Etiology of Fibrous Dysplasia

Embed Size (px)

Citation preview

  • 8/10/2019 Etiology of Fibrous Dysplasia

    1/6

    Int . J. Oral Maxi llofac. Surg. 1999; 28:3 66-3 71

    Printed in Denmark. Al l r ights reserved

    Copyr igh t 9 Munksga ard 1999

    [ntemadonalJournal of

    Oral

    MaxillofacialSurgery

    IS SN 0901-502 7

    E t io lo g y o f f i b r o u s d y s p la s ia

    a n d M c C u n e A l b r i g h t

    syn rome

    a t h o l o g y

    M . M i c h a e l C o h e n , J r . 1 ,

    R o b i n E . H o w e l l 2

    Depar tments of

    1 2Ora l Maxillofacial

    Sciences; 1Pediatr ics ; 1Community Health

    Epidem iology; 1He alth Serv ices

    Adm inis trat ion; 1Soc io logy Soc ia l

    Anthropology, Dalhous ie U nivers i ty , Hal i fax ,

    N ova Scot ia, C anada

    M . M . C o h en J r . R . E . H o w e l l : E t io l o g y o f i b r o u s d y sp l a si a a n d M c C u n e -

    A l b r i g h t s y n d r o me . I n t . J. O r a l M a x i l l o f a c . S u r g . 1 9 9 9; 2 8 : 3 6 6 - 3 7 1 .

    9 M u n k s g a a r d , 1 9 9 9

    A b s t r a c t . I n t h is p a p e r , t h e e t i o l o g y o f m o n o s t o t i c f ib r o u s d y p l a s ia a n d M c C u n e -

    A l b r i g h t s y n d r o m e is ex p l a in e d . B o t h m o n o s t o t i c f ib r o u s d y s p l a si a a n d M c C n n e -

    A l b r i g h t s y n d r o m e a r e s p o r a d i c a l l y o c c u r r i n g d i so r d e r s i n w h i c h a m u t a t i o n i n

    t he G N A S1 ge ne oc c u r s po s t z ygo t i c a l l y in a s om a t i c c ei l. A l l ce ll s de s c e nde d

    f r o m t h e m u t a t e d c el l c a n m a n i f e s t f e a tu r e s o f M c C u n e - A l b r i g h t s y n d r o m e o r

    f i b r ous dys p l a s i a . C e l l s de s c e nde d f r om non- m ut a t e d c e l l s de ve l op i n t o no r m a l

    t is sue s. Thu s , t he - c l in i c a l pa t t e r n i s va r i a b l e i n d i s t ri bu t i on a nd a ppe a r a nc e .

    Mor e ge ne r a l i z e d vs m or e l oc a l i z e d e xp r e s s i on de pe nd on ( a ) how s m a l l o r how

    l a r ge t he c e l l m a s s i s du r i ng e m br yoge ne s i s w he n t he m u t a t i on oc c u r s a nd ( b )

    w he r e i n t he c e l l m a s s t he m u t a t i on oc c u r s . Top i c s d i s c us s e d i nc l ude G p r o t e i n s

    a nd t he i r r e c e p t o r s , c yc l ing o f s t i m u l a t o r y G p r o t e i n be t w e e n a c t i ve a nd i na c t i ve

    f o r m s , a nd s pe c !f ic m u t a t i ons i n G N A SI . W e a ls o d i s c uss f ou r pos s i b i li ti e s : ( a )

    A r e t he r e m a s ke d m u t a t i ons ? ( b ) A r e t he r e e f fe c t s o f i m pr i n t i ng? ( c ) A r e t he r e

    non- c l a s s i c a l m u t a t i ons ? a nd ( d ) I s f i b r ous dys p l a s i a a ne op l a s m ?

    K e y

    words: f ibrous

    dysplasia; pituitary

    adenoma; McCune-AIbright

    syndrome;

    GNAS1 gene; G prote in; somat ic mosaic ism;

    neoplas ia.

    A cce p te d

    f o r p u b l i c t i o n

    4 Apr i l 1999

    Monos t o t i c f i b r ous dys p l a s i a i s a w e l l -

    k n o w n b o n e d i s o r d e r o f g r e a t i n te r e st

    t o s u r ge ons a nd pa t ho l og i s t s . The e t i o l -

    o g y is n o w k n o w n . A c t i v a t i n g m u t a -

    t i ons i n t he ge ne t ha t e nc od e s t he ce s ub -

    un i t o f s t i m u l a t o r y G p r o t e i n ( G ~a )

    c a us e m onos t o t i c f i b r ous dys p l a s i a ,

    po l yos t o t i c f i b r ous dys p l a s i a , p i t u i t a r y

    a d e n o m a , a n d M c C u n e - A l b r i g h t s y n -

    d r om e . To unde r s t a nd t he e t i o l ogy , G

    pr o t e i n s , G p r o t e i n - c oup l e d r e c e p t o r s ,

    c y c l in g o f s t i m u l a t o r y G p r o t e i n ( G s a )

    be t w e e n i t s a c t i ve a nd i na c t i ve f o r m s ,

    a n d t h e c o n c e p t o f s o m a t i c m o s a i c is m

    n e e d t o b e e x p l ai n e d . T e r m i n o l o g y u s e d

    i n t h i s pa pe r i s s um m a r i z e d i n Ta b l e 1 .

    G p r o t e i n s , p a r t i c u l a r l y G s a

    G pr o t e i n s ( gua n i ne nuc l e o t i de p r o -

    t e in s ) a r e a f a m i l y o f m o l e c f il e s c om -

    po sed of three su bun i t s d es ign ated c~, f l,

    a nd 7 . The f unc t i on a nd s pe c i f i c i t y o f

    e a c h G p r o t e i n i s de t e r m i ne d by t he a

    s ubun i t , w h i c h i s un i que f o r e a c h t ype .

    T h e f l a n d 7 s u b u n i t s t e n d t o b e m o r e

    hom oge ne ous . I n t h i s pa pe r , w e s ha l l be

    c o n c e r n e d w i t h s t i m u l a t o r y G p r o t e i n

    ( G s c 0 w h i c h a c t i va t e s a de ny l y l c yc l a s e

    w h i c h , i n t u r n , c a t a l y z es t h e f o r m a t i o n

    o f c A M P ( 3 ', 5 '- c y c li c a d e n o s in e m o n o -

    p h o s p h a t e ) f r o m A T P ( a d e n o s i n e t r i -

    phos p ha t e ) . Th e ge ne f o r G ~c~ i s

    G N A S 1 ( g u a n i n e n u c l e o t i d e - b i n d i n g

    prote in , c~-st imula ting a c t iv i ty po lyp ep -

    t i de 1 ) ; i t s c h r om os om e m a p l oc a t i on i s

    20q13.215.

