sträckor är utfyllda.

9.2.2 Lillsjön, Bromma, och viken ut mot Ulvsundasjön

Jordarterna är postglacial lera och lergyttja-gyttjelera. Hamnanläggningar ligger ofta på fyllning. Översikt av

området finns i figur 19.

9.2.3 Hässelby - Lövstatippen

Olika typer av fyllning (som mest 25 meters mäktighet). Översikt av området finns i figur 20.

9.2.4 Hässelby – Riddersviks gård

Lerig slänt ner mot Mälaren. Översikt av området finns i figur 20.

9.2.5 Blackeberg - Ängby båtklubb

Jordarterna är postglacial lera och lergyttja-gyttjelera, fyllning i västra delen. Översikt av området finns i

figur 21.

9.2.6 Ålstens småbåtshamn

Jordarten är postglacial lera. Översikt av området finns i figur 22.

9.3 TYP AV GEOHAZARD

Naturlig markinstabilitet - Skred och erosion

9.4 METOD VID AVGRÄNSNING

Externa data. Scandiaconsult (1999), se avsnitt 9.2.

9.5 KONFIDENS I TOLKNINGEN

Extern

Page 31: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 31 of 53

9.6 GEOLOGISK TOLKNING AV RÖRELSEN

Skred kan uppkomma i lermark som lutar mer än 1:10 eller i lermark nära vattendrag. Flera olika faktorer

kan bidra till att skred utlöses, bl.a. belastning, förekomst av kvicklera, artesiskt grundvattentryck, och

ovanligt stora nederbördsmängder.

9.7 BEVIS FÖR STABILITETSPROBLEMEN

Längs Bällstaån finns två registrerade skred i SGIs skreddatabas. Det ena inträffade sydost om Solvalla, och

orsakades av belastningsökning i samband med att del av åstranden användes för snötippning. Det andra

inträffade 1996 nära Gamla Bromstensvägen, nedanför en kulvertering, i samband med byggande av

bostäder. Skredytan var 20*30 meter.

Längs strandlinjen nedanför Lövstatippen finns ett skredärr registrerat i SGUs databas över skredärr och

raviner.

Figur 18. PGGH_STOCKHOLM_007. Delområde Bällstaån från Lunda till Bällstaviken. Instabila områden

markerade med blå ram. Sträckan är totalt cirka åtta kilometer. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 32: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 32 of 53

Figur 19. PGGH_STOCKHOLM_007. Delområde Lillsjön, Bromma, och viken ut mot Ulvsundasjön. Instabila

områden markerade med blå ram. Sträckan från Lillsjöns västra ände till Ulvsundasjön är cirka 1,5 km. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Figur 20. PGGH_STOCKHOLM_007. Delområde Hässelby – Lövstatippen (norra området) och Hässelby –

Riddersviks gård (södra området). Instabila områden markerade med blå ram. De gröna markeringarna utanför strandlinjen markerar skredärr på sjöbotten. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 33: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 33 of 53

Figur 21. PGGH_STOCKHOLM_007. Delområde Blackeberg - Ängby båtklubb. Instabila områden markerade

med blå ram. Potentiellt instabila områden omkring, med streckad gräns. Ett fåtal PSI-punkter finns i området, de visar inte på några större markrörelser under perioden 1992-2000. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Figur 22. PGGH_STOCKHOLM_007. Delområde Ålstens småbåtshamn. Instabila områden markerade med

blå ram. Potentiellt instabila områden bredvid, med streckad gräns. PSI-punkter finns i området, de visar inte på några större markrörelser under perioden 1992-2000. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 34: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 34 of 53

10 PGGH_STOCKHOLM_008

10.1 TYP AV RÖRELSE

Skred och erosion

10.2 BESKRIVNING AV OMRÅDET

Centrala Stockholm. Flera områden utskiljda av Scandiaconsult (1999) på uppdrag av Räddningsverket,

nuvarande Myndigheten för Samhällsskydd och beredskap (MSB). För mer information, se rapport som

finns att tillgå på MSB:s hemsida.

