32
Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g - 2) μ - Introduction and Motivation - Experiment; Design and Setup - Data and Analysis - to within 0.7 ppm uncertainty (2000 data) - Theory; Status - Conclusions and Outlook a μ +

Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Ernst Sichtermann - Yale University

Physics In Collision 2003 - DESY Zeuthen, Germany.

(g − 2)µ

- Introduction and Motivation- Experiment; Design and Setup- Data and Analysis- to within 0.7 ppm uncertainty (2000 data)- Theory; Status- Conclusions and Outlook

aµ+

Page 2: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

R.M. Carey, E. Efstathiadis, M.F. Hare, X. Huang, F. Krienen, A. Lam, J.P. Miller, J.M. Paley, Q. Peng, O. Rind,B.L. Roberts#, L.R. Sulak, A. Trofimov

Department of Physics, Boston University, Boston, Massachusetts 02215

G.W. Bennett, H.N. Brown, G. Bunce!, G.T. Danby, R. Larsen, Y.Y. Lee, W. Meng, J. Mi, W.M. Morse!, D. Nikas,C.S. Ozben, R. Prigl, Y.K. Semertzidis, D. WarburtonBrookhaven National Laboratory, Upton, New York 11973

V.P. Druzhinin, G.V. Fedotovich, D. Grigoriev, B.I. Khazin, I. Logashenko, S.I. Redin, N. Ryskulov,Yu.M. Shatunov, E. Solodov

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Y. OrlovNewman Laboratory, Cornell University, Ithaca, New York 14853

K. JungmannKernfysisch Versneller Instituut, Rijksuniversiteit Groningen, NL 9747AA Groningen, The Netherlands

A. Grossmann, G. zu Putlitz, P. von WalterPhysikalisches Institut der Universitat Heidelberg, 69120 Heidelberg, Germany

P.T. Debevec, W. Deninger, F.E. Gray, D.W. Hertzog, C.J.G. Onderwater, C.C. Polly, M. Sossong, D. UrnerDepartment of Physics, University of Illinois at Urbana-Champaign, Illinois 61801

A. YamamotoKEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

B. Bousquet, P. Cushman, L. Duong, S. Giron, J. Kindem, I. Kronkvist, R. McNabb, T. Qian, P. ShaginDepartment of Physics, University of Minnesota,Minneapolis, Minnesota 55455

M. IwasakiTokyo Institute of Technology, Tokyo, Japan

M. Deile, H. Deng, S.K. Dhawan, F.J.M. Farley, M. Grosse-Perdekamp, V.W. Hughes#,†, D. Kawall, J. Pretz,E.P. Sichtermann, A. Steinmetz

Department of Physics, Yale University, New Haven, Connecticut 06520

! Resident spokesman, # Co-spokesmen, ! Project leader, † Deceased.

Page 3: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

May 28, 1921 - March 25, 2003

Vernon Willard Hughes

Page 4: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

The magnetic moment of a particle is related to its intrinsic spin , according to:!S

!µ = ge

2mc!S

Dirac theory predicts g = 2

for elementary spin particles.12

µ µ

γ

Experimentally

and even

gp ! 5.6

gn ! −3.8

ge != 2

Page 5: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Instead,

ae =ge−2

2" α

2π µ µ

γ

γ

Presently,

To probe beyond QED, one needs heavier electrons; muons.The sensitivity scales typically as (mµ/me)2 ∼ 4 · 104

ae = 1 159 652 188(4) × 10−12 (3.4 ppb)! aQED(e, γ) at O(α4)

Page 6: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Or other speculative physics...

Page 7: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

BNL (2002) CERN (1979) CERN (1965)

aµ (x10-10)

10-1

101

103

105

107

Experimental average (2002)

QED contribution

Hadronic contribution

Weak contribution

New physics?

errors

We have measured of the positive muon to within 0.7 ppm uncertainty (mostly statistical!); twice smaller than the Weak contribution and comparable in size to the uncertainty in theory evaluations.

aµ+

∼ 59 ppm of QED

∼ 1.3 ppm of QED

∼ α

Page 8: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Experiment - Technique

Store longitudinally polarized muons in a magnetic dipole field ,B

PS

θd!p

dt= e

(!E + !v × !B

)d!S

dt=

e

mc!S ×

([a +

]!B − a

γ + 1!β · !B

]!β −

[a − 1

1 + γ

]!β × !E

)