    L i ke a l l G p r o t e i n s , t he i na c t i ve f o r m

    o f G sc ~ c o n t ai n s b o u n d G D P ( g u a n o -

    s in e d i p h o s p h a t e ) . A G P C R ( G p r o t e in -

    c oup l e d r e c e p t o r ) f a c i l i t a t e s t he e x -

    c h a n g e o f b o u n d G T P ( g u a n o s i n e tr i-

    p h o s p h a t e) f o r G D P p r o d u c i n g t h e ac -

    t ive fo rm 3~

    G p r o t e i n - c o u p l e d r e c e p t o r s

    G pr o t e i n - c oup l e d r e c e p t o r s l i nk t he

    b i nd i ng o f a n e x t r a c e l lu l a r l i ga nd , s uc h

    a s a g r o w t h f a c t o r o r h o r m o n e , t o t h e

    a c t i va t i on o f the a s s oc i a t e d G p r o t e i n

    a nd i n t r a c e l l u l a r s i gna l ge ne r a t i on . The

    G P C R f a m i ly h a s s ev e n h y d r o p h o b i c

    m e m b r a n e - s p a n n i n g d o m a i n s , a n e x t r a -

    c e l l u l a r a m i n o - t e r m i n a l r e g i o n , a n d a n

    i n t r a c e l l u l a r c a r boxy- t e r m i na l r e g i on .

    The i n t r a c e l l u l a r l oop be t w e e n t he f i f t h

    a n d s i x t h m e m b r a n e - s p a n n i n g d o m a i n s

    t oge t he r w i t h t he i n t r a c e l l u l a r c a r boxy-

    t e r m i n a l s e g m e n t a r e i m p o r t a n t f o r G

    pr o t e i n i n t e r a c t i ons 3~

    C y c l i n g s t im u l a t o r y G p r o t e i n G s a )

    b e t w e e n i ts a c ti v e a n d i n a c t i v e f o r m s

    C y c l i n g o f s t i m u l a t o r y G p r o t e i n ( G s a )

    be t w e e n i t s a c t i ve a nd i na c t i ve f o r m s i s

  • 8/10/2019 Etiology of Fibrous Dysplasia

    2/6

    E t i o l o g y o f i b r o u s d y s p la s ia M c C u n e - A l b r i g h t s y n d r o m e 3 6 7

    Table 1.

    Terminology

    Abbreviations Definitions

    ATP

    cAMP

    CS

    DAG

    Gay

    GDP

    GNAS 1

    GPCR

    Gsg

    GTP

    GTPase

    tP

    MAS

    MFD

    PA

    PFD

    PIP2

    PKC

    PKA

    PLC

    RS

    STK

    Adenosine triphosphate

    3 ,5 -cyclic adenosine monophosphate

    Catalytic subunit of PKA

    Diacylglycerol

    /]7 subunit of G protein

    Guanosine diphosphate

    Guanine nucleotide-binding protein, a-stimulating activity polypeptide 1

    G protein-coupled receptor

    a subunit of G protein

    Guanosine triphosphate

    Guanosine triphosphatase

    Inositol trisphosphate

    McCune-Albright syndrome

    Monostotic fibrous dysplasia

    Pituitary adenoma

    Polyostotic fibrous dysplasia

    Phosphatidylinositol bisphosphate

    Protein kinase C

    Protein kinase A or cAMP-dependent protein kinase

    Phospholipase C

    Regulatory subunits of PKA

    Serine/threonine kinase

    Table 2. Mutations in the GNASI Gene

    Nucleotide

    Disorder Exon change Amino acid substitution

    McCune-Albright syndrome

    Polyostotic fibrous dysplasia

    Monostotic fibrous dysplasia

    Panostotic fibrous dysplasia

    Isolated pituitary adenoma

    8 C--+T Arg201Cys

    8 G--+A Arg201His

    8 C---~T Arg201 Cys

    8 C--+T Arg201Cys

    8 G-+A Arg201His

    8 C--+A Arg201Ser

    8 C--+T Arg201Cys

    8 G--+A Arg201His

    8 C--+A Arg201Ser

    9 A--+G Gln227Arg

    9 G---~T Gln227His

    Based on ~EINSTEINet al., 199134, SCHWINDINGER t al. , 199225, S~NI~R et al ., 199329, 199428,

    199527, CANDELIEREet al., 19954, LANDISet al ., 198914, MALCI-IOFF t al., 199416, WILLIAMSON

    et al., 199535, CANDELIE~et al., 19973.

    shown in Fig. 1. The inactive G~c~ is

    shown in (A) and (D). Ligand-binding

    (B) produces a confo rmati onal change

    in the receptor and GDP is replaced by

    GTP, which results in dissociation of

    the cc subunit. Binding of the active

    form of the c~ subun it to adenylyl cyc-

    lase (C) activates this enzyme, resulting

    in the formation of cAMP from ATR

    Hydrolysis of GTP to GDP is catalyzed

    within seconds by the intrinsic GTPase

    (guanosine triphosphatase) activity of

    Gsa cau sing dissociation of the a sub-

    unit from adenylyl cyclase and binding

    to the/] and ? subunits, resulting in the

    inactive form (D). Liga nd-bi nding will

    cause repe titi on o f the cycle 31.

    M u t a t i o n s i n G N A S

    Mutations in GNAS1 have been associ-

    ated with different disorders. Gain-of-

    function mutations have been found in

    McCune-Albright syndrome (MAS),

    polyostotic fibrous dysplasia (PFD),

    monostotic fibrous dysplasia (MFD),

    and pituitary adenoma (PA). Loss-of-

    function mutations have been found in

    endocrine disorders characterized by

    hormone resistance, such as type la

    pseudohypoparathyroidism, hereditary

    glucocorticoid deficiency, and nephro-

    genic diabetes insipidus3~

    Bone marrow contains hematopoietic

    tissue and skeletal progenitor cells of

    Adeny ly l

    G P r o t e i n / Y c la s e

    Extracellular

    A) ~ Cel lMembrane

    Intraceflular

    G D p ~

    l i v t

    adeny ly l

    c )

    A T P c A M P

    p i~ r l + P P i

    Fig. l . Activation of adenylyl cyclase follow-

    ing ligand binding to G protein-coupled re-

    ceptor. (A) G protein composed of a, fl, and

    ), subunits. This is the inactive form. L -

    Ligand. R=Receptor. GDP=Guanos ine di-

    phosphate. (B) Ligand (L) binding produces

    conformational change in receptor (R) and

    guanosine diphosphate (GDP) is replaced by

    guanosine triphosphate (GTP), resulting in

    dissociation of the a subunit. (C) Binding of

    a subunit to adenylyl cyclase activates 3 ,5 -

    cyclic adenosine monophosphate (cAMP)

    from adenosine tripbosphate (ATP). (D) Hy-

    drolysis of GTP to GDP by GTPase, causing

    dissociation of the a subunit from adenylyl

    cyclase and binding to the/~ and ), subunits,

    the inactive form. Ligand binding causes rep-

    etition of the cycle.

    the mar row spaces 19. GNAS1 muta-

    tions in MAS cause hyperfunction of

    (1) skeletal progenitor cells from the

    marrow spaces producing abnormal os-

    teoblasts2,~9, (2) melanocytes25, and (3)

    endoc rine cells 9. The same abn orma l

    osteoblasts are also found in PFD and

    MFD. To date, no mutations have been

    reported in Jaffe-Lichtenstein syndrom e

    characterized by polyostotic fibrous

    dysplasia and caf~-au-lait spots without

    endocrine disturbances. Since this syn-

    drome is part of the same clinical spec-

    trum, it can be assumed that a GNAS1

    mutation is causative.

