23
Non-thermal production of pure hydrogen from biomass EU FP6-SES Integrated Project HYVOLUTION Pieternel Claassen on behalf of partners in HYVOLUTION: www.hyvolution.nl

EU FP6-SES Integrated Project HYVOLUTION

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Non-thermal production of pure hydrogen from biomass

EU FP6-SES Integrated Project

HYVOLUTION

Pieternel Claassen on behalf of partners in HYVOLUTION: www.hyvolution.nl

Partners in HYVOLUTION

22 partners 13 countries Jan 2006 – Dec 2010 14 M€ budget 10 M€ EC grant www.hyvolution.nl

Aim: Blue print for a bioprocess for decentral hydrogen production from biomass

Objectives in workpackages-Critical parameters in biomass procurement-Pretreatment technologies for optimal degradation of energy crops and bioresidues-Equipment for mobilization of fermentable feedstock

Objectives in workpackages

3-Maximum efficiency in conversion of biomass to hydrogen -Reactors for thermophilic and photo-heterotrophic hydrogen production

Objectives in workpackages

-Assessment of installations for optimal gas cleaning -Devices for monitoring and control -Equipment for optimal gas cleaning

Objectives in workpackages

-Minimum energy demand and maximum product output

Objectives in workpackages

-Increase of public awareness and societal acceptance-Identification of market opportunities and future stakeholders

The core of HYVOLUTION

C6H12O6 + 6 H2O → 6 CO2 + 12 H2 ΔGo’ = + 3 kJ

C6H12O6 + 2H2O 2CO2 + 2CH3COOH + 4H2 ΔGo’ = - 206 kJ(hyper)thermophilic bacteria

CH3COOH + 2H2O 2CO2 + 4H2 ΔGo’ = +104 kJphotosynthetic bacteria

photons

Advantages of thermophilic fermentation

• Equilibrium towards hydrogen production • High yield as compared to mesophilic fermentation• Natural selection pressure• Decrease of size for subsequent photofermentation

Caldicellulosiruptor sp., Thermotoga sp., co-cultures and new isolates.

WP 1 BIOMASS; some highlights

Agro-industrial residues and energy cropsBiomass critical parameters:

– Composition– Regional availability in EU-27– Cost– Sustainability– Co-products utilization

• Socio-economic desk studies• Experimental practices

Biomass mappingTotal cost and technical suitability

Tota

l cos

t €/G

J(p

rodu

ctio

n/op

portu

nity

, tra

nspo

rt/ha

ndlin

g, re

finin

g)

10

11

TSI (yield, mobilization, fermentability, co-products)

Sugar beetjuice

Potato steam peels(low starch)

Brewers grain wet

Wheat grainPotato steam peels(high starch)

Wheatmiddlings

Miscanthus

Sugar beet pulp wet

Reed Canary grass

Carrot press cake

5

6

7

8

9

0,7 0,8 0,9 1,0 1,1

High Cost High Cost High TSIHigh TSI

High Cost High Cost Low TSILow TSI

Low Cost Low Cost High TSIHigh TSI

Low Cost Low Cost Low TSILow TSI

●: 5 t/h ◍◍: 2 t/h ○: 1 t/h

Biomass selection

• Selected biomass for HYVOLUTION:

Sugar beet:sucrose

Wheat bran:starch and lignocellulose

Potato steam peels:starch

Barley straw:lignocellulose

Biomass pretreatment

High solids, conical screw reactor

Experimental parameters: -acid/ alkaline -temperature(s) -duration -enzymes

Fermentability test: production of acids

% o

f con

trol10 15 20 30 10 15 20 3010 15 20 30

10 15 20 30 10 10Barley straw

1010 15 20 30 10

Caldicellulosiruptor owensensis

Caldicellulosiruptor saccharolyticus 50

100

150

% o

f con

trol

10 15 20 3010 15 20 30 10 15 20 3010 15 20 3010 15 20 3010 15 20 30

50

[sugar] (g/L)

Thermotoga neapolitana

% o

f con

trol

10 15 20 3010 15 20 30 10 10

Barley straw hydrolysateWheat bran hydrolysate

Sugar beet juice

50

100

150

1010 15 20 3010 15 20 30 1010

10 15 20 30

10 15 20 30

10 15 20 3010 15 20 30

10 10

10

WP 4 GAS UPGRADING; some highlights

• Gas upgrading critical parameters– Low concentrations and quantities of hydrogen:

60 kg H2 /h (2 MWth)– Fluctuating concentrations – Energy demand – Sustainability– Security and risk analysis– Process control

Membrane contactor separation

Advantages of MC separation:• No loss of liquid carrier • Compression of gas not required• Low energy demand• Flexible in application• Recirculation possible

Sweep gas

absorbent

H2/CO2H2

loadedabsorbent

Desorption

Sweep+CO2

Pump

AbsorptionCO2

CO2

Active, dense membrane(0.5 mm);Driving force; selective absorption

CO2 removal at T=293 K. Influent gas is He=87%, CO2=13%(v/v) at flow rate 200 mL/min.

Membrane contactor prototype

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40

Liquid flow rate (mL/min)

Rel

ativ

e C

O2

-con

cent

ratio

n at

gas

out

let

cou

t/c

in

deion.water + 1 M MEA (co-current)

deion. water + 1 M MEA (counter-current)

deion. water (counter-current)

Liquid MembraneSpacers

Gas

Energy demand for gas upgrading

0%

10%

20%

30%

40%

50%

0% 10% 20% 30% 40%

Mole fraction CO2 in raw gas [mol-%]

Rel

ativ

e Po

wer

Los

s [-]

Membrane contactor Experiment (MEA)

Membrane Contactor (K2CO3 + Piperazine)

VSA without drying

Gas analysis

• Use of electrochemical H2-sensors (measuring range: 0-5%; ~ € 500 / sensor );

• Inclusion of state-of-the-art sensors (CO2, CH4, O2, H2S) in separate channels

• Development and construction of a dilution device

Hydrogen sensor Automated dilution device

Blue print for a 2 MW HYVOLUTION plant

Future scenario’s and state of the art

1: CFTB Thick juice; 2: CSTR Molasses; 3: Hup- mutant; 4: Wild type

Scenario’s Current HYVOLUTION data

Thermophilic fermentation

Substrate (g glucose /L)

Yield (% of maximum)

Productivity (mmol H2/L.h)

Stripping

Photofermentation

Substrate (mM acetate)

Yield (% of maximum)

Productivity (mmol H2/L.h)

Base case Longterm case: >2030

Glucose Biomass Biomass 1 Biomass 2

13 40 7.5 10

67 85 88 60

5.4 53 29 17

CO2 - ~N2 N2

Acetate DFE DFE3 DFE4

40 120 40 40

50 85 67 34 - 45

0.33 3.3 1.5 0.3 - 0.5

Future hydrogen production costsCost breakdown into process steps.

Base case Long term caseCost (€/kg) Cost(€/kg)

Raw material (PSP) 1.19 0.70Pretreatment 1.74 1.23Thermophilic fermentation 6.07 1.47Photofermentation 8.78 1.37Gas up-grading 2.15 1.37Total production cost 19.93 6.14

Critical parameters from cost-point of view:-raw material and pretreatment lignocellulosics-thermophilic fermentation substrate concentration and yield-photofermentation productivity-gas upgrading energy demand

HYVOLUTION presentations

Presentations 2,3 and 4

Presentations 5 and 6

Presentation 7

Presentation 8