ETHtechMin Portland Cement 2012

Embed Size (px)

Citation preview

  • 7/28/2019 ETHtechMin Portland Cement 2012

    1/33

    1

    Prof. Grobty B., Inst. de Minralogie et Ptrographie, Univ. de Fribourg

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Introduction

    Cementitous materials

    Definition: Material, which binds together with solid bodies (aggregates)by hardening from a plastic state. Examples: organic polymers

    inorganic cements

    - mixed with water plastic state- hydration of the components development of rigidity (setting)- steady increase of strength (hardening)- Examples: Portland cement, gypsum plasters, phosphate cements

    - when hardening occurs also under water: hydraulic cement- Example: Portland cement

    Inorganic cements

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    2/33

    2

    Historical background I(www.auburn.edu/academic/architecture/bsc/classes/bsc314/timeline/timeline.htm)12M BC: Natural production of clinker through the spontaneous

    combustion of oil shales (Israel)3000 BC: Egyptians used sulfate and lime based plasters

    Use of cementitous materials in China (Great Wall)300 BC: Concrete and mortars based on lime and pozzolanic material

    http://www.greatbuildings.com/buildings/Pantheon.html

    (volcanic ashes). Pliny reported amortar mix of 1 part of lime and4 part of sand. Examples:193 BC: Porticu House, Amaelia,200 AD: Pantheon, Rome

    (www.romanconcrete.com)

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Middle ages: Decline of cement and concrete technology1756: John Smeaton, British Engineer, rediscovered hydraulic cement

    through repeated testing of mortar in both fresh and salt water1824: Joseph Aspdin, bricklayer and mason in Leeds, England,

    patented what he called portland cement, since it resembledthe stone quarried on the Isle of Portland off the British coast.

    Historical background II

    Introduction

    Technical MineralogyDepartment of Geosciences

    Portland cement. This was the namegiven by Joseph Aspdin to the productconsisting of limestone and clay, on whichhe took out a patent in 1824: "Portland",owing to the similarity to the buildingstone from Portland in England, and"cement" from the Latin caementum,which means chipped stone.

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    3/33

    3

    Cement: definitions

    Portland cement: Hydraulic cementitous material based on clinker, a materialcomposed of calcium silicates and aluminates, and a smallamount of added gypsum/anhydrite. The clinker is made byburning mixtures of limestone and argilaceous rocks (slates).

    Mortar: Mixture of Portland cement, fine sand and water (used f.ex.for the construction of brick walls)

    Neat paste: Mixture of Portland cement and water alone (used for fillingcracks and sealing small spaces)

    Concrete: Mixture of Portland cement, coarse and fine aggregates(rock pebbles, sand), water and chemical additives. Themechanical strength can be reinforced by the insertionof steel bars.

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Cement: chemical notations

    C = CaO S = SiO2 A = Al2O3 F = Fe2O3

    M = MgO K = K2O N = Na2O S = SO3

    T = TiO2 P = P2O5 H = H2O C = CO2

    LOI = loss of ignition ( H2O+CO2)

    C-S-H = poorly crystallized calcium silicate hydratesHCP = hydrated cement pastePFA = pulverized fuel ashPC = Portland cementOPC = Ordinary Portland cement

    Chemical notation

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    4/33

    4

    Portland Cement I

    Chemical compositionThe composition of PortlandCements and puzzolanicadditives cover a certain range.

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Portland cement II

    Name + Chem. Comp Approx. % in OPC Properties

    Belite C2S 20 Slow strength gain, responsiblefor long term strength

    Alite C3S 55 Rapid strength gain, responsiblefor early strength gain

    Aluminate C3A 12 Quick setting (contr. by gypsum),liable to sulfate attackFerrite C4AF 8 Little contribution to setting or

    strength, responsible for graycolor of OPC

    Main mineralogical components

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    5/33

    5

    Portland Cement III

    Main production steps (http://www.ppc.co.za/Cement/c_cement_manprocess.asp)

    Quarrying chalk in northern Jutland(Aalborg Cement)

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Portland Cement IV

    Chalk slurry tank (Aalborg cement)

    Main production steps (cont.)

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    6/33

    6

    Portland Cement V

    Main production steps (cont.)

    Preheater, rotary kilns and storage silos

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Portland Cement VI

    Main production steps (cont.)