    How activating GNAS1 mutations

    affect the cycling o f G~c~ between its ac-

    tive and inactive forms is shown in Fig.

    2. One of two specific mutations can be

    demonstrated in these disorders (Table

    2): C--+T, resulting in Arg201Cys, or

    G-+A, resulting in Arg201His.

  • 8/10/2019 Etiology of Fibrous Dysplasia

    3/6

    368 C o h e n a n d H o w e l l

    Activated

    ~ r ~ adenyly l

    _._.~/cyclase

    A )

    P PPi

    / P

    Acfivatingmutations

    n

    G ~

    ||-, |

    / IP [- ,~rg2OlCys-[m___~ +

    L Arg201His~ PKA PKA

    Mobilizationof / ~ 1 ~=~ ATP

    intracellularCa2+ J ~ ~ ~ ', -~k ~, ~

    Pi ~ ~ - ~

    B ) )

    I Dp |

    Fig. 2. Activating m utations (Arg201Cys or Arg201His) in the gene encoding the a subunit

    of stimu lator y G pr otein (Gsa). (A) Ligand-independent persistent activation o f Gsa. There

    is inapprop riate s timulation of adenylyl cyclase. The m utations are located adjace nt to the y-

    phospha te of GTP, thus interfering with hydrolysis of G TP by GT Pase to GDP. (B) Therefore,

    the a subu/ait (Gsa) cannot dissociate from adenylyl cyclase and bind to the 87 subunit (G&).

    Two downstream pathways are shown in A. The PKC pathway (protein kinase C pathway) is

    shown on the left. The PKA pathway (protein kinase A or cAMP-dependent protein kinase

    pathway) is shown on the right. B oth pathways are present with norm al functioning as well

    as with mutations. How ever, to keep F igures 1 and 2 as simple as possible, these pathways

    are omitted except in 2A. The PK C and P KA pathways are specifically shown in 2A because

    the mu tations interfere w ith hydrolysis of GT P to G DP , resulting in continued s timulation of

    the a subunit (Gsa) and continued dissociation of the fly subunit (G y). The dissociated 137

    subunit overactivates the PK C pathway. PL C (phospholipase C) cleaves PIP2 (phosphatidyli-

    nosi tol bisphosphate) int o two intr acell nlar messengers: DA G (diacylglycerol) and IP3 (inositol

    trisphosphate). The lat ter triggers the release of sequestered calcium ions (C a2+) which to-

    gether with DA G activate PKC. Because the a subunit (G ~a) cann ot dissociate from adenylyl

    cyclase, cAM P is overproduced which, in turn, overactivates the PK A pathway. PK A is com-

    posed of two regulato ry subunits (RS) that have binding s ites for cAM P, and two ca talytic

    subunits (C S) that, when dissociated, phosp hor ylate serine/threonine kinases (STK).

    A c t i v a t i o n i s m a i n t a i n e d i n a i i g a n d -

    i n d e p e n d e n t m a n n e r ( F i g . 2 A ) , p r o d u c -

    i n g i n a p p r o p r i a t e s t i m u l a t i o n o f

    a d e n y l y l c y c la s e . M u t a t i o n s a r e l o c a t e d

    n e a r t h e s i te w h i c h i n t e r a c t s w i t h t h e 7 -

    p h o s p h a t e o f G T P , t h u s i n t e r f e r i n g w i t h

    h y d r ol y s is o f G T P t o G D R B e c a us e G s a

    c a n n o t d i s s o c i a t e f r o m a d e n y l y l c y cl a s e

    a n d b i n d t o G p r , a d e n y l y l c y cl a s e r e -

    m a i n s a c t i v e , p r o d u c i n g i n c r e a s e d

    c A M P a c t i v i t y w h i c h r e s u l t s in t h e p a t h -

    o l o g y o f M A S , P F D , M F D , a n d P A .

    T w o d o w n s t r e a m p a t h w a y s : p r o t e in

    k i n a s e A a n d p r o t e i n k i n a s e C

    A c t i v a t i o n o f G s a l i n k e d r e c e p t o r s o p e n s

    m u l t i p l e d o w n s t r e a m p a t h w a y s . T w o i m -

    p o r t a n t p a t h w a y s a r e t h e p r o t e i n k i n a s e

    A o r c A M P - d e p e n d e n t p r o t e i n k i n a s e

    p a t h w a y ( P K A p a t h w a y ) a n d t h e p r o t e in

    k i n a se C p a t h w a y ( P K C p a t h w a y ) ( F i g .

    2 A ) . T h e s e p a t h w a y s w e r e n o t c o n -

    s i d e r e d e a r l ie r t o k e e p t h e m o l e c u l a r b i -

    o l o g y f r o m b e i n g o v e r l y c o m p l i c a t e d .

    F o r t h e s a m e r e a s o n , t h e s e p a t h w a y s

    w e r e o m i t t e d i n F i g u r e 1 . T h e y m u s t b e

    c o n s i d e r e d w i t h a c t i v a t i n g G N A S 1

    m u t a t i o n s , h o w e v e r , b e c a u s e c o n t i n u e d

    a c t i v a t i o n o f t h e a s u b u n i t ( G s a ) r e s u lt s

    i n ( 1) i n c r e a se d c A M P w h i c h o v e r a c t i v -

    a t es t h e P K A p a t h w a y a n d ( 2) c o n ti n u e d

    d i s s o c i a t i o n o f t h e t 7 s u b u n i t (G p e )

    w h i c h m a y s y n e r g i s t i c a l l y s t i m u l a t e a d -

    e n y l y l c y c l a se a n d s t i m u l a t e s s o m e i s o -

    f o r m s o f P L C s ( F i g. 2A ) . P K A c a n p r o -

    d u c e m a n y e f f e c t s d e p e n d i n g o n t h e c e ll

    t y p e a n d t h e p a r t i c u l a r p r o t e i n s P K A

    p h o s p h o r y l a t e s . I n t h e P K C p a t h w a y ,

    o n c e P K C i s a c t i v a t e d , i t a c t i v a t e s t h e

    M A P k i n a s e p a t h w a y . T h e s e p a t h w a y s

    p r o d u c e v a r i o u s t y p e s o f c e l l u l a r r e -

    s p o n s e a n d p l a y a f u n d a m e n t a l r o l e i n

    c o n t r o l l i n g c e l l g r o w t h .

