33

ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

ESTIMATING BIVARIATE TAIL

Elena Di Bernardinoa, Véronique Maume-Deschampsa andClémentine Prieurb

aISFA, Université de Lyon, Université Lyon 1bUniversité Joseph Fourier

Workshop Spatio-temporal risk modeling, LuminyApril 26-30, 2010

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 2: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Introduction

This work deals with the problem of estimating the tail of a bivariatedistribution function.

We develop a general extension of the POT (Peaks-Over-Threshold)method, mainly based on a two-dimensional version of the

Pickands-Balkema-de Haan Theorem.

We construct a two-dimensional tail estimator and study itsasymptotic properties.

We also present a simulation study which illustrates our theoreticalresults.

Key words: Extreme Value Theory, Peaks Over Threshold method,Pickands-Balkema-de Haan Theorem, tail dependence.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 3: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Contents

1 Introduction: the univariate POT method

2 Two-dimensional Pickands-Balkema-de Haan TheoremUpper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

3 Estimating the tail of bivariate distributionsConstruction of the bivariate estimatorConvergence results

4 Simulation StudyCase with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 4: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Contents

1 Introduction: the univariate POT method

2 Two-dimensional Pickands-Balkema-de Haan TheoremUpper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

3 Estimating the tail of bivariate distributionsConstruction of the bivariate estimatorConvergence results

4 Simulation StudyCase with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 5: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Generalized Pareto distribution

The key idea of the Peaks-Over-Threshold method is the use of thegeneralized Pareto distribution (given by (1)) to approximate thedistribution of excesses over thresholds.

Vk,σ(x) :=

{1−

(1− kx

σ

) 1k , if k 6= 0, σ > 0,

1− e−xσ , if k = 0, σ > 0,

(1)

and x ≥ 0 for k ≤ 0 or 0 ≤ x < σkfor k > 0.

Let X1,X2, . . . be a sequence of i.i.d random variables with unknowndistribution function F .

Fix a threshold u. For x > u, decompose F as

F (x) = P[X ≤ x ] = (1− P[X ≤ u])Fu(x − u) + P[X ≤ u],

where Fu(x) = P[X − u ≤ x |X > u].

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 6: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

One-dimensional Pickands-Balkema-de Haan Theorem

De�nition (Maximum Domain of Attraction)

We say that F belongs to the Maximum Domain of Attraction of ageneralized extreme value distribution (F ∈ MDA(Hk)) if there exist asequence of positive numbers (an)n>0 and a sequence (bn)n>0 of realnumbers such thatlimn→∞ P

[(max{X1,X2, . . . ,Xn} − bn)(an)−1 ≤ x

]= Hk(x), where

x ∈ R and Hk(x) is GEV distribution.

We can now state a precise formulation of

Theorem (Pickands-Balkema-de Haan Theorem)

F ∈ MDA(Hk) ⇔ limu→xF sup0≤x<xF−u

∣∣Fu(x)− Vk,σ(u)(x)∣∣ = 0,

where Fu(x) = P[X − u ≤ x |X > u] and xF := sup{x ∈ R |F (x) < 1}.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 7: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Estimating the tail of univariate distributions

We use the Pickands-Balkema-de Haan Theorem

We estimate F (u) by the empirical distribution function F̂X (u)

and we obtain the univariate tail estimate

F ∗(x) = (1− F̂X (u))Vk,σ(x − u) + F̂X (u). (2)

Parameters k and σ of the GPD ⇒ MLE (k̂, σ̂) based on the excessesabove u.

We then write (2) as

F̂ ∗(x) = (1− F̂X (u))Vk̂,σ̂(x − u) + F̂X (u), for x > u.

(For example McNeil (1997), McNeil (1999) and references therein).