    Cement siloShipping by ship

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    7/33

    7

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    World cement productions(minerals.usgs.gov/minerals/pubs/commodity/cementWorld cement production 2000 (thousand of tons):United States (includes Puerto Rico) 92,300Brazil 41,500China 576,000Egypt 23,000France 24,000Germany 38,099India 95,000Indonesia 27,000Italy 36,000Japan 77,500Korea, Republic of 50,000

    Mexico 30,000Russia 30,000Spain 30,000Taiwan 19,000Thailand 38,000Turkey 33,000Other countries (rounded) 450,000World total (rounded) 1,700,000

    Introduction

    China 576,000 China produces one third ofthe world cement output!

    World total (rounded) 1,700,000

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    8/33

    8

    Swiss cement industry (www.cemsuisse.ch)Cement plants in Switzerland

    cement plant

    klinker mills

    1 Eclpens2 Cornaux3 Reuchenette4 Wildegg5 Siggenthal6 Thayngen7 Brunnen8 Untervaz

    Total production1987: 4478000 t1989: 5461000 t2000: 3715908 t

    Introduction

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Raw materials

    Calcareous lime stones: - calcite-rich- low in dolomite

    Corrective constituents

    Shales: - clay rich, usually dominated by illite, smectite andkaolinite. Ideal bulk composition ranges:55-60wt% SiO2, 15-25wt% Al2O3, 5-10wt% Fe2O3

    Main raw materials

    Sand, flyash: - adjust SiO2-content in quartz-poor shalesIronores, bauxite: - adjust Fe resp. Al content

    Additional reactive constituents, which have to be considered, may beintroduced through impurities in the fuel. Up of 30% of ash is producedby the firing of brown coal.

    Raw materials

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    9/33

    9

    Composition of ordinary Portland cements

    SiO2 Al2O3Fe2O3CaOMgOK2ONa2OSO3 LOI (H

    2O+CO

    2)

    Minor components and traces(deleterious)

    few %: MgO, SrO2few tenth of a %: P2O5, CaF2 , alkalistraces: heavy metals

    Major components

    The composition of different cements, their minimum mechanical properties and their applicationis regulated by Norm SIA Norm 215.001/002 (http://www.vicem.ch/produits/normes/2_7d.htm)which corresponds to the European Norm ENV 197(http://www.readymix-beton.de/service/betontechnische_daten/kap_1_1.pdf)

    19.0 - 23.03.0 - 7.01.5 - 4.5

    63.0 - 67.00.5 - 2.50.1 - 1.20.1 - 0.42.5 - 3.51.0 - 3.0

    Raw materials

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Targets for an ordinary Portland cement (OPC)-Lime saturation factor (LSF) close to 100%- Free lime content under 1.5wt%- Silica ratio (SR module) between 2.0 and 3.0- Alumina ratio (AR module) between 1.0 and 2.0- Hydraulic index (IH) 2.0- Low concentration of deleterious components

    Proportioning of raw materials

    Lime saturation factorThe calcium present in the raw materials should be completely bound in thesilicate and aluminate phases of the cement clinker. The amount of differentoxide components necessary to saturate the amount of lime is given by(in wt%):

    CaO = 2.8 SiO2 + 1.2Al2O3 + 0.65Fe2O3

    Raw materials

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    10/33

    10

    Proportioning of raw materials VII

    Example (cont.)The proportion pof mix A and 1-pof mix B to get an SR of 3.0 can beobtained through following consideration:

    The value acan be obtained from

    S 13.1p + 16.1(1-p)A+F 7.5p + 2.1(1-p)

    - SR = = 3.0

    - Mix A MixBS 13.1 16.1

    A+F 7.5 2.1

    S A +F

    = 3.0 = p= 0.51

    Raw materials

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Klinker phases I

    1. Alite Ca3SiO5 = C3S

    Polymorphic transformations:

    T1 T2 T3 M1 M2 M3 RT: triclinic M: monoclinic R: rhombohedral

    620C 920C 980C 990C 1060C 1070C

    Max. concentration of impurities: 1.0 wt% Al2O3, 1.2% Fe2O3, 1.5 % MgOimpurities stabilize the M1 and or M3 in klinkers, rarely T2 is found

    orthosilicate0.71nm

    R- C3S projectedalong the c-axis

    SiO4

    Ca

    O

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    11/33

    11

    Klinker phases II

    2. Belite Ca2SiO4 = C2S

    Polymorphic transformations:

    O1() M1() M2(L) O2(H) H1()

    O: orthorhombic M: monoclinic H: hexagonal

  • 7/28/2019 ETHtechMin Portland Cement 2012

    12/33

    12

    Klinker phases IV

    Polymorphs and composition of phases present in clinker

    C3A polymorphs is coupled with substitution. Clinker aluminate phases are cubic(fine grained) or orthorhombic (lath shapedand twinned) 13% to 20% ofsubstituting elements: Mg, Al, Fe, Si

    C3S early crystallized small crystals rich in substitutes: M3 late crystallizedlarge crystals: M2 (single twins), rarely T1 (polysynthetic twins)3-4% of substituting elements, mainly Mg, Al and Fe

    C2S usually only in the M1() polymorph with parallel twin lamellae M2(L) hastypical crossed twin lamellae. The transformation M2() M() sho

  • 7/28/2019 ETHtechMin Portland Cement 2012

    13/33

    13

    Rotary kiln Without preheater/precalcinerthe kiln aspect ratio is about 30

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Klinker reactions below 1300C

    Decomposition of calcite (calcining): 500 - 900C free lime (CaO)

    Decomposition of phyllosilicates: 300 - 900C dehydroxilated,amorphous material

    Temp. range products

    Formation of first clinker phases: > 800C belite, aluminate(different phases),ferrite

    Formation of first melt phases: > 1000C

    Drying 100C free water evaporates100 - 300C release of adsorbed

    and crystal water

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    14/33

    14

    Decomposition of carbonate phases I

    Decomposition reaction: CaCO3 = CaO + CO2

    K=CaO[ ] CO2[ ]CaCO

    3[ ]= pCO2

    Equilibrium constant

    Rate of decarbonation is influenced by:

    - gas temperature (heat transfer)

    - material temperature (=> K)- external partial pressure of CO2

    - size and purity of the calcite particles

    Klinker production

    Calcite decomposition temperatureAs function of CO2 partial pressure

    0.0

    0.25

    0.5

    0.75

    1.0

    750 800 850 900

    890C

    T(C)

    P(CO2)

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Decomposition of carbonate phases II

    Reaction mecanism:

    Possible rate determining steps

    2. reaction at the calcite surface

    1. heat and mass transport (CO2)through the product layer

    formation of a lime layer around calcite

    Activation energy: 196kJ/mol (Khraisha et al, 1992) reaction controlled ?

    1!

    a( )1

    3 = kta

    t

    reaction progress a

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    15/33

    15

    Belite formation

    1. Formation of belite throughsolid state reaction

    quartz

    amorphous material

    belite

    2. Transformation of the beliteshells to belite crystal clusters

    lime

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Appearance of first melts

    2. C-S-A melts: lowesteutecticum 1170

    1. Alkali and sulfate melts

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    16/33

    16

    P: typical bulk composition of Portland cement klinkers

    First melt appearance: 1455C

    Phase diagram

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Klinker reactions between 1300C and 1450C

    1. Melting reactions- Melting of ferrite and aluminate phases- Melting of part of the early formed belite

    2. Formation of new phasesReaction of melt, free lime, unreacted silica and remaining belite to

    alite3. Polymorphic transformation of belite

    4. Recrystallization of alite and belite

    5. Nodulization (clinkering)

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    17/33

    17

    Amount and composition melts II

    At 1450C and above the liquid content depends on the silica modulus

    Klinker production

    15

    20

    25

    30

    35

    1.5 2.0 2.5 3.0 SM

    Liquidphase(wt%)

    3.5

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Formation and recrystallization of alite

    amorphous material

    lime

    belite

    alite

    1. Formation of melt around lime crystals

    2. Crystallization of alite walls at thecontacts between belite cluster and lime

    3. Recrystallized and new formed alitereplaces lime crystals

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    18/33

    18

    Microtextures I (all pictures FL Smidth review 25)

    0.05mmAlite wall separating CaO and abelite cluster

    alite melt phase (aluminates,ferrites)belite lime

    Belite clusters replacing previousquartz grains.