    B e c a u s e t h e a s u b u n i t ( G s a ) c a n n o t

    d i s s o c i a t e f r o m a d e n y l y l c yc l a s e, c A M P

    i s o v e r p r o d u c e d w h i c h , i n t u r n , o v e r -

    a c t i v a t e s t h e P K A p a t h w a y ( F i g . 2 A ) .

    P K A i s c o m p o s e d o f tw o r e g u l a t o r y s u b -

    u n i t s ( R S ) t h a t h a v e b i n d i n g s i t e s f o r

    c A M P , a n d t w o c a t a l y t i c s u b u n i t s ( C S )

    t h a t , w h e n d i s so c i a t e d , p h o s p h o r y l a t e

    s e r i n e / t h r e o n i n e k i n a s e s ( S T K ) .

    T h e d i s s o c ia t e d ,6 7 s u b u n i t (G y )

    o v e r a c t i v at e s t h e P K C p a t h w a y s . P h o s -

    p h o l i p a s e C ( P L C ) c l e a v es p h o s p h a -

    t i d y l i n o s i t o l b i s p h o s p h a t e ( P I P2 ) i n t o

    t w o i n t r a c e l l u l a r m e s s e n g er s : d i a c y l g l y -

    c e ro l ( D A G ) a n d i n o s i to l t r i s p h o s p h a t e

    ( IP 3 ) . T h e l a t t e r t r i g g e r s th e r e l e a s e o f

    s e q u e s t e re d c a l c iu m io n s (C a 2 +) w h ic h ,

    t o g e t h e r w i t h D A G , a c t i v a t e P K C .

    M c C u n e - A l b r i g h t s y n d r o m e , f i b r o u s

    d y s p l a s i a , a n d s o m a t i c m o s a i c i s m

    M c C u n e - A l b r i g h t s y n d r o m e ( M A S ) i s

    c h a r a c t e r i z e d b y p o l y o s t o t i c f i b r o u s

    d y s p l a s i a , c a f 6 - a u - l a i t s p o t s , a n d

    m u l t i p l e e n d o c r i n o p a t h i e s , i n c l u d i n g

    s e x u a l p r e c o c i t y , p i t u i t a r y a d e n o m a ,

    a n d h y p e r t h y r o i d is m . M a n y o t h e r a b -

    n o r m a l i t i e s a r e k n o w n t o o c c u r a n d

    th e s e h a v e b e e n r e v ie w e d a n d d i s c u s s e d

    by S t iN Ke R e t a129 . In 1986, HAPPLE1~

    n o t i n g t h a t M A S o c c u r r e d s p o r a d i c a l l y ,

    s e t f o r t h t h e i n t r i g u i n g h y p o t h e s i s t h a t

    t h e d i s o r d e r w a s c a u s e d b y s o m a t i c m o -

    s a i c i s m , l e th a l i n th e n o n -m o s a ic s t a t e .

    S p o r a d i c o c c u r r e n c e a n d v a r i a b i l i t y o f

    e x p r es s io n i n M A S a r e c o m p a t i b l e w i t h

    H a p p l e ' s h y p o t h e s i s .

    W i t h s o m a t i c m o s ai c i sm , a m u t a t i o n

    o c c u r s p o s t z y g o t i c a l l y in a s o m a t i c c e ll

    r a t h e r t h a n i n a g e r m c e l l. A l l c el l s d e -

    s c e n d e d f r o m t h e m u t a t e d c e l l c a n m a n i -

    f e s t M A S f e a t u r e s . C e l l s d e s c e n d e d f r o m

    n o n - m u t a t e d c e l l s d e v e l o p i n t o n o r m a l

    t i ss u e s. T h u s , t h e c l i n i c a l p a t t e r n i s m o -

    s a i c i n d i s t r i b u t i o n a n d v a r i a b l e i n a p -

    p e a r a n c e . S e v er e v er s u s m i l d m a n i f e s -

    t a t i o n s a n d m o r e g e n e r a l i z e d v e r s u s

    m o r e l o c a l i z e d e x p r e s s i o n d e p e n d o n ( a )

    h o w s m a l l o r h o w l a r g e t h e c e ll m a s s i s

    d u r i n g e m b r y o g e n e s i s w h e n t h e m u t a -

    t i o n o c c u r s a n d ( b ) w h e r e i n t h e c e l l m a s s

    t h e m u t a t i o n o c c u r s .

    T h e s a m e t w o G N A S 1 m u t a t i o n s

    f o u n d i n M A S a l so o c c u r i n p o l y o st o t i c

    f i b ro u s d y s p l a s i a ( P F D ) , m o n o s t o t i c

    f i b ro u s d y s p l a si a ( M F D ) , a n d i s o la t e d

    p i t u i t a r y a d e n o m a ( P A ) o f t h e g r o w t h

    h o r m o n e s e c r e t i n g t y p e a , l e s s c o m -

    m o n l y o f t h e A C T H s e c re t in g

    a If the epiphyses are closed, patients can de-

    velop acromegaly.

  • 8/10/2019 Etiology of Fibrous Dysplasia

    4/6

    Et io lo g y o f i b ro u s d y sp las ia Mc C u n e -A lb r ig h t sy n dro m e 369

    McCu n e

    A ib r i gh t

    s y n d r ome

    Po lyos to t i c

    f i b rous

    dysp l a s i a

    Monos t o t i c

    f i b rous

    dysp l a s i a

    t

    m

    I I

    O Normal

    9 Som atic mutation of GN AS 1 gene

    l

    Fig. 3.

    How muta tions cause McC une-A lbright syndrome, polyosto tic fibrous dysplasia , and

    mo nostotic fibrous dysplasia depend on w hen during emb ryonic development or during post-

    natal life the mutation occurs . Somatic mutation in a small cell mass is likely to result in

    Mc Cune- Albrigh t syndrome. M utation in a larger ceil mass may result in polyostotic fibrous

    dyspIasia . A mu tation in postn atal life , during infancy, chiIdhood, or aduIt life may resuIt in

    monostotic fibrous dysplasia.

    ty p e 1'3'9,11'14'16,27-29'34,35 T a b le 2 ) . H o w

    t h e s e m u t a t i o n s c a u s e t h e s e d i s o r d e r s

    s e p a r a t e l y d e p e n d s o n w h e n d u r i n g e m -

    b r y o n i c d e v e l o p m e n t o r d u r i n g p o s t -

    n a t a l l i fe th e m u t a t i o n o c c u r s ( F i g . 3 ) .

    S o m a t i c m u t a t i o n i n a s m a l l c e ll m a s s

    i s l i k e ly t o r e s u l t i n M A S . M u t a t i o n i n

    a l a r g e r c e ll m a s s m a y r e s u l t i n P F D . A

    m u t a t i o n i n p o s t n a t a l l i f e , d u r i n g i n -

    f a n c y, c h i l d h o o d , o r a d u l t l i f e m a y r e -

    s u l t i n M F D ( F i g . 3) o r i n P A , d e p e n d -

    i n g o n t h e a n a t o m i c l o c a t i o n o f t h e

    m u t a t i o n . A l l o f t h e s e d i s o r d e r s a r e

    c o m p o n e n t s o f M A S .