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 8: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Upper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

Contents

1 Introduction: the univariate POT method

2 Two-dimensional Pickands-Balkema-de Haan TheoremUpper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

3 Estimating the tail of bivariate distributionsConstruction of the bivariate estimatorConvergence results

4 Simulation StudyCase with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 9: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Upper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

Modeling upper tail

De�nition (Upper-tail dependence copula)

Let X and Y be uniformly distributed on [0, 1]. Assume that the copulaassociated to (X ,Y ) is symmetric. For a threshold u ∈ [0, 1) satisfyingC∗(1− u, 1− u) > 0, we de�ne the upper-tail dependence copula at levelu ∈ [0, 1) relative to the copula C , ∀ (x , y) ∈ [0, 1]2 by

Cupu (x , y) := P[X ≤ Fu

−1(x),Y ≤ Fu

−1(y) |X > u,Y > u],

where Fu(x) := P[X ≤ x |X > u,Y > u] = 1− C∗(1−x∨u,1−u)C∗(1−u,1−u) .

Cupu (x , y) is a copula.

The asymptotic behavior of Cupu for u around 1 describes the

dependence structure of X ,Y in their upper tails.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 10: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Upper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

Modeling upper tail

Theorem (Upper-tail Theorem; Juri and Wüthrich (2003))

Let C be a symmetric copula such that C∗(1− u, 1− u) > 0, for allu > 0. Furthermore, assume that there is a strictly increasing continuous

function g : [0,∞)→ [0,∞) such that

limu→1

C∗(x(1− u), 1− u)

C∗(1− u, 1− u)= g(x), x ∈ [0,∞).

Then, there exists a θ > 0 such that g(x) = xθg(1

x

)for all x ∈ (0,∞).

Further, for all (x , y) ∈ [0, 1]2

limu→1

Cupu (x , y) = x+y−1+G (g−1(1−x), g−1(1−y)) := C∗G (x , y), (3)

where G (x , y) := yθg(xy

), ∀ (x , y) ∈ (0, 1]2 and

G :≡ 0 on [0, 1]2 \ (0, 1]2.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 11: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Upper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

Case symmetric copula C and FX 6= FY

Theorem (Two-dimensional Pickands Theorem)

Let X and Y be continuous real valued r.v., with marginal distributions

FX , FY , and symmetric copula C. Suppose that FX ∈ MDA(Hk1), FY∈ MDA(Hk2) and that C satis�es the hypotheses of the Upper-tail

Theorem for some g. Then

supA

∣∣∣∣P[X − u ≤ x ,Y − F−1Y (FX (u)) ≤ y∣∣X > u,Y > F−1Y (FX (u))

]−C∗G

(1−g(1−Vk1,a1(u)(x)), 1−g(1−Vk2,a2(F

−1Y (FX (u)))(y))

)∣∣∣∣−−−−→u→xFX

0,

where Vki ,ai (·) is the GPD with parameters ki , ai (·) de�ned in (1),xFX := sup{x ∈ R |FX (x) < 1}, xFY := sup{y ∈ R |FY (y) < 1} andA := {(x , y) : 0 < x ≤ xFX − u, 0 < y ≤ xFY − F−1Y (FX (u))}.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 12: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Upper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

Case symmetric copula C and FX 6= FY

From (3),

C∗G(1− g(1− Vk1,a1(u)(x)), 1− g(1− Vk2,a2(F

−1Y (FX (u)))(y))

)= 1− g(1− Vk1,a1(u)(x))− g(1− Vk2,a2(F

−1Y (FX (u)))(y))

+ G(1− Vk1,a1(u)(x), 1− Vk2,a2(F

−1Y (FX (u)))(y)

),

where ai (u) as in one-dimensional Pickands Theorem, for i = 1, 2.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 13: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

Contents

1 Introduction: the univariate POT method

2 Two-dimensional Pickands-Balkema-de Haan TheoremUpper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

3 Estimating the tail of bivariate distributionsConstruction of the bivariate estimatorConvergence results

4 Simulation StudyCase with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 14: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

A two-dimensional structure of dependence

Now we are interested to develop a two-dimensional extension of thePOT method.

We consider a two-dimensional structure of dependence as follows:

Continuous r. v. X and Y (in particular FX and FY are assumed tobe continuous).