    0.1mm

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Alite crystallizing at the expense oflime and belite

    0.3mm

    Microtextures II

    lime belite

    alite

    Well crystallized, homogeneousclinker. The raw mix contained fewquartz grains and a well controlledcarbonate grain size.

    pores

    0.2mm

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    19/33

    19

    Klinker reactions during cooling

    1. Crystallization of the restitic melt. Products: aluminates (C3A) andferrites (C4AF)

    2. Polymorphic transformations of alite and belite

    3. Backreaction of alite to belite + lime

    4. Recrystallization aluminates and ferrites

    If cooling is too slow

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Microtextures III

    Backreaction of alite rims to beliteplus lime in a belite poor clinker(fast cooling).

    0.04mm

    beliterims

    Etched thin section showing thetransformation twins in belite.

    0.02mm

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    20/33

    20

    Slowly cooled clinker with corrodedalite phase and recrystallized belitegrains.

    0.05mm

    Microtextures IV

    Fast cooled clinker with euhedralalite and rounded belite crystals.

    0.05mm

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Normative mineralogy of clinker I

    Klinker production

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    21/33

    21

    Normative mineralogyof clinker II

    Klinker production

    Minor elements in the mainklinker phases in cements ofdifferent cement factories.Most cements contain 5wt% andmore minor elements whichintroduces considerable errorswhen using Bogues original

    formula,

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Normative mineralogy of clinker III

    Klinker production

    Corrected Bogue equation

    0.05mm

    C3 Scorr = C3 Sbogue + 4.0 MgOclinker + 5.5 K2 OclinkerC2 Scorr = C2 Sbogue - 1.5 MgOclinker - 2.2 K2 OclinkerC3 Acorr = C3 Abogue + 7.8 Na2O + 1.5 AR - 2.1 S3O - 5.0C4 AFcorr = C4 AFbogue - 6.5 Na2O - 1.7 AR + 5.0 Mn2O3 + 3.0

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    22/33

    22

    Normative mineralogy of clinker IV

    Klinker production

    0.05mm

    Difference in calculated alite and belite content using the original(top) and thecorrected (bottom) Bogue formula

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Energy balance in clinker production

    Temp range

    20-450Cwet 100Cca. 450C450-900Cca. 900Cca. 900C900-1400C

    900-1400Cca. 1300C1400-20C900-20C450-20C

    Process

    Heating of the materialEvaporation of free H2ORemoval of H2O from clayheating of the materialDissociation of calciteCrystallisation of dehydrated clayHeating of the decarbonated material

    Heat of formation of clinker mineralsMelting of liquid phasesCooling of clinkerCooling of CO2Cooling of H2OTotal

    Heat exchangekJ/kg clinker

    710(1800)

    170820

    2000-40

    525

    -420100

    -1510-500-85

    4325 -2555

    Klinker production

    Institut de Minralogie et PtrographieUniversit de Fribourg

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    23/33

    23

    Energy costs of cement production

    Process

    QuarryCrushersPrehomoginizing and transportRaw millRaw meal siloKiln feederKiln and cooler

    Coal millCement millPacking plantOthertotal

    Fuel Electricity Cost($/day)kcal/kg cement kwh/ton cement

    0 02.5 6001.5 360

    0-100 27.0 98131.5 3601.5 360

    700 23.0 28853

    2.5 60030.0 72001.0 2404.5 1080

    700-800 95.0 49467

    Klinker production

    Dry process cement plant 5000t/day

    Institut de Minralogie et PtrographieUniversit de Fribourg

    Technische MineralogieETHZ IMP 2008

    - use of alternative raw materials

    - increasing the burning rate

    - lowering the melting point of thesystem.

    - use of alternative raw materials

    - increasing the burning rate

    Mineralized cement

    Improvements in klinker manufacturing

    1. Energy savings through:

    - better insulation, improvedheat exchanger etc.

    2. Reduction of CO2 ,SO3 NOx etc output through:

    Technische MineralogieETHZ IMP 2008

    Institut de Minralogie et PtrographieUniversit de Fribourg

  • 7/28/2019 ETHtechMin Portland Cement 2012

    24/33

    24

    - use of alternative raw materials

    - increasing the burning rate

    - lowering the melting point of thesystem.

    - use of alternative raw materials

    - increasing the burning rate

    Mineralized cement

    Improvements in klinker manufacturing

    1. Energy savings through:

    - better insulation, improvedheat exchanger etc.