    F i b r o u s d y s p l a s i a : o t h e r p o s s i b i l i t i e s

    A r e t h e r e m a s k e d m u t a t i o n s ?

    O n e p o s s i b il i t y m a y b e t h a t s o m a t i c

    m u t a t i o n s m a y n o t b e c o m e m a n i f e s t

    ab

    initio, b u t s u r v i v e i n m a s k e d f o r m t o b e -

    c o me a c t iv e a t a l a t e r t ime . F o r e x -

    a m p l e , a m u t a t i o n f o r m o n o s t o t i c f i -

    b r o u s d y s p l a s i a m a y o c c u r d u r i n g f e t a l

    l i f e , b u t n o t b e c o m e m a n i f e s t u n t i l 2 5

    y e a r s o f a g e .

    T h a t s u c h a p o s s i b i l i t y i s w o r t h c o n -

    s i d e r i n g i s b o r n e o u t b y t h e s t u d y o f

    Drosophila m u t a t i o n s b y R U T H E R -

    FORD

    ~ LIND QUIST 3.

    T h e y s u g g e s t e d

    t h a t t h e Drosophila g e n o m e c o n t a i n s

    m a s k e d m u t a t i o n s p r o t e c te d b y h e a t

    s h o c k p r o t e i n s t h a t s t a b il i z e t h e m u -

    t a n t p r o t e i n s a n d k e e p t h e m f u n c -

    t i o n i n g p r o p e r l y . W h e n t h e o r g a n i s m i s

    s t r e ss e d , h e a t s h o c k p r o t e i n s n o

    l o n g e r p r o t e c t t h e m u t a n t p r o t e i n s

    w h i c h t h e n b e c o m e u n m a s k e d , a l t e r i n g

    p h y s i c a l t r a i t s i n h a r m f u l w a y s .

    A r e th e r e e f fec ts o f i mp r in t in g ?

    I n g e n o m i c i m p r i n t i n g , m o d i f i c a t i o n s i n

    t h e g e n e t i c m a t e r i a l o c c u r d e p e n d i n g o n

    w h e t h e r g e n et i c i n f o r m a t i o n i s m a t e r n -

    a l l y o r p a t e r n a l l y d e r i v e d . I f t h e p a -

    t e rn a l a l l e l e i s imp r in t e d ( in a c t iv e ) , t h e

    m a t e r n a l a l l e le is a c t iv e . I n c o n t r a s t , i f

    t h e m a t e r n a l a l l e le i s i m p r i n t e d ( i n a c -

    t iv e ) , t h e p a te rn a l a l l e l e i s a c t iv e . Im-

    p r i n t e d g e n es c a n b e o n a u t o s o m e s , a n d

    th e e f f e c t s c a n b e t i s s u e - s p e c i f i c o r m o re

    g e n e ra l i z e d . F o r e x a mp le , g e n e s a t

    1 1 p 1 5 .5 , s u c h a s IG F 2 a n d p 5 7 K IP 2,

    a m o n g o t h e r g e n e s , h a v e d i f f e r e n t i a l

    m a t e r n a l a n d p a t e r n a l e f f ec ts7.

    P s e u d o h y p o p a r a t h y r o i d i s m i s a l s o

    c a u s ed b y m u t a t i o n s i n G N A S 1 , b u t i n -

    a c t i v a t i n g o n e s t h a t r e d u c e t h e e x p r e s s-

    i o n a n d f u n c t i o n o f G s a . S o m e p a t i e n t s

    w i t h p s e u d o h y p o p a r a t h y r o i d i s m h a v e

    r e s i s t a n c e t o m u l t i p l e h o r m o n e s , w h i l e

    o t h e r s h a v e r e s i s t a n c e t o o n l y s o m e h o r -

    m o n e s . T h e 1a t y p e o f p s e u d o h y p o p a r a -

    t h r o i d i s m i s a l m o s t a l w a y s i n h e r i t e d m a -

    t e r n a l l y , s u g g e s t i n g t h a t G N A S 1 i s a n

    im pr in t ed gene . HAYWARD e t a l . 12 were

    a b l e t o d e m o n s t r a t e d i f f e r e n t i a l

    m e t h y l a t i o n b e tw e e n m a t e r n a l a n d p a -

    t e rn a l a l l e l e s. Y u e t a l . 38 g e n e r a t e d m ic e

    w i t h a n u l l a l l e le i n G n a s ( t h e m o u s e

    h o m o l o g u e o f h u m a n G N A S 1 ) . M a t -

    e r n a l ( G n a s r e - /p + ) a n d p a t e r n a l

    ( G n a s m + / p - ) h e t e r o z y g o t e s f o r t h e n u l l

    a l l e le w e r e s h o w n t o h a v e d i s t i n c t p h e n o -

    t y p e s . R e s i s t a n c e t o p a r a t h y r o i d h o r -

    m o n e w a s p r e s e n t in G n a s m / p+ b u t n o t

    i n G n a s m + / p m i c e . T hu s , v a r i a b l e h o r -

    m o n e r e s i s t a n c e a p p e a r s t o b e e x p l a i n e d

    b y G n a s i m p r i n t i n g i n m i ce . S i m i l a r i m -

    p r i n t i n g i n h u m a n G N A S 1 m a y e x p la i n

    d i f f e r en c e s i n h o r m o n e r e s i st a n c e a n d

    t h e v a r i a b l e p h e n o t y p e s o b s e r v e d i n

    p s e u d o h y p o p a r a t h y r o i d i s m .

    JuPP~ ~R

    e t

    a l . 1~ s h o w e d th a t t h e g e n e d e fe c t i n ty p e

    l b p s e u d o h y p o p a r a t h y r o i d i s m w a s p a -

    t e r n a l l y i m p r i n t e d a n d w a s t h e r e f o r e

    m a t e r n a l l y i n h e r i t ed i n t h e s a m e m a n n e r

    a s t h e t y p e 1a f o r m .

    G N A S 1 i s o n a n a u to s o m e

    (2 0 q 1 3 . 2 ) I s a n d , s in c e imp r in t in g t a k e s

    p l a c e e a r l y i n d e v e l o p m e n t , t h e g e n e

    m a y b e i m p r i n t e d b e f o r e a s o m a t i c

    m u t a t i o n t a k e s p l a ce . P o s s i b le im -

    p r i n t i n g e f f e c t s o f a n a c t i v a t i n g m u t a -

    t i o n i n G N A S 1 f o r m o n o s t o t i c fi b r o us

    d y s p l a s i a , p o l y o s t o t i c f i b r o u s d y s p l a s i a ,

    p i t u i t a r y a d e n o m a , a n d M c C u n e - A 1 -

    b r i g h t s y n d r o m e r e m a i n u n k n o w n . W e

    s u g g e s t t h a t m u t a t e d c e ll s i n t h e s e d i s -

    o r d e r s b e s t u d i e d t o d e t e r m i n e i f a n y

    d i f f e r e n c e s e x i s t b e t w e e n m a t e r n a l l y

    a n d p a t e r n a l l y e x p r e s s e d c e ll s.