Total yta: 0,26 km2

Delområden:

10.2.1 Karlbergs kanal till Klara sjö

Sträckan från Essingeledens bro i väster till utloppet i Riddarfjärden i sydost är totalt drygt tre kilometer.

Hela sträckan är utpekad som instabil. Översikt av området finns i figur 23.

Relativt brant bergsluttning på södra sidan, postglacial lera längs vattnet. Stora ytor är täckta av fyllning, till

exempel stationsområdet på norra sidan.

10.2.2 Brunnsviken, Frescati - Fridhem:

Jordarten är postglacial lera och lergyttja-gyttjelera. Översikt av området finns i figur 24.

10.2.3 Brunnsviken, Kräftriket - Albano:

Jordarten är sandigt svallsediment enligt jordartarkarta, enligt byggnadsgeologiska kartan är underlaget

lera. Delvis fyllning. Översikt av området finns i figur 24.

10.2.4 Husarviken, Ropsten:

Jordarten är postglacial lera och lergyttja-gyttjelera. Översikt av området finns i figur 25.

10.2.5 Loudden, Ropsten:

Instabilt område påfyllning.

10.3 TYP AV GEOHAZARD

Naturlig markinstabilitet - Skred och erosion

10.4 METOD VID AVGRÄNSNING

Externa data. Scandiaconsult (1999), se avsnitt 10.2.

10.5 KONFIDENS I TOLKNINGEN

Extern

10.6 GEOLOGISK TOLKNING AV RÖRELSEN

Skred kan uppkomma i lermark som lutar mer än 1:10 eller i lermark nära vattendrag. Flera olika faktorer

kan bidra till att skred utlöses, bl.a. belastning, förekomst av kvicklera, artesiskt grundvattentryck, och

ovanligt stora nederbördsmängder.

Page 35: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 35 of 53

10.7 BEVIS FÖR STABILITETSPROBLEMEN

I Klara sjö finns två registrerade skred i SGIs skreddatabas. De inträffade i november och december 1968.

Ytterligare ett skred inträffade 1995 i Karlbergskanal, på norra sidan av kanalen, som tillhör Solna kommun.

Skredens ungefärliga position är markerade med årtal och svarta kartnålar i figur 23.

På sjöbotten nedanför Lövstatippen finns skredärr registrerade i SGUs databas över skredärr och raviner.

Figur 23. PGGH_STOCKHOLM_008. Översikt av delområde Karlbergs kanal till Klara sjö. Instabila områden

markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 36: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 36 of 53

Figur 24. PGGH_STOCKHOLM_008. Översikt av delområde Brunnsviken, Frescati - Fridhem till vänster, och

Brunnsviken, Kräftriket - Albano, till höger. Instabila områden markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Figur 25. PGGH_STOCKHOLM_008. Översikt av delområde Ropsten - Husarviken. Instabila områden

markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 37: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 37 of 53

11 PGGH_STOCKHOLM_009

11.1 TYP AV RÖRELSE

Skred och erosion

11.2 BESKRIVNING AV OMRÅDET

Södra Stockholm. Flera områden utskiljda av Scandiaconsult (1999) på uppdrag av Räddningsverket,

nuvarande Myndigheten för Samhällsskydd och beredskap (MSB). För mer information, se rapport som

finns att tillgå på MSB:s hemsida.

Total yta: 0,20 km2

Delområden:

11.2.1 Mörtviken, Vinterviken, småbåtshamn Hägersten:

Mörtviken och Vinterviken är fortsättningar på dalgångar på land. Jordarten är främst postglacial lera, utom

på udden söder om Vinterviken, som är moräntäckt. Stora delar av de urskiljda ytorna är täckta med

utfyllnadsmaterial. Översikt av området finns i figur 26.

11.2.2 Liljeholmsviken – Årstadalshamnen:

Hela området utgörs av utfyllnadsmaterial, som överlagrar finsediment. Översikt av området finns i

figur 27.