    2. Reduction of CO2 ,SO3 NOx etc output through:

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

    Bulk composition and mineralogy of mineralized clinkers

    M (wt%) in clinker

    M

    (wt%)insilicates

    0.0 0.5 1.0 1.5 2.0 2.50.00.5

    1.0

    1.5

    2.0F

    3.0Partitioning of SO3 and F betweensilicates and other phases

    SO3

    SiO2 Al2O3 Fe2O3 CaOMgOSO3FK 2 ONa 2 O

    C2SC3SC3AC4AFproduced in 3500tpd precalciner kiln.(Herfort et al., 1997, Shen et al., 1995)

    22.44.43.4

    65.80.70.80.10.80.4

    33.349.54.97.7

    21.54.63.6

    65.60.72.00.20.80.4

    34.846.94.08.5

    normal PC mineralized

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

  • 7/28/2019 ETHtechMin Portland Cement 2012

    25/33

    25

    Mineralizer used in klinker manufacturing:

    Fluorite CaF2 = CF Gypsum CaSO4.2H2O = CS

    Mineralizer

    Effects of mineralizers: - Lowering of the eutectic temperature

    of the CaO-SiO2-Al2O3-FeO system- Enhancing the crystallization ofreactant phases

    Energy savings: 105 - 630kJ/kg = 3 - 20%

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

    Effect of mineralizer concentration on clinker mineralogy

    clinkerm

    ineral(wt%)

    0.0 2.0 4.0 6.0 8.00.0

    20

    40

    60

    80

    SO3 (wt%)

    clinkerm

    ineral(wt%)

    0.0 0.25 0.5 0.75 1.00.0

    20

    40

    60

    80alite

    belite

    F(wt%)Herford et al. 1997 (contained < 0.2wt%F) Shen et al., 1995 (contained 2wt% SO3 )

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

  • 7/28/2019 ETHtechMin Portland Cement 2012

    26/33

    26

    The system Ca2SiO5 - CaO - CaF2

    first melt appearance: 1113C

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

    0.05mmMineralized klinker with langbeinitefilling interstitial space

    Microstructures I

    Mineralized klinker rich in alite whichremained in the hexagonal modification

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

  • 7/28/2019 ETHtechMin Portland Cement 2012

    27/33

    27

    Mechanisms enhancing clinker formation I

    With the addition of gypsum andfluorite intermediate fluor-ellestadite(Ca10 Si3 O32 (SO4 )3 F2 is formed, whichdecomposes to belite and liquid at 1113C.

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

    Mineralizer lower the melting point. Even earlybelite formation happens in the present of a

    liquid phase. Transport of matter is by fastdiffusion through the liquid phase.

    The reactions producing belite and too asmaller extent alite in an ordinary PC klinkercomposition occur in the solid state. Matteris tranported by slow, solid state diffusion

    Mechanisms enhancing clinker formation II

    Consequences: - increased number of belite nuclei- faster growth kinetic of belite- in presence of fluorine, fasterreaction rates for the transformationbelite -> alite

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

  • 7/28/2019 ETHtechMin Portland Cement 2012

    28/33

    28

    Problems with mineralized cement I

    High gaseous alkali- and sulfatespecies can condensate in towardsthe outlet. Klinker particle coalesceon the wet kiln surface and lead toring formation.

    Fine grained belite and alite lead toexcessive dusting in the kiln

    0. 2mm

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

    Problems with mineralized cement II

    Anhydrite inclusions in belite crystals.(6.4 wt% total SO3 )

    Activation of sulfur dissolvedin silicates or present as sulfateinclusions:Late ettringite formation causingdeterioration of mechanical properties.