    A r e t h e r e n o n c l a s s i c a l m u t a t i o n s ?

    A m i n o r i t y o f c a s e s m a y b e c a u s e d b y

    n o n - c l a s s i c a l m u t a t i o n s ( T a b le 2 ). F o r

    e x a m p l e , G l n 2 2 7 A r g a n d G l n 2 2 7 H i s

    m a y b e f o u n d i n s o m e i n s t a n c e s o f i s o -

    l a t e d p i tu i t a r y a d e n o m a . A n A r g 2 0 1 S e r

    m u t a t i o n h a s b e e n r e p o r t e d i n a c a s e o f

    p a n o s t o t i c f i b r o u s d y s p l a s i a . W h e t h e r

    t h e s e m u t a t i o n s o r p o s s i b l y s o m e d o w n -

    s t r e am m u t a t i o n s a r e f o u n d i n a m i n o r -

    i t y o f c a s e s o r i n r a r e c a s e s o f t h e s p e c -

    t r u m o f d i s o r d e r s l i s t e d i n T a b l e 2 r e-

    m a i n s t o b e d e t e r m i n e d . S t u d i e s o f

    o t h e r g e n e t i c d i s o r d e r s h a v e s o m e t i m e s

    s h o w n t h a t a s m a l l p e r c e n t a g e o f p a -

    t i e n t s h a v e m u t a t i o n s o t h e r t h a n t h e

    c l a s s i ca l o n e s k n o w n t o c a u s e t h e d i s -

    o r d e r s . F o r e x a m p l e , m u t a t i o n s i n t h e

    g e n e p a t c h e d a r e f o u n d c o m m o n l y i n

    b a s a l c e l l c a r c i n o m a a n d i n m e d u l l o -

    b l a s t o m a . H o w e v e r , m u t a t i o n s d o w n -

    s t r e a m o f p a t c h e d h a v e b e e n r e c o r d e d

    in a few ins ta nce s 6 .

    I s f i b r o u s d ysp l as i a a n eo p l asm?

    T r a d i t i o n a l l y , f i b r o u s d y s p l a s i a h a s b e e n

    c o n s i d e r e d a b o n e d i s o r d e r . H o w e v e r , i t

  • 8/10/2019 Etiology of Fibrous Dysplasia

    5/6

    3 7 Cohen and Howell

    is well-known that, in a few instances,

    lesions in fibrous dysplasia behave more

    aggressively than in most cases. The

    same activating mutation that causes

    fibrous dysplasia also causes pituitary

    adenoma which is a neoplasm. The

    mutatio n may be found in isolated pitu-

    itary adenoma and in McCune-A1-

    bright syndrome which is often associ-

    ated with pituitary adenoma.

    CANDELmRE et al. 4 fou nd high levels

    of c-fos proto-oncogene expression in

    cells populating the bone marrow

    spaces in eight patients with fibrous

    dysplasia. In contra st, very low levels of

    c-fos expression were detected in other

    bone disorders such as vitamin D-resis-

    tant rickets and osteogenesis imper-

    fecta, suggesting that increased expres-

    sion of c-fos may be specific for fibrous

    dysplasia. If so, activating mutations in

    GNA S 1, which cause fibrous dysplasia,

    may increase c-fos expression by in-

    creased adenylyl cyclase activity.

    CANDELIEP~ et al. 4 n oted that the

    cells pogulating the bone marrow

    spaces were fibrob last s. RIMrNUCCI et

    al. 19 and BIANCO et al ? fou nd tha t the

    GNAS1 mutated cells occupying the

    marrow spaces were skeletal progenitor

    cells that produced abnormal osteo-

    blasts. The fibroblas ts o f CANDELmP,E et

    al. 4 may, in fact, be skeletal pro geni tor

    cells, but not so named because the re-

    search on this topic was not published

    at the time of the CA~ELm~ et aI.

    study. The high levels of c-fos expres-

    sion and the mutated GNASl-induced

    increase in adenylyl cyclase may thus be

    occurring in the same cell.

    In studies of transgenic mice, overex-

    pression of c-fos results in bone lesions

    that closely resemble fibrous dysplasia21

    and osteosarcomas develop in some

    cases22. In studies of human osteo-

    sarcomas, c-fos expression is in-

    creased 36. Osteosarcomas are know n to

    develop in about 4~ of patients with

    McCune-Albright syndrome and in

    abou t 0.5% of patients with fibrous dys-

    plasia37.

    Osteosarcoma has been shown to be

    caused by ionizing radiation in some

    cases 8. Post-ir radiati on osteosarcoma

    has also been observed in a nu mber of

    24 32

    cases of fibrous dysplasia , . The com-

    bination of a GNAS1 mutation, in-

    creased c-fos expression, and radiation

    exposure in a few cases suggests multi-

    step carcinogenesis of osteosarcoma,

    which could account for the low fre-

    quency of tumors in cases-of fibrous

    dysplasia.

    In summary, fibrous dysplasia mani-

    fests as single or multiple bone tumors

    that progressively enlarge. Lesions are

    composed of islands of immature woven

    bone within a mass of fibroblast-like

    cells. They essentially consist of unen-

    capsulated clonal proliferations of

    fibroblast-like osteoprogenitor cells

    with an activating mutat ion of GNAS1,

    which demonstrate constitutively high

    expression of the proto-on cogene c-fos.

    The osteoprogenitor cells, or derived

    cell lines, have an increased rate of pro-

    liferation and display markers of early

    osteoblastic differentiation but undergo

    abnormal maturation and fail to ex-

    press normal levels of late osteoblastic

    markers 17,19. These findings describe a

    lesion best categorized as a benign un-

    encapsulated neoplasm.

    A r e t h e r e d i f fe r e n t t y p e s o f f i b ro u s

    d ysp l as i a?

    RIMINUCCI et al. 2~ have suggested site-

    specific patterns of histopathology in

    fibrous dysplasia. They identified three

    patterns: Chinese writing type, associ-

    ated with the axial and apendicular

    skeleton; sclerotic/Pagetoid type, associ-

    ated with the cranial bones; and sclero-

    tic/hypercellular type, associated with

    the maxilla and the mandible. Fifteen

    specimens from the axial and apendicu-

    lar skeleton were studied, bu t on ly three

    specimens each were studied from the

    cranial bone s an d the jaws 2~ Thus, the

    sample size for these latter anatomic

    sites is small.

    Our own experience is different. We

    have seen numerous examples of jaw

    lesions with C-shaped or Chinese

    character-shaped bony trabeculae, The

    distribution of discontinous bony tra-

    beculae in a remark ably ordered, often

    parallel, patte rn suggested by RIMIN-

    UCO et al. 2~ has only been observed b y

    us occasionally. Our experience is also

    borne out by authorities in oral and

    maxillofacia l patholo gy 1s,26.