FX and FY are a priori unknown, with regularity properties speci�edin the statement of our theorems.

The structure of dependence between X and Y is described by acontinuous and symmetric copula C , which is supposed to be knownor inferred from the data structure.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 15: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

A new bivariate tail estimator

New tail estimator for the 2-dimensional distribution function F (x , y)(continuous symmetric copula C , FX 6= FY ).For x > u, y > F−1Y (FX (u)) := uY we de�ne

F̂ ∗(x , y) =

(1

n

n∑i=1

1{Xi>u,Yi>uY }

)(1− g(1− V

k̂X ,σ̂X(x − u))

−g(1−Vk̂Y ,σ̂Y

(y−uY )) +G(1−V

k̂X ,σ̂X(x−u), 1−V

k̂Y ,σ̂Y(y−uY )

))+ F̂ ∗

1(u, y) + F̂ ∗

2(x , uY )− 1

n

n∑i=1

1{Xi≤u,Yi≤uY },

where k̂X , σ̂X (resp. k̂Y , σ̂Y ) are MLE based on the excesses of X (resp.Y).

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 16: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

Description of the construction (1/2)

Distribution of excesses above u and uY :Fu,uY (x , y) := P[X − u ≤ x ,Y − uY ≤ y |X > u,Y > uY ].

So for x > u, y > uY ,

F (x , y) = (F (u, uY ))·Fu,uY (x−u, y−uY )+F (u, y)+F (x , uY )−F (u, uY ).

From 2-dimensional Pickands Theorem we can approximateFu,uY (x − u, y − uY ), for high thresholds u, uY withC∗G

(1− g(1− VkX ,σX (u)(x − u)), 1− g(1− VkY ,σY (uY )(y − uY ))

)We estimate F (u, u) and F (u, u) by

F̂ (u, uY ) =1

n

n∑i=1

1{Xi≤u,Yi≤uY }, F̂ (u, uY ) =1

n

n∑i=1

1{Xi>u,Yi>uY }.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 17: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

Description of the construction (2/2)

We estimate F (u, y) and F (x , uY ) by

F̂ ∗1

(u, y) = C (F̂X (u), F̂ ∗Y (y)) and F̂ ∗2

(x , uY ) = C (F̂ ∗X (x), F̂Y (uY )),

where F̂X (u) (resp. F̂Y (uY )) are the empirical estimators of FX(resp. FY ), and

F̂ ∗X (x) = (1− F̂X (u))Vk̂X ,σ̂X

(x − u) + F̂X (u), for x > u.

F̂ ∗Y (y) = (1− F̂Y (uY ))Vk̂Y ,σ̂Y

(y − uY ) + F̂Y (uY ), for y > uY

are the one-dimensional tail estimators of the distribution functionsFX and FY above high thresholds.

N.B. We will propose an estimator for uY := F−1Y (FX (u)).

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 18: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

Maximum domain of attraction of Fréchet

We study one-dimensional convergence results, needed to deriveasymptotic properties of the bivariate tail estimator F̂ ∗(x , y).

Assume F ∈ MDA(Φα), MDA of Fréchet, for some α > 0.

Recall that F ∈ MDA(Φα) ⇔ F (x) = x−αL(x), for some slowlyvarying function L(x).

As in Smith (1987), we shall assume that L satis�es the followingcondition:

� SR2: L(tx)L(x) = 1 + k(t)φ(x) + o(φ(x)), ∀ t > 0, as x →∞,

where φ(x) > 0 and φ(x)→ 0 as x →∞. Excluding trivial cases, φ ∈ Rρ(with Rρ the set of ρ−regularly varying functions) for some ρ ≤ 0, and

k(t) = c hρ(t), with hρ(t) =∫ t1uρ−1du; (→ Smith (1987)).