11.2.3 Dalgång vid Alsätravägen, Sätra - Skärholmen:

Dalgång som sluttar ner mot Mälaren. Jordarten är glacial lera. Sammanfaller med västra delen av

ravinbildning, PGGH_STOCKHOLM_005. Översikt av området finns i figur 28.

11.3 TYP AV GEOHAZARD

Naturlig markinstabilitet - Skred och erosion

11.4 METOD VID AVGRÄNSNING

Externa data. Scandiaconsult (1999), se avsnitt 11.2.

11.5 KONFIDENS I TOLKNINGEN

Extern

11.6 GEOLOGISK TOLKNING AV RÖRELSEN

Skred kan uppkomma i lermark som lutar mer än 1:10 eller i lermark nära vattendrag. Flera olika faktorer

kan bidra till att skred utlöses, bl.a. belastning, förekomst av kvicklera, artesiskt grundvattentryck, och

ovanligt stora nederbördsmängder.

11.7 BEVIS FÖR STABILITETSPROBLEMEN

Page 38: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 38 of 53

Figur 26. PGGH_STOCKHOLM_009. Översikt av delområde Mörtviken, Vinterviken, småbåtshamn

Hägersten. Instabila områden markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Figur 27. PGGH_STOCKHOLM_009. Översikt av delområde Liljeholmsviken – Årstadalshamnen. Instabila

områden markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 39: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 39 of 53

Figur 28. PGGH_STOCKHOLM_009. Översikt av delområde Dalgång vid Alsätravägen, Sätra - Skärholmen.

Instabilt område markerat med blå ram. Området sammanfaller med västra delen av PGGH_STOCKHOLM_005, som är det smala området som fortsätter österut upp i dalgången. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12 och figur 16.

Page 40: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 40 of 53

12 PGGH_STOCKHOLM_010

12.1 TYP AV RÖRELSE

Skred och erosion

12.2 BESKRIVNING AV OMRÅDET

Farsta - Drevviken. Flera områden utskiljda av Scandiaconsult (1999) på uppdrag av Räddningsverket,

nuvarande Myndigheten för Samhällsskydd och beredskap (MSB). För mer information, se rapport som

finns att tillgå på MSB:s hemsida.

Total yta: 0,15 km2

Delområden:

12.2.1 Farsta vid Magelungen

Slänter ner mot sjön Magelungen, med postglacial lera. Översikt av området finns i figur 29.

12.2.2 Drevviken – Hökarängen

postglacial lera och lergyttja-gyttjelera. Översikt av området finns i figur 30.

12.2.3 Drevviken – Klockelund

Glacial lera, utom i de lägre partierna längs ån från Magelungen (lergyttja-gyttjelera). Översikt av området

finns i figur 31.

12.2.4 Drevviken - Sköndal

Främst postglacial lera och lergyttja-gyttjelera, samt fyllning. Längre upp i dalgången även organiska

sediment, som delvis fyllts igen med olika typer av schaktmassor. Översikt av området finns i figur 32.

Figur 29. PGGH_STOCKHOLM_010. Översikt av delområde Farsta vid Magelungen. Instabila områden

markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 41: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 41 of 53

Figur 30. PGGH_STOCKHOLM_010. Översikt av delområde Drevviken - Hökarängen. Instabila områden

markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Figur 31. PGGH_STOCKHOLM_010. Översikt av delområde Drevviken - Klockelund. Instabila områden

markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 42: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 42 of 53

12.3 TYP AV GEOHAZARD

Naturlig markinstabilitet - Skred och erosion

12.4 METOD VID AVGRÄNSNING

Externa data. Scandiaconsult (1999), se avsnitt 12.2.

12.5 KONFIDENS I TOLKNINGEN

Extern

12.6 GEOLOGISK TOLKNING AV RÖRELSEN

Skred kan uppkomma i lermark som lutar mer än 1:10 eller i lermark nära vattendrag. Flera olika faktorer

kan bidra till att skred utlöses, bl.a. belastning, förekomst av kvicklera, artesiskt grundvattentryck, och

ovanligt stora nederbördsmängder.

