20
EU-RU COORDINATED PROJECT COMPNANOCOMP Multiscale computational approach to the design of polymer-matrix nanocomposites NMP4-SL-2011-295355 Denka Hristova-Bogaerds, project coordinator COMPNANOCOMP DPI Annual meeting, 11 November 2014, Arnhem, The Netherlands

EU-RU COORDINATED PROJECT COMPNANOCOMP...Polymer segmental and local dynamics and stresses in filled systems Adhesion tension and adsorption/desorption rates in confined polymers Vogiatzis

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

EU-RU COORDINATED PROJECT COMPNANOCOMP

Multiscale computational approach to the design of polymer-matrix nanocomposites

NMP4-SL-2011-295355

Denka Hristova-Bogaerds, project coordinator COMPNANOCOMP

DPI Annual meeting, 11 November 2014, Arnhem, The Netherlands

Main goal of the project

This project will develop novel, ground-breaking

modelling and simulation methodology by linking

the microscopic, mesoscopic and macroscopic

levels in a rigorously predictive and

computationally tractable way to address the

structure and properties of industrially highly

relevant nanocomposite materials. Parameters

and functional relations derived from more

fundamental levels will form the input for higher

level modelling techniques with a minimum of

empirical, physically non-meaningful fitting

parameters.

Bridging several length and time scales

Project duration: 1 October 2011 – 1 October 2014Total budget: 2.3 M€ from which 1.5 M€ EU subsidy

2

Coordinated EU-RU project

European partners Russian partners

3

Coordinated EU-RU project:materials and applications

Nanoparticle filled thermoplastics

• Soft materials with extensivedynamical behaviour (mechanicaland viscoelastic properties)

• Low cross-link density

• Focus material in the project:silica filled elastomers (rubbers) of prime interest to Solvay

• Prime focus of the EU project

Nanoparticle filled thermosets

• Hard, glassy materials withsignificant reinforcing properties

• High cross-link density

• Focus material in the project:carbon filled (fiber reinforced) thermosets of prime interest toGeneral Electric

• Prime focus of RU project

Targeted impact:silica filled tyres

Targeted impact:wind & aerospace sectors

4

Collaborations across the length and time scales

Feedback loop

Atomistic modellingDr. A. Lyulin (TUE)

Structure-propertyrelationships

Prof. Theodorou (NTUA)

Mesoscale modellingProf. Long (CNRS)Dr. Sotta (CNRS)

Continuum MechanicsDr. Hütter (TUE)

Experimental ValidationDr. Delannoy (Solvay)

Feedback loop

Atomistic modellingDr. S. Lyulin (IMC)

Structure-propertyrelationships

Prof. Khokhlov (MSU)

Mesoscale modellingProf. Khalatur (UU)

Continuum MechanicsProf. Potapkin (NRCKI)Prof. J. Kenny (ECNP)

Experimental ValidationDr. Beaumont (GE)

Prof. J. Kenny (ECNP)

Feedback loop

Feedback loop

Silica filled elastomers (rubbers)

Carbon nanotube filled (fibre reinforced) thermosets (epoxy)

5

• Industrial Objective: promote Silica (from Solvay) in truck tyres

• Scientific Objectives :• Obtain simultaneously : decrease of rolling resistance + increase of adhesion

+ decrease of wear.• Building the bridge between model and industrial systems : systematic

experimental and theoretical comparison with same rubber matrix & interface

WearResistance

RollingResistance

WetGrip

100

125

110100100

Carbon Black

Silica

Targeted impact: silica filled tyres

6

The hierarchical approach of computational chemistry and mechanics

Silica filled elastomers

silica structure and polymer dynamics

7

Four interconnected levels of representation

source: NTUA

bulk polymer compressibility and particle‐polymer interactions

8

Silica filled elastomers:composite structure and properties

Meso and Macro scales

9

Numerical modelall parameters of the model knownfrom experiments

Slow units are free to moveLow viscosity and fluid‐like behavior

Picture for T > Tgfluid‐like behavior

Picture for T < Tgsolid‐like behavior

Slow units percolate and cannot moveHigh viscosity and solid‐like behavior

Dynamics close to Tg is strongly heterogeneous with units of 3-5 nm

Polymer behaviour (on a scale of a few nm)

source: CNRS 10

,v,,

Theodorou(WP1)

Long(WP2)

Two-scale model (meso and macro)

hard(glassy bridge)

soft(rubber)

source: TU/e (M. Hütter) 11

Experimental input and model validation

15 nm and 50 nm silica sizehave been prepared

Inter particle distance, particle size and properties are given as reference parameters for the modelling

source: Solvay 12

Silica filled elastomers:highlights of results

Polymer segmental and localdynamics and stresses infilled systems

Adhesion tension andadsorption/desorption rates inconfined polymers Vogiatzis G.G.; Theodorou, D.N.