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 19: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

Convergence results in univariate framework

Theorem (MLE Convergence Theorem, (Smith (1987))

Suppose L satis�es SR2. Let Y1, . . . , Ymn i.i.d from an unknown

distribution function Fumn where limn→∞mn =∞, limn→∞mnn

= 0. For

each mn we de�ne a threshold umn := f (mn) −−−→n→∞

∞ such that

√mn c φ(f (mn))

α− ρ−−−→n→∞

µ ∈ (−∞,∞).

We de�ne k = −α−1 and σmn = f (mn)α−1. Then there exists a local

maximum (σ̂mn , k̂mn ) of the GPD log likelihood function, such that

√mn

σ̂mnσmn− 1

k̂mn − k

d−−−→n→∞

N

µ(1−k)(1+2kρ)1−k+kρ

µ(1−k)k(1+ρ)1−k+kρ

;M−1

.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 20: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

Convergence results in univariate framework

This theorem is written conditionally on N = mn. In practice we workwith some threshold u and N is considered as random. Therefore we givethe analogues of the MLE Convergence Theorem working unconditionallyon N.

Corollary

Suppose L satis�es SR2. Let n be the sample size and un := f (n) thethreshold, such that f (n) −−−→

n→∞∞. Let N = Nn denote the random

number of excesses above un. If

n(1− F (un)) −−−→n→∞

∞, (4)

√n(1− F (un))c φ(un) −−−→

n→∞µ(α− ρ), (5)

then the MLE Convergence Theorem holds also unconditionally on N.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 21: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

Uniform Convergence result in univariate framework

We obtain a general result for the absolute error:

Theorem (Univariate Convergence Theorem)

Suppose F belongs to the maximum domain of attraction of Fréchet and

L satis�es SR2. Assume that the threshold un := f (n) −−−→n→∞

∞, then if

(4) and (5) hold we get

supx>f (n)

∣∣∣F (x)− F̂ ∗(x)∣∣∣ P−−−→

n→∞0.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 22: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Construction of the bivariate estimatorConvergence results

Convergence results in bivariate framework

Let n be the sample size. We choose

u1 n := f 1(n) −−−→n→∞

∞ threshold for X ,

u2 n = f 2(n) = F−1Y (FX (f 1(n))) −−−→n→∞

∞ threshold for Y .

Theorem (Bivariate Convergence Theorem)

Suppose FX and FY belong to the maximum domain of attraction of

Fréchet and LX , LY satisfy the condition SR2. Assume that the copula C

is continuous and symmetric. Then under assumptions of the Upper-tail

Theorem and the Two-dimensional Pickands Theorem, if sequences

f 1(n), f 2(n), satisfy the conditions of the Univariate ConvergenceTheorem and if the conditions of the Two-dimensional Glivenko-Cantelli

Theorem hold then

supx > f 1(n), y > f 2(n)

∣∣∣F (x , y)− F̂ ∗(x , y)∣∣∣ P−−−→

n→∞0.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 23: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Contents

1 Introduction: the univariate POT method

2 Two-dimensional Pickands-Balkema-de Haan TheoremUpper Tail dependence copulaTwo-dimensional Pickands Theorem: case FX 6= FY

3 Estimating the tail of bivariate distributionsConstruction of the bivariate estimatorConvergence results

4 Simulation StudyCase with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 24: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Model

C (u, v) = u+v−1+[(1−u)−1+(1−v)−1−1]−1 (Survival Clayton copula),

FX (x) = 1−(1+x)−1, FY (y) = 1−(1+y)−1 (same Burr distributions).

Figure: Copula Survival Clayton.

Figure: Bivariate distributionfunction FX ,Y (x , y), with FX = FY ,for x > 0, y > 0.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 25: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Threshold

We choose f (n) = n13

3−−−→n→∞

∞.

then supx, y >f (n)

∣∣∣F (x , y)− F̂ ∗(x , y)∣∣∣ P−−−→

n→∞0.

We de�ne for each x > f (n), y > f (n), for i = 1, . . . , t:

ERRi, abs =∣∣∣F̂ ∗(x , y)− F (x , y)

∣∣∣ , ERRabs =1

t

t∑i=1

ERRi, abs ,

ERRi, rel =

∣∣∣∣∣ F̂ ∗(x , y)− F (x , y)

F (x , y)

∣∣∣∣∣ , ERRrel =1

t

t∑i=1

ERRi, rel .