12.7 BEVIS FÖR STABILITETSPROBLEMEN

Figur 32. PGGH_STOCKHOLM_010. Översikt av delområde Drevviken - Sköndal. Instabila områden markerade med blå ram. Topografiska data från Lantmäteriet. För teckenförklaring se figur 12.

Page 43: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 43 of 53

13 PANGEO GEOHAZARD GLOSSARY

Hazard

Something with the potential to cause harm.

Natural Hazard

A natural hazard is a natural process or phenomenon that may cause loss of life, injury or other impacts,

property damage, lost livelihoods and services, social and economic disruption, or environmental damage.

(Council of the European Union – Commission Staff Working Paper – Risk Assessment and Mapping Guidelines

for Disaster Management).

Geohazard (Geological hazard)

A geological process with the potential to cause harm.

Risk

The likelihood that the harm from a particular hazard will be realised.

Types of Geohazard

1. Deep Ground Motions

Ground motion can occur at different scales and depths. This section contains the geohazards that are

caused by processes in the deep subsurface.

1.1. Earthquake (seismic hazard)

Earthquakes are the observable effects of vibrations (known as seismic waves) within the Earth’s crust

arising from relatively rapid stress release, typically along a fault zone.

Damage to buildings and other infrastructure can be caused as the ground shakes during the passage of

seismic waves. Other effects include liquefaction of water-saturated soft ground, potentially leading to a

loss in ground strength and the extrusion of water-saturated sediments as ‘mud volcanoes’ and the like.

Ground shaking can also trigger secondary events such as landslides and tsunami. Secondary effects such as

these should be mapped into the other relevant PanGeo geohazard classes. Some earthquakes are

associated with significant permanent vertical or lateral ground movement. Changes to drainage systems

can cause flooding. There is potential for injury and loss of life during earthquakes.

Seismic hazard can be assessed by reference to the size and frequency of recorded earthquakes, although

individual earthquakes are essentially unpredictable. Individual events occur on time-scales of seconds or

minutes. Modern infrastructure should be designed to withstand probable local seismic events.

Page 44: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 44 of 53

1.2. Tectonic Movements

Tectonic movements are large scale processes that affect the earth’s crust. These processes can lead to

areas of the crust rising or falling. Importantly it is the neotectonic movements that are still active and may

therefore produce a ground motion that can be measured by PSI. Neotectonic movements are typically due

to the stresses introduced through movements of the earth’s plates. These types of motion are likely to be

on a broad scale and so it may not be possible to measure them using the SAR scene relative

measurements of PSI.

1.3. Salt Tectonics

Localised motions can be associated with the movement of evaporate deposits, these are termed salt

tectonics and can produce both uplift and subsidence depending on the exact mechanisms at play.

1.4. Volcanic Inflation/Deflation

Volcanic activity can lead to the creation of lava flows, ash flows, debris and ash falls, and debris flows of

various kinds. It might be accompanied by release of poisonous or suffocating gases, in some instances with

explosive violence, or by significant seismic activity or ground movement. Secondary effects can include

landslide and flooding. For PanGeo we are interested in hazards associated with ground instability. Ground

instability associated with volcanoes tends to relate to inflation and deflation of the ground surface as

magma volumes change. Secondary effects such as landslides should be mapped into the other relevant

PanGeo geohazard classes.

2. Natural Ground Instability

The propensity for upward, lateral or downward movement of the ground can be caused by a number of

natural geological processes. Some movements associated with particular hazards may be gradual or occur

suddenly and also may vary from millimetre to metre or tens of metres scale. Note that anthropogenic deposits

can be affected by natural ground instability.

Significant natural ground instability has the potential to cause damage to buildings and structures, and weaker

structures are most likely to be affected. It should be noted, however, that many buildings, particularly more

modern ones, are built to such a standard that they can remain unaffected in areas of even significant ground

movement. The susceptibility of built structures to damage from geohazards might also depend on local factors

such as the type of nearby vegetation, or the nature of the landforms in the area.