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

  • 7/28/2019 ETHtechMin Portland Cement 2012

    29/33

    29

    Pro and cons of mineralized klinker

    - lowering of burning temperature- increase of alite content- formation of the rhombohedral, hydraulic more active polymorph of alite- stabilization of the hydraulic more active phase of belite

    Pro:

    - Ring formation and excessive dusting in the kiln- with too low fluorine content: increase in belite content- Presence of phases deletrious to mechanical properties

    Cons:

    Mineralized cement

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

    Rapid burning

    Consequences of steep temperature ramps:

    - Decomposition and new phase formation occursimultaneously

    - New phases are formed through metastablereactions having larger reaction free energies

    - Decomposition products are much smallerand have a higher surface activity

    Rapid burning

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

  • 7/28/2019 ETHtechMin Portland Cement 2012

    30/33

    30

    Grain size of decomposition products

    diameter()

    0.0 5 10 15 200.0

    500

    1000

    1500

    2000

    t (min) 25

    800 C/min5 C/min

    T(max): 1300C

    CaO

    Rapid burning

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

    Rapid burning

    Free energy of formation for C2S and C3S

    G(KJ/mol)

    800 900 1000 1100 1200-200

    -100

    0

    100

    200

    t (min)1300

    3CaCO3 +SiO2 = Ca3SiO5 + 3CO22CaCO3 +SiO2 = Ca2SiO4 + 2CO23CaO+SiO2 = Ca3SiO52CaO+SiO2 = Ca2SiO4

    Above 1100 the directreactions of calcite withsilica to form CS-phaseshave more negative Gf andare favoured over the reactioninvolving lime.

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

  • 7/28/2019 ETHtechMin Portland Cement 2012

    31/33

    31

    Batch production of PC klinker

    Rotary kiln- continous process- steady speed

    Batch production- heating and cooling speedscan be enhanced and adapted

    Burning technique:- Batches of raw meal is fed into

    a furnace with circulating air atreaction temperature such as toform a gaseous suspension.- Reaction occurs at contact pointsbetween suspended particles

    Feeder

    Collector

    Rapid burning

    Cours bloc 2006Institut de Minralogie et PtrographieUniversit de Fribourg

    Proportioning of raw materials II

    Lime saturation factor (cont.)The actual lime saturation of a raw material mix is given by the ratio

    CaO2.8 SiO2 + 1.2Al2O3 + 0.65Fe2O3

    The LSF is in the ideal case 1.0, but often the reaction time in the kilnis not sufficient to bind all the CaO.

    Free limeThe free lime is the leftover CaO which did not react to form silicates. Anacceptable free lime content is more important than an LSF of 1.0.

    LSF =

    Raw materials

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    32/33

    32

    Proportioning of raw materials III

    Silica and alumina ratiosThe silica and alumina ratios are defined as

    SiO2 Al2O3Al2O3 + Fe2O3 Fe2O3

    Hydraulic index

    SR = AR =

    Raw materials

    IH =CaO + MgO

    SiO2 + Al2O3 + Fe2O3

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Proportioning of raw materials IV

    Example

    Raw materialsChalk wt% Clay wt% Loam wt% Ash wt%

    S 2.5 50.0 84.0 48.0A 0.5 22.0 6.0 29.0F 0.2 9.0 3.0 10.0C 54.0 2.5 1.0 8.0Res. 42.8 16.5 6.0 5.0

    From trials we know that to keep the free lime at an acceptable value theLSF must not be higher than 0.96. The lime required to saturate the oxidesto this level is:

    CaO = 0.96 (2.8 SiO2 + 1.2Al2O3 + 0.65Fe2O3 )

    Raw materials

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

  • 7/28/2019 ETHtechMin Portland Cement 2012

    33/33

    Proportioning of raw materials V

    Example (cont.)

    1. lime required to saturate acidic oxide in chalk: 7.42.lime required to saturate acidic oxides in clay: 164.93. lime available in chalk 54.03. lime available in clay 2.54. net lime required for clay 164.9 - 2.5 = 162.45. net lime available from chalk 54.0 - 7.4 = 46.6

    To get the right mix A, clay and chalk have to be mixed at the ratio

    chalk 46.6clay 162.4

    = = 3.49

    Raw materials

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008

    Proportioning of raw materials VI

    Example (cont.)The SR of this mix is however too low and has to be adjusted using a mix Bbetween chalk and loam with an LSF of 0.96. The final mix C, with an LSF of0.96 and a SR of 3.0 can be obtained by blending mix A and B together.

    MixesMix A wt% Mix B wt% Mix C wt%

    S 13.9 16.1 14.5

    A 5.3 1.4 3.4F 2.2 0.7 1.4C 42.5 45.0 43.7Res. 36.9 36.8 36.8

    Raw materials

    Technical MineralogyDepartment of Geosciences

    Technische MineralogieETHZ IMP 2008