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 26: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Results

n ERRabs var(F̂ ∗(x0, y0))t ERRrel f (n) mean(Excesses)t

1000 0.0112 1.95e−04 0.0129 3.333 2332000 0.0086 8.87e−05 0.0099 4.199 3845000 0.0051 4.14e−05 0.0059 5.699 74510000 0.0034 2.16e−05 0.0039 7.181 1223

Table: Errors and empirical variance for (x0, y0) = (10, 10),t-simulations= 100, case with same marginals, (NB: both x0 and y0 are abovethe threshold f (n) for n = 1000, 2000, 5000 or 10000).

For n = 1000, t = 10, we discretize, with a grid of 62500 points, the set[f (n) + 1, 250]2 = [4.333, 250]2.On this grid: max(ERRabs) = 0.0171,max(ERRrel) = 0.0195,

max(var(F̂ ∗(x , y))) = 3.4e−04.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 27: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Model and Thresholds

C (u, v) = u+v−1+[(1−u)−1+(1−v)−1−1]−1 (Survival Clayton copula),

FX (x) = 1−(1+x)−1, FY (y) = 1−(1+y2)−1 (di�erent Burr distributions).

We choose f 1(n) = n13

3and f 2(n) = F−1Y (FX (f 1(n))) =

√n13

3.

then supx > f 1(n), y > f 2(n)

∣∣∣F (x , y)− F̂ ∗(x , y)∣∣∣ P−−−→

n→∞0.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 28: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Results

n ERRabs var(F̂ ∗(x0, y0))t ERRrel f 1(n), f 2(n) mean(Excesses)t

1000 0.0086 1.2e−04 0.0094 3.333, 1.825 2312000 0.0061 4.6e−05 0.0067 4.199, 2.049 3855000 0.0040 2.1e−05 0.0044 5.699, 2.387 74410000 0.0027 1.1e−05 0.003 7.181, 2.679 1221

Table: Errors and empirical variance for (x0, y0) = (10, 10) (withx0 > f 1(n), y0 > f 2(n)), t-simulations= 100, case with di�erent marginals.

For n = 1000, t = 10, we discretize, with a grid of 62500 points, the set[f 1(n) + 1, 250]× [f 2(n) + 1, 250] = [4.333, 250]× [2.825, 250].On this grid: max(ERRabs) = 0.0123,max(ERRrel) = 0.0143

max(var(F̂ ∗(x , y))) = 2.5e−04.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 29: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Model and Thresholds

Threshold for Y: f 2(n) = F−1Y (FX (f 1(n))). ⇒ FX and FY are unknown

so f 2(n) has to be estimated.

Model: For the simulations we keep the previous model.

Thresholds: We choose f 1(n) = n13

3and f̂ 2(n) = F̂−1Y (F̂X (f 1(n))).

From classical results (for instance Dekkers, de Haan (1989))[f̂ 2(n)− f 2(n)

]P−−−→

n→∞0.

So Bivariate Convergence Theorem is true when replacing f 2(n) by f̂ 2(n).

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 30: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Results

n ERRabs var(F̂ ∗(x0, y0))t ERRrel f 1(n), m(f̂ 2(n))t m(Excesses)t

1000 0.0086 1.1e−04 0.009 3.333, 1.814 2292000 0.0068 5.3e−05 0.007 4.199, 2.054 3865000 0.0039 2.1e−05 0.004 5.699, 2.389 74710000 0.0031 1.4e−05 0.003 7.181, 2.676 1225

Table: Errors and the empirical variance calculate in (x0, y0) = (10, 10), in themodel with di�erent marginal distributions, estimated threshold f 2(n) andt-simulations= 100. (NB: both x0 and y0 are above the thresholds.)