The effects of natural ground instability often occur over a local area as opposed to the effects of natural

ground movements which occur over larger areas.

2.1. Landslide

A landslide is a relatively rapid outward and downward movement of a mass of rock or soil on a slope, due

to the force of gravity. The stability of a slope can be reduced by removing ground at the base of the slope,

increasing the water content of the materials forming the slope or by placing material on the slope,

especially at the top. Property damage by landslide can occur through the removal of supporting ground

from under the property or by the movement of material onto the property. Large landslides in coastal

areas can cause tsunami.

Page 45: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 45 of 53

The assessment of landslide hazard refers to the stability of the present land surface, including existing

anthropogenically-modified slopes as expressed in local topographic maps or digital terrain models. It does

not encompass a consideration of the stability of new excavations.

Land prone to landslide will normally remain stable unless the topography is altered by erosion or

excavation, the land is loaded or pore water pressure increases. Landslide might also be initiated by seismic

shock, frost action, or change in atmospheric pressure.

This hazard is significant in surface deposits but may extend to more than 10 m depth. The common

consequences are damage to properties, including transportation routes and other kinds of infrastructure,

and underground services. Some landslides can be stabilised by engineering.

2.2. Soil Creep

Soil creep is a very slow movement of soil and rock particles down slope and is a result of expansion and

contraction of the soil through cycles of freezing and thawing or wetting and drying.

2.3. Ground Dissolution

Some rocks and minerals are soluble in water and can be progressively removed by the flow of water

through the ground. This process tends to create cavities, potentially leading to the collapse of overlying

materials and possibly subsidence at the surface.

The common types of soluble rocks and minerals are limestones, gypsum and halite.

Cavities can become unstable following flooding, including flooding caused by broken service pipes.

Changes in the nature of surface runoff, excavating or loading the ground, groundwater abstraction, and

inappropriate installation of soakaways can also trigger subsidence in otherwise stable areas.

2.4. Collapsible Ground

Collapsible ground comprises materials with large spaces between solid particles. They can collapse when

they become saturated by water and a building (or other structure) places too great a load on it. If the

material below a building collapses it may cause the building to sink. If the collapsible ground is variable in

thickness or distribution, different parts of the building may sink by different amounts, possibly causing

tilting, cracking or distortion. Collapse will occur only following saturation by water and/or loading beyond

criticality. This hazard can be significant in surface deposits and possibly also in buried superficial deposits.

2.5. Running Sand/ Liquefaction

Running sand occurs when loosely-packed sand, saturated with water, flows into an excavation, borehole

or other type of void. The pressure of the water filling the spaces between the sand grains reduces the

contact between the grains and they are carried along by the flow. This can lead to subsidence of the

surrounding ground.

If sand below a building runs it may remove support and the building may sink. Different parts of the

building may sink by different amounts, possibly causing tilting, cracking or distortion. The common

Page 46: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 46 of 53

consequences are damage to properties or underground services. This hazard tends to be self-limited by

decrease in head of water.

Liquefaction of water-saturated soft ground often results as an effect of earthquake activity but can also be

triggered by manmade vibrations due to construction works. It can potentially lead to a loss in ground

strength and the extrusion of water-saturated sediments as ‘mud volcanoes’ and the like. Soils vulnerable

to liquefaction represent areas of potential ground instability.

3. Natural Ground Movement

The effects of natural ground movement often occur over a larger area as opposed to the effects of natural

ground instability, which occur over local areas.

3.1. Shrink-Swell Clays

A shrinking and swelling clay changes volume significantly according to how much water it contains. All clay

deposits change volume as their water content varies, typically swelling in winter and shrinking in summer,

but some do so to a greater extent than others. Most foundations are designed and built to withstand

seasonal changes. However, in some circumstances, buildings constructed on clay that is particularly prone

to swelling and shrinking behaviour may experience problems. Contributory circumstances could include

drought, leaking service pipes, tree roots drying-out of the ground, or changes to local drainage such as the

creation of soakaways. Shrinkage may remove support from the foundations of a building, whereas clay

expansion may lead to uplift (heave) or lateral stress on part or all of a structure; any such movements may

cause cracking and distortion.