    Various radiographic appearances

    are found with fibrous dysplasia of the

    jaws. Radiolucent lesions may be uni-

    locular or multilocular. A mottled

    radiolucent/radiopaque pattern may

    also be observed in some cases which

    can be described as Pagetoid is'z6. WAL-

    DRON

    G I A N S A N T 1 3 3

    in a study of 65

    cases of fibrous dysplasia of the jaws,

    noted that jaw lesions mature with time

    and may show lamellar bone. Thus, the

    mature form of fibrous dysplasia has a

    Pagetoid radiographic appearance simi-

    lar to what RIMINUCCI et al. 2~ have de-

    scribed. However, it is important to

    note that many cases of fibrous dys-

    plasia of the jaws do not have either the

    histologic or radiographic appearance

    described by RIMINUCCIet al. 2~

    To the extent that there may be histo-

    pathologic diversity of bone lesions in

    fibrous dysplasia, they may be ex-

    plained by the different structural fea-

    tures of various bones, as suggested by

    RIMINUCCI et al. 2~ For example, the

    sclerotic component of the craniofacial

    lesions may reflect a higher ratio of

    compact to cancellous bone than that

    found in the long bones and vertebral

    column.

    R e f e r e n c e s

    I. ALMAN BA, GRUELDA, et al. Activating

    mutations of Gs protein in monostotic

    fibrous lesions of bone. J Orthop Res

    1996:14 (2): 311-5.

    2 . B I A N CO P K U Z N E TS O V S A RI MI N U CCI M .

    Reproduction of hmnan fibrous dysplasia

    of bone in immunocompromised mice by

    transplanted mosaics of normal and Gsa-

    mutated skeletal progenitor cells. J Clin

    Invest 1998:101 (8): 1737-44.

    3. CANDELrEl~ GA, ROUGHLEY PJ, GLOR-

    IBUX FH. Polymerase chain reaction-

    based technique for the selective enrich-

    ment and analysis of mosaic arg201

    mutations in G alpha s from patients

    with fib rous dysplasia of bone. Bone

    1997: 21: 201-6.

    4. CANDELIERE GA, GLORIEUXFH, PROD'-

    HOMME J, et al. Increased expression of

    the c-fos proto-oncogene in bone from

    patients with fibrous dysplasia. N Engl J

    Med 1995: 332: 1546-51.

    5. CLAPHAMDE, NEER EJ. New roles for G-

    protein fly-dimers n transmembrane sig-

    nalling. Nature 1993: 365: 403-6.

    6. Cotton MM JR. Nevoid basal cell carci-

    noma syndrome: molecular biology and

    new hypotheses. Int J Oral Maxillofac

    Surg 1999: 28: 216-23.

    7. COHEN MM JR. The child with multiple

    birth defects. New York: Oxford Univer-

    sity Press, 1997

    8. COLE DEC, COHEN MM JR. Mutations

    affecting bone-forming cells. In: HALL

    BK, ed.: Bone. Volume I. The osteoblast

    and osteocyte. Caldwell, NJ: Telford

    Press, 1990: 431-87.

    9. FAGLIAG AROSlOM, SPADAA. GS pro-

    tein mutations and pituitary tumors:

    Functional correlates and possible thera-

    peutic implications. Metabolism 1996:45

    (8 Suppl 1): 117-9.

    10. HAPPLE R. The McCune-Albright syn-

    drome: a lethal gene surviving by mosaic-

    ism. Clin Genet 1986: 29: 321-4.

    11. HARR]S PE. Gs protein mutations and

    the pathogenesis and function of pitu-

  • 8/10/2019 Etiology of Fibrous Dysplasia

    6/6

    i t a r y t u m o r s . M e t a b o l i s m 1 9 9 6 : 4 5 ( 8

    Suppl 1) : 120-2 .

    12. HAYWARD BE , MORAN V, STRAaN L, et al.

    B id i r e c t ion a l im pr in t in g of a s ingle ge ne :

    G N A S t e n c o d e s m a t e r n a l l ) ; p a t e rn a l l y ,

    a nd b ia l l e l i c a l ly de r ive d pro te ins . Proc

    Na t l Ac a d Sc i U S A 1998: 95:15 475 80 .

    13. JUI'VNER H, SCmV A~I E, BASTEPE M , et

    a l . The ge ne r e spons ib le for pse udohypo-

    p a r a t h y r o i d i s m t y p e I b i s p a t e r n a l l y i m -

    p r i n t e d a n d m a p s i n f o u r u n r e l a t e d k i n -

    d r e d s t o c h r o m o s o m e 2 0 q 13 .3 . P r o c N a t l

    Ac a d Sc i U S A 1998: 95: 11798-803.

    14. LANDIS CA , MASTERS SB, SPADAA, e t a l .

    G T P a s e i n h i b i t i n g m u t a t i o n s a c t i v at e t h e

    a l p h a c h a i n o f G ( s ) a n d s t i m u l a t e a d e n -

    y l y l cy c l as e i n h u m a n p i t u i t a r y t u m o u r s .

    Na ture 1989: 340: 692-6 .

    15 . LEVrNE M A, MO DI WS, O 'BRIEN SJ .

    M a p p i n g o f t h e g e n e e n c od i n g t h e a l p h a

    s u b u n i t o f t h e s t i m u l a t o r y G p r o t e i n o f

    a de nyly l c yc la se (GNAS1) to 20q13.2-

    q 1 3 .3 i n h u m a n b y

    in situ

    hybr id iz a t ion .

    Ge nom ic s 1991: 11: 478-9 .

    16. MALCHOFF CD REARDON G MA CGIL-

    LIVRARY DC e t a l . A n u n u s u a l p r e s e n -

    t a t i o n o f M c C u n e - A l b r i g h t s y n d r o m e

    c o n f i r m e d b y a n a c t i v a t i n g m u t a t i o n o f

    t h e G ( s ) a l p h a - s u b u n i t f ro m a b o n e

    le s ion . J C l in End oc r in ol Me ta b 1994: 78:

    803-6 .

    17. M ~ m PJ, t~E POLLAK C, CHANSON P e t

    a l . Inc re a se d pro l i f e ra t ion of os te obla s t i c

    c e l l s e xpre s s ing the a c t iva t ing Gs a lpha

    m u t a t i o n i n m o n o s t o t i c a n d p o l y o s t o t i c

    f ibrous dyspla s ia . Am J Pa th ol 1997: 150:

    1059 69.

    18 . REGBZI JA , SOUSBA JJ . Ora l pa tholog y:

    c l in ic a l pa thologic c or re la t ions . Four th

    e di t ion . Phi la de lphia : W.B. Sa un de r s Co. ,

    1999.

    19. R IMr~ ,rocci M , FISHER LW, SHENKERA, e t

    a l . F i b r o u s d y s p l a s i a o f b o n e i n t h e

    M c C u n e - A l b r i g h t s y n d ro m e : a b n o r m a l i -

    t i e s i n b o n e f o r m a t i o n . A m J P a t h o l

    1997: .151: 1587-600.