For n = 1000, t = 10, we discretize, with a grid of 62500 points, the set

[f 1(n) + 1, 250]× [mean(f̂ 2(n))t + 1, 250] = [4.333, 250]× [2.814, 250].On this grid: max(ERRabs) = 0.0164,max(ERRrel) = 0.0195,

max(var(F̂ ∗(x , y))) = 3.9e−04.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 31: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

Ideas for future developments

Estimation of copula /study of properties of g(x),G (x , y) in term ofdependence.

We can use F̂ ∗(x , y) to obtain estimation of bivariate upper-quantilecurves, for high levels α.

An intuitive and immediate measure of the risk, for a 2-dimensionalloss distribution function F , is represented by its α-level sets. Wecan estimate, for large α, the bi-dimensional Value-at-Risk as

VaRα(F̂ ∗) := {(x , y) ∈ (f 1(n),+∞)× (f̂ 2(n),+∞) : F̂ ∗(x , y) = α}

Starting from VaRα(F̂ ∗) we can propose a bivariate estimator for

the bivariate Conditional Tail Expectation: CTEα(F̂ ∗).

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 32: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

References

Blum, J.R. (1955)

On the convergence of empiric distribution functions.Ann. Math. Statist. 26, 527-529.

Cox, D.R. and Hinkley, D.V. (1974).

Theoretical Statistics.Chapman and Hall, London.

Cherubini, U. and Luciano, E. and Vecchiato, W. (2004).

Copula Methods in Finance.Wiley, New York.

DeHardt, J. (1970).

A necessary condition for Glivenko-Cantelli convergence in En .The Annals of Mathematical Statistics 41 (6), 2177-2178.

Dekkers, A.L.M. and de Haan, L. (1989).

On the Estimation of the Extreme-Value Index and Large Quantile Estimation.Ann. Statist. 4, 1795-1832.

Einmhal, J.H.J. (1990).

The empirical distribution function as a tail estimator.Statistica Neerlandica 44 (2), 79-82.

Embrechts, P. and Kluppelberg, C. and Mikosch, T. (1997).

Modelling Extremal Events for Insurance and Finance.Berlin, Springer, Heidelberg.

Horowitz, J. L. (2001).

The Bootstrap In Handbook of Econometrics.Ed. by J.J. Heckman and E.E. Leamer, Elsevier Science B.V., 3159-3228.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy

Page 33: ESTIMATING BIVARIATE TAILmath.univ-lyon1.fr/~mercadier/cirm2010/dibernardino.pdf · Estimating the tail of bivariate distributions Simulation Study Introduction This work deals with

Introduction: the univariate POT methodTwo-dimensional Pickands-Balkema-de Haan Theorem

Estimating the tail of bivariate distributionsSimulation Study

Case with identical marginal distributionsCase with di�erent marginal distributionsEstimation of threshold f 2(n)

References

Juri, A. and Wüthrich, M.V. (2003).

Tail Dependence From a Distributional Point of View.Extremes 6 (3), 213-246.

McNeil, A. J. (1999).

Estimating the Tails of loss severity distributions using extreme value theory.ASTIN Bulletin 27, 1117-1137.

McNeil, A. J. (1999).

Extreme value theory for risk managers.preprint, ETH, Zurich.

McNeil, A. J. and Frey, R. and Embrechts, P. (2005).

Quantitative risk management.Princeton Series in Finance.

Nelsen, Roger B., 2003.

An introduction to copulas.Springer Series in Statistics. Springer, New York, second edition.

Rao, C.R. (1965).

Linear Statistical Inference and Its Applications.Wiley, New York.

Smith, R. (1987).

Estimating tails of probability distributions.Ann. Statist. 15, 1174-1207.

Wüthrich, M. V. (2004).

Bivariate extension of the Pickands-Balkema-de Haan Theorem.Ann. Inst. H. Poincare Probab. Statist. 40 (1), 33-41.

Di Bernardino, Maume-Deschamps, Prieur ESTIMATING BIVARIATE TAIL, April 2010-CIRM Luminy