The existence of this hazard depends on a change in soil moisture and on differential ground movement.

Uniform ground movement may not of itself present a hazard. This hazard is generally significant only in

the top five metres of ground.

3.2. Compressible Ground

Many ground materials contain water-filled pores (the spaces between solid particles). Ground is

compressible if a load can cause the water in the pore space to be squeezed out, causing the ground to

decrease in thickness. If ground is extremely compressible the building may sink. If the ground is not

uniformly compressible, different parts of the building may sink by different amounts, possibly causing

tilting, cracking or distortion.

This hazard commonly depends on differential compaction, as uniform compaction may not of itself

present a hazard. Differential compaction requires that some structure that might be susceptible to

subsidence damage has been built on non-uniform ground. The common consequences are damage to

existing properties that were not built to a sufficient standard, and possible damage to underground

services.

Page 47: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 47 of 53

4. Man Made (Anthropogenic) Ground Instability

Anthropogenic instability covers a local area which has been brought about by the activity of man.

Subsidence (downward movement) of the ground can result from a number of different types of

anthropogenic activity, namely mining (for a variety of commodities), or tunnelling (for transport,

underground service conduits, or underground living or storage space).

Subsidence over a regional area can result from fluid extraction (for water, brine, or hydrocarbons). Uplift

or heave of the ground can occur when fluid is allowed to move back into an area from where it was

previously extracted and groundwater recharge occurs. This fluid recovery may include injection of water

or gas.

4.1. Ground Water Management - Shallow Compaction

Ground water management may be applied for example to ensure the exploitability of existing agricultural

land in lowland coastal areas. Groundwater management can lead to higher or lower water levels of

phreatic groundwater and of deeper aquifers in the shallow subsurface. Groundwater occupies pore and

interstitial spaces and fractures within sediments and rocks and therefore exerts a pressure. When the

water is drained the pore pressure or effective stress is reduced. This leads to consolidation of especially

soft sediments, such as clay and peat. This change in the sediment volume leads to subsidence. Similarly

when groundwater levels are allowed to recover, uplift may be a result of increasing pore pressure.

4.2. Ground Water Management - Peat Oxidation

Ground water management may be applied for example to ensure the exploitability of existing agricultural

land in lowland coastal areas. Groundwater management can lead to higher or lower water levels of

phreatic groundwater and of deeper aquifers in the shallow subsurface. Peat oxidation is the chemical

reaction where peat starts decomposing and will waste away with time. This loss of soil volume leads to

subsidence. It occurs when layers of peat in the subsurface are exposed to oxygen. As long as peat is

located in saturated ground layers this process does not take place. However peat oxidation does occur in

unsaturated soils, for instance in areas where ground water management lowers ground water levels.

4.3. Groundwater Abstraction

Groundwater also occupies pore and interstitial spaces and fractures within sediments and rocks in the

deeper subsurface. When this water is removed, for instance through pumping for drinking water or

lowering of water levels in mines, the pore pressure or effective stress is reduced and consolidation of the

sediments and rocks causes a change in the sediment and rock volume. This leads to subsidence. Similarly

when aquifer levels are allowed to recover, uplift may be a result of increasing pore pressure. Deep

geothermal energy systems should not lead to ground movement. They involve closed systems where

water, which was extracted from a deep aquifer, will be pumped back into that same aquifer. However,

geothermal heat pumps are used at shallower depths. Although these are also closed systems, ground

movement might occur temporarily (e.g. seasonally) or even permanently.

Page 48: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 48 of 53

4.4. Mining

Mining is the removal of material from the ground, in the context of PanGeo we consider mining to relate

to the removal of solid minerals. The ground surface may experience motion due to readjustments in the

overburden if underground mine workings fail.