    20. RIMINUCCI M , LIU B, CORSI A, e t a l . T he

    h i s t o p a t h o l o g y o f f i b r o u s d y s p l a s i a o f

    E t i o l o g y o f f i b r o u s d y s p la s ia & M c C u n e - A l b r i g h t s y n d r o m e 3 7 1

    b o n e i n p a t i e n t s w i t h a c t i v a t i n g m u t a -

    t ion s o f the G~ct gene: s i te -specif ic p a t-

    t e rns a nd r e c ur re nt h i s to logic a l ha l l -

    m a rk s . J Pa th ol 1999: 187: 24 58 .

    21. ROTHER U, GARBER C, KO~TOWSKT D, et

    a l . De re gula te d c - los e xpre s s ion in te r f e re s

    w i t h n o r m a l b o n e d e v e l o p m e n t i n t r a n s -

    ge nic m ic e. Na tu re 1987: 325: 412-6 .

    22. RUTHER U, KOMITOWSKI D, SCHUBERT

    FR, e t a l . C- fos e xpre s s ion induc e s bone

    tum ors in t r a nsge nic m ic e . Onc og e ne

    1989: 4: 861-5.

    23. RUTHERFORD SL , LINDQUIST S. H sp 9~ as

    a c a p a c i t o r f o r m o r p h o l o g i c a l e v o l u ti o n .

    N a t u r e 1 9 9 8 : 3 9 6 : 3 3 6 4 2 .

    24. SCHWARTZ DT, ALVERT M . Th e malig -

    n a n t t r a n s f o r m a t i o n o f f i b ro u s d y s p l as i a.

    Am J Med Sci 1964: 247: 1.

    25. SCHWINDrNGER W E FRANCOMANO CA ,

    LEVINE MA . Ide nt i f i c a t ion of a m uta t ion

    i n t h e g e n e e n c o d i n g t h e a l p h a s u b u n i t

    o f t h e s t i m u l a t o r y G - p r o t e i n o f a d e n y l y l

    c y c l a s e i n M c C u n e - A l b r i g h t s y n d r o m e .

    Proc Na t l Ac a d Sc i U S A 1992: 89:

    5152-6 .

    26 . SHAVER W G, HINE MK , LEVY BM . A

    t e x t b o o k o f o r a l p a t h o l o g y . F o u r t h e d i -

    t i o n . P h i l a d e l p h i a: W . B . S a u n d e r s C o . ,

    1983.

    27. SHENKER A , CHANSON P, W EINSTEIN LS ,

    e t a l . Os te o bla s t i c c e l l s de r ive d f rom i so-

    la te d l e s ions of f ibrous dyspla s ia c onta in

    a c t i v a t i n g s o m a t i c m u t a t i o n s o f t h e G ( S ) -

    a l p h a g e n e . H u m M o l G e n e t 1 9 9 5 : 4 :

    1675-6 .

    28. SHENKER A , WEINSTE1N LS, SWEET D E, et

    a l . A n a c t i v a t i n g G s a l p h a m u t a t i o n i s

    p r e s e n t i n f i b r o u s d y s p l as i a o f b o n e i n t h e

    M c C u n e - A l b r i g h t s y n d r o m e . J C l i n E n -

    doc r inol Me ta b 1994: 79: 750-5 .

    29. SHENKER

    A

    WEINSTEIN LS, MORAN A, et

    a l . S e v e r e e n d o c r i n e a n d n o n e n d o c r i n e

    m a n i f e s t a t i o n s o f t h e M c C u n e - A l b r i g h t

    s y n d r o m e a s s o c i a t e d w i t h a c t i v a t i n g

    m u t a t i o n s o f s t i m u l a t o r y G p r o t e i n G s . J

    Pedia tr 1993: 123: 509-18.

    30 . SHENKER A. Ac t iva t ing m uta t io ns in G

    p r o t e i n - c o u p l e d s i g n a l i n g p a th w a y s a s a

    c a use of e ndo c r ine d ise ase . Gro wth

    G e n e t H o r m 1 9 96 : 12 : 3 3 - 7 .

    31 . SVm GEL AM . Th e m ole c ula r ba s i s of d i s -

    orde r s c a use d by de fe c t s in G pro te ins .

    Horm Re s 1997: 47: 89-96 .

    32. TANtCaR HC JR, DArILL~ DC , CrimPS D S

    JR. Sa rc om a c om pl ic a t ing f ibrous dys -

    p la s ia . Proba b le ro le of r a d ia t ion the ra py .

    Oral Surg 1961: 14: 837.

    33. WAEDRON CA , GtANSANTI JS. Ben ign

    f ibro-os se ous l e s ions of the j a ws : a c l in-

    i c a l - r a d io logic -h i s to logic r e v iew o f s ix ty-

    f ive cases . Oral Surg 1973: 35: 340-50.

    34. W EINSTEm LS , SHENrO~R A, GEJMA N PV,

    e t a l . A c t i v a t i n g m u t a t i o n s o f t h e s t i m u -

    l a t o r y G p r o t e i n i n th e M c C u n e - A l b r i g h t

    syndrom e . N Engl J Me d 1991: 325:

    1688-95 .

    35. WILEIAMSON EA , INCE PG , HARRISON D,

    e t a l. G - p r o t e i n m u t a t i o n s i n h u m a n

    p i t u i t a r y a d r e n o c o r t i c o t r o p h i c h o r m o n e -

    s e c r e t i n g a d e n o m a s . E u r J C l i n I n v e s t

    1995: 25: 128-31.

    36. Wu J-X, CAgPENTER PM , GRESENS C, e t

    a l . The pro to-onc oge ne c - fos i s ove re x-

    p r e s s e d i n t h e m a j o r i t y o f h u m a n o s t e o -

    sa rc om a s . Onc oge n e 1990: 5 : 98 1000.

    37. YABUT SM JR, K ~A N S, SISSONS HA , e t

    a l . M a l i g n a n t t r a n s f o r m a t i o n o f f i b r o u s

    dyspla s ia : a c a se r e por t a n d r e v ie w of the

    l i t e r a ture . C l in Or thop 1988: 228: 281-8 .

    38. Yu S, Yu D, LEE E, e t a l . Variab le and

    t i s sue - spe c if i c ho rm on e r e s i s t a nc e in he t -

    e r o t r i m e r i c G s p r o t e i n a l p h a - s u b u n i t

    (Gsc 0 kn oc k out m ic e is due to t i s sue - spe -

    c if ic im pr in t in g o f the Gs0~ ge ne. Proc

    Na t l Ac a d Sc i U S A 1998: 95: 8715-20 .

    Addre s s :

    M. Michae l Cohen , J r . , DMD, PhD

    Dalhousie University

    Hal i fax

    Nova Sco t ia

    C a na d a B 3 H 3 J 5

    Tel. +1 902 494 6412

    Fax: +1 902 494 6411

    E-maiL [email protected] ca