Macromolecules 2014, 47, 387Guseva, D.V.; Komarov, P.V.; Lyulin, A.V. J.Chem.Phys 2014, 140, 114903

Understanding of the mechanismleading to plasticization in polymers

Polymer dynamics below andabove Tg

Two-scale model, in which allmacroscopic viscoplastic effects(Payne, …) emerge purely frommicroscopic (particle-) component

Experimental input about particlestructure is accounted for

0

1

2

3

4

5

6

7

8

0,1 1 10 100

(%)

G' e

t G''

(MPa

)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

tan

G'Exp G'

G''Exp G''

Exp tandExp

13

Improve mechanical reinforcement of wind blades or aircraft components

Increase electrical or thermal conductivitythrough thickness. Alignment of CNTs onepoxy system

Improve the dispersion level of nanoparticlesin epoxy matrix

Input and validation of the modelling

Understand interaction between carbon fibresand nano-filled thermoset resins

Targeted impact:wind & aerospace sectors

Carbon nanotube fibre reinforced thermosets for wind & aerospace applications

Epoxy+CF+CNTs

Epoxy+CF+Si

14

Improved dispersion CNTs alignment

Silica and CNTs reinforcement: 20-50% increase in the E-modulus

Increased conductivity in transversal direction, still not comparable to that along the fibre direction

Input for the modelling is provided

Highlights of results

source: ECNP source: ECNP

source: UU/MSU

15

The Russian part of the project

COMPNANOCOMP“Multiscale theoretical analysis, design and functional virtual testing

of organic matrix nanocompositesfor industrial applications (including optical, electrical and mechanical

properties)”

source: MSU 16

The software

12+ modules based on5 models Quantum Mechanics

Molecular Dynamics and MD-

kMC

Dissipative Particle Dynamics

Finite Element Method

Finite Difference in Time

Domain

source: MSU 17

COMPNANOCOMP output

> 35 conference presentations and 12 scientific papers in highly ranked journals (Macromolecules, Soft Matter, J. Phys. Chem,…)

5 PhD theses

Several exploitable results for further commercialization

18

Doros Theodorou (NTUA)Georgios Vogiatzis (NTUA)Grigorios Megariotis (NTUA)Alexey Lyulin (TU/e)Daria Guseva (TU/e/MSU)Markus Hütter (TU/e)Mykhailo Semkiv (TU/e)Didier Long (CNRS)Luca Conca (CNRS)Paul Sotta (CNRS)Jose Kenny (ECNP)Andrea Terenzi (ECNP)Laura Pepponi (ECNP)Jean-Yves Delannoy (Solvay)Ludovic Odoni (Solvay) Theodosia Kourkoutsaki (GE)Matthew Beaumont (GE)

Alexei Khokhlov (UU/MSU)Pavel Khalatur (UU)Alexey Gavrilov (UU/MSU)Vladimir Rudyak (MSU)Irina Nasimova (MSU)Boris Potapkin (KI/Kintech)Andrey Knizhnik (KI/Kintech)Sergey Lyulin (IMC)

John van Haare (DPI)Hans-Hartmann Pedersen (EC)Eberhard Seitz (PTA/EC)

to all COMPNANOCOMP partners:

Thanks

& to you for your attention!([email protected]; www.compnanocomp.eu) 19

Scientific journal Title and authorsBook “Supercomputer Technologies in Science and Educations”, Moscow: MSU, 2012, p. 184‐195

P. G. Khalatur, A. R. Khokhlov, A. A. Gavrilov, “Unusual forms of self‐assembly in the polymer world”

Soft Matter, 2013, 9, 4067‐4072 A. A. Gavrilov, A. V. Chertovich, P. G. Khalatur and A. R. Khokhlov, “Effect of nanotube size on mechanical properties of elastomeric composites”

Macromolecules, 2013, 46, 4670‐4683

G. G. Vogiatzis and D. N. Theodorou, “Structure of polymer layers grafted to nanoparticles in silica‐polystyrene nanocomposites”

Macromolecules, 2013, 46, 4684‐4690 

A. A. Gavrilov, A. V. Chertovich, " Self‐Assembly in Thin Films during Copolymerization on Patterned Surfaces" 

Macromolecules, 2013, 46, 6357‐6363

S. V. Lyulin, A. A. Gurtovenko, S. V. Larin, V. M. Nazarychev, A. V. Lyulin, “Microsecond Atomic‐Scale Molecular Dynamics Simulations of Polyimides”

J. Chem. Phys., 2013, 139, 224901‐10

A. A. Gavrilov, Y. V. Kudryavtsev, A. V. Chertovich, “Phase diagrams of block copolymer melts by dissipative particle dynamics simulations”

Macromolecules, 2014, 47,387−404

G. G. Vogiatzis and D. N. Theodorou, “Local Segmental Dynamics and Stresses in Polystyrene–C60 Mixtures” 

J. Chem. Phys, 2014, 140, 114903‐14

D. V. Guseva, P. V. Komarov and A. V. Lyulin, “Molecular‐dynamics simulations of thin polyisoprenefilms confined between amorphous silica substrates” 

Polymer Science, Ser. A, 2014, 56(1), 90‐97

A. A. Gavrilov, A. V. Chertovich, “Computer simulation of random polymer networks: Structure and properties”

Soft Matter, 2014, 10, 1224‐1232S. V. Lyulin, S. V. Larin, A. A. Gurtovenko, V. M. Nazarychev, S. G. Falkovich, V. E. Yudin, V. M. Svetlichnyi, I. V. Gofman and A. V. Lyulin, “Thermal properties of bulk polyimides: Insights from computer modeling versus experiment”

RSC Advances, 2014, 4, 830‐844S. V . Larin, S. G. Falkovich, V. M. Nazarychev, A. A. Gurtovenko, A. V. Lyulin, S. V. Lyulin, “Molecular‐dynamics simulation of polyimide matrix pre‐crystallization near the surface of a single‐walled carbon nanotube”

Macromolecules, 2014, 47, 6964 ‐ 6981

D. N. Theodorou, G. G. Vogiatzis and G. Kritikos, “Self‐Consistent‐Field Study of Adsorption and Desorption Kinetics of Polyethylene Melts on Graphite and Comparison with Atomistic Simulations”