4.5. Underground Construction

In PanGeo we are interested in underground construction that might bring about ground instability. An

example of this would be underground tunnelling; the removal of subsurface material can alter the support

for the overlying material therefore leading to ground motions.

4.6. Made Ground

Made ground comprises of anthropogenic deposits of all kinds such as land reclamation, site and pad

preparation by sand infill, road and rail embankments, levees and landfills for waste disposal. Examples of

land reclamation are artificial islands, beach restoration and artificial harbours. Reclaimed land as well as

embankments and levees are generally made up of sand, which is not prone to compaction as are clay and

peat. However, two ground instability processes will occur: consolidation of this artificial ground and

compaction of the ground below due to the load of the artificial ground and the structure it supports, e.g. a

building. Depending on its composition and mode of deposition, landfill can also be a compressible deposit.

4.7. Oil and Gas Production

Similar to abstraction of groundwater the production of oil and gas decreases the pore pressure of the

reservoir rocks and therefore can cause consolidation and subsidence of the surface. Storage of material in

the depleted reservoir (such as natural gas or CO2) can lead to surface uplift.

5. Other

These are areas of instability for which the geological explanation does not fit into any of the categories

above.

6. Unknown

These are areas of identified motion for which a geological interpretation cannot be found.

Page 49: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 49 of 53

Geohazard Groupings to be used in PanGeo

1. Deep Seated Motions

a. Earthquake (seismic hazard)

b. Tectonic Movements

c. Salt Tectonics

d. Volcanic Inflation/Deflation

2. Natural Ground Instability

a. Land Slide

b. Soil Creep

c. Ground Dissolution

d. Collapsible Ground

e. Running Sand/Liquefaction

3. Natural Ground Movement

a. Shrink-Swell Clays

b. Compressible Ground

4. Man Made (Anthropogenic) Ground Instability

a. Ground Water Management - Shallow Compaction

b. Ground Water Management - Peat Oxidation

c. Groundwater Abstraction

d. Mining

e. Underground Construction

f. Made Ground

g. Oil and Gas Production

5. Other

6. Unknown

Page 50: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 50 of 53

14 PANGEO GEOHAZARD ORDLISTA ENGELSK-SVENSK/SVENSK-ENGELSK

Engelska Svenska

Arable area Åkermark

Artificial fill Fyllning

Built-up area Bebyggd mark

Collapsible ground

Markgrund med stora hålrum mellan

det fasta materialet

Compressible ground Marksättning

Deep seated motions Jordskorperörelser

Determination method Metod för avgränsning

Digital elevation model Höjddata/höjdmodell

Down slope Momentan rörelse nedåt

Earthquake (seismic hazard) Jordbävning

Field campaigns Fältarbete

Flat area Flack mark

Fluvial deposit Svämsediment

General properties of the area Beskrivning av området

Geohazard category Typ av georisk

Glacial clay Glacial lera

Glacifluvial sediment Isälvssediment

Ground dissolution Karstbildning

Groundwater management Grundvattenanvändning

Groundwater abstraction Avsänkning av grundvattennivån

Gullies Ravinbildning

Gyttja, gyttja clay Gyttja, gyttjelera

Hillside, slope Sluttning

Horizontal along a river Horisontell längs vattendrag

Landslide Skred

Landslide database Skreddatabas

Levelling Avvägningar

Made ground Utfyllda områden

Man-made (anthropogenic)

Ground instability

Antropogen markinstabilitet

Mining Gruvdrift

Natural ground instability Naturlig markinstabilitet

Natural ground movement Naturlig markrörelse

Observed Observerad

Oil and gas Production Olje/gas-produktion

Other Annan, Annat

Page 51: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 51 of 53

Peat Torv

Peat oxidation Oxidation av torv

Postglacial clay Postglacial lera

Postglacial fine sand Postglacial finsand

Potential Potentiell

Railway embankment Järnvägsbank

Road embankment Vägbank

Running Sand/Liquefaction

Sandmark som undermineras genom

grundvattenerosion

Salt Tectonics Salttektonik

Shallow Compaction Ytnära kompaktering

Shrink-Swell Clays Svällande leror

Svenska Engelska

Annan, Annat Other

Antropogen markinstabilitet

Man-made (anthropogenic) ground

Instability

Avsänkning av grundvattennivån Groundwater abstraction

Avvägningar Levelling

Bebyggd mark Built-up area

Beskrivning av området General properties of the area

Dalgång Valley

Flack mark Flat area

Fyllning Artificial fill

Fältarbete Field campaigns

Glacial lera Glacial clay

Grundvattenanvändning Groundwater management

Gruvdrift Mining

Gyttja, gyttjelera Gyttja, gyttja clay

Horisontell längs vattendrag Horizontal along a river

Höjddata/höjdmodell Digital elevation model

Höjning/sänkning av markytan pga.

förändringar i magmakammarens volym

Volcanic inflation/Deflation

Insjunkning Subsidence

Isälvssediment Glacifluvial sediment

Jordbävning Earthquake (seismic hazard)

Jordkrypning Soil creep

Jordskorperörelser Deep seated motions

Järnvägsbank Railway embankment

Karstbildning Ground dissolution

Page 52: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 52 of 53

Kuperad terräng Undulating area

Markgrund med stora hålrum mellan

det fasta materialet

Collapsible Ground

Marksättning Compressible ground

Metod för avgränsning Determination method

Momentan rörelse nedåt Down slope

Morän Till

Naturlig markinstabilitet Natural ground instability

Naturlig markrörelse Natural ground movement

Observerad Observed

Okänt Unknown

Olje/Gas-produktion Oil and gas production

Oxidation av torv Peat oxidation

Postglacial finsand Postglacial fine sand

Postglacial lera Postglacial clay

Potentiell Potential

Ravinbildning Gullies

Salttektonik Salt tectonics

Sandmark som undermineras

genom grundvattenerosion

Running Sand/Liquefaction

Skogsmark Woodland

Skred Landslide

Skreddatabas Landslide database

Sluttning Hillside, slope

Stadsbebyggelse Urbanized area

Svällande leror Shrink-swell clays

Ytnära kompaktering Shallow compaction

15 REFERENSER

Bateson, L., Cuevas, M., Crosetto, M., Cigna, F., Schijf, M., Evans, H., 2012. PanGeo D3.5: Production Manual

V1.3.

Bono, N., och Pickard, H., 2008. PSInSAR Terrafirma H1 Evaluation. Stockholm Interpretation. Golder

Associates.

Henricsson, L., 2011. Stockholms stad – Grundvatten- och sättningsmätningar. Sammanställning och

utvärdering av mätningar utförda år 2011. Beställare Exploateringskontoret Stockholms stad. Konsult

WSP Samhällsbyggnad – Geoteknik. Uppdrag 10118440.

Stockholm stad, 2012. Inventering som grund för genomförandebeslut avseende reinvesteringsåtgärder.

Trafikkontoret, Stockholms stad. 2012- 11-16.

Stockholm.se, 2013 - http://www.stockholm.se/batbyggargatan 2013-06-06

Stockholms stad i samarbete med Norconsult, Sweco, Tyréns och WSP.

Page 53: EUROPEAN COMMISSION Research Executive Agency Seventh ...194.71.83.13/exowsPangeo/pdfs/Geohazard-Description-stockholm.pdf · PanGeo D7.1.37: Geohazard Description for Stockholm Dissemination

PanGeo D7.1.37: Geohazard Description for Stockholm

Dissemination Level: Public Page 53 of 53

Stockholms stad, 1976. Ytterstadens grundläggningsförhållanden. Paket 2. Förhandsrapport.

Småhussättningar.

Stockholms stad, 2011. SLUSSEN - Fördjupnings-PM. BYGGRELATERADE MILJÖKONSEKVENSER april 2011.

Stockholms stad, 2013. Liljevalchs konsthall och Blå Porten. Vårdprogram 2013.