Measure the field and the difference of the spin precession and momentum rotation frequencies,

ωa = ωs − ωc =dθ

dt= aµ

e

mµcB

+ e.d.m. (negligbly small in SM)

+ O(0.7 ppm ± 5%) for γ = 29.3

Page 9: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

The field is measured as the proton NMR frequency , so that:ωp

B

The frequency is observed via the weak decay,ωa

aµ =ωaωp

µµ

µp− ωa

ωp

by counting decay electrons (positrons),

Ne(t) = N0 exp(− t

γτ) [1 + A cos(ωat + φ)]

above an energy threshold E.

!µ → e ν ν

Page 10: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Energy (GeV)

Cou

nts

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Energy (GeV)

Cou

nts

In the decay , highly energetic electrons (positrons) are emitted preferentially along the muon spin direction.

!µ → e ν ν

Page 11: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Inflector magnet A. Yamamoto et al., NIM A491 23 (2002)Ring magnet G.T. Danby et al., NIM A457 151 (2001)Kicker magnet E. Efstathiadis et al., NIM A496 8 (2003)Quadrupoles Y.K. Semertzidis et al., NIM A503 458 (2003)NMR system R. Prigl et al., NIM A394 349 (1997)Calorimeters S. Sedykh et al., NIM A455 346 (2000)

pµ = 3.1 GeV/c, B = 1.45 T, r = 7.1 m

The muon storage ring at Brookhaven National Laboratory:

Page 12: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Experiment - Field Measurement

The field values along the muon trajectory are measured several times per week with 17 NMR probes mounted on a trolley.

The field is tracked continuously with ~160 out of 375 NMR probes in the top and bottom walls of the vacuum chamber.

The system is calibrated in situ against a standard* before and after data taking with beam

* X. Fei, V.W. Hughes, R. Prigl NIM A394 349 (1997)

[ms]

Page 13: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

2001 Preliminary

Recall that the cyclotron period (~150ns) is ~430 times shorter than the dilated muon lifetime (~64us).

Page 14: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Multipoles (ppm)

normal skew

Quad -0.29 0.15

Sext -0.71 -0.48

Octu 0.06 0.01

Decu 1.08 0.39x [cm]

-4 -3 -2 -1 0 1 2 3 4

y [c

m]

-4

-3

-2

-1

0

1

2

3

4

-1.5-1.0

-1.0-1.0

-0.5

-0.5-0.5

00

0

00.5

0.5

1.0

1.0

1.5

1.52.0

0.5

2001 Preliminary

Page 15: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Experiment - Calorimeters

• ~10 radiation lengths

• ~10% energy resolution

• less than 60 ps timing shift over 600 s

• less than 0.3% change of gain over 600 s

• waveform digitizer read- out

One of 24 Pb/scintillating-fiber calo-rimeters on the inner side of the storage ring.

!µ → e ν ν

µ

µ

Page 16: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

4 Billion Positrons with E > 2 GeV

10 2

10 3

10 4

10 5

10 6

10 7

0 10 20 30 40 50 60 70 80 90 100

45-100 µs

100-200 µs

200-300 µs

300-400 µs

400-500 µs

500-600 µs

600-700 µs

700-800 µs

800-850 µs

Time µs

Num

ber

of P

ositr

ons/1

49ns

2000 Data Sample and Analysis

Page 17: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

The leading behavior,

is a partial description of the data.

Specifically, the very high statistics sample requires careful consideration of:

Ne(t) = N0 exp(− t

γτ) [1 + A cos(ωat + φ)]

• Coherent Betatron Oscillations

• Muon losses (muon loss detectors)

• Detector gain and time stability (UV laser)

Page 18: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

A Fourier transform of the positron time spectrum,

indicates significant modulation of the number and energy distributions ~ 1 + A sin (ωcbot + φcbo)

Hence, and inN0(E), A(E), φ(E)

Nobserved(t) = N0(E) exp(− t

γτ) [1 + A(E) sin (ωat + φ(E))]

vary with t.

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4Frequency [MHz]

Four

ier

Am

plitu

de [a

.u.]

f cbo,

h

f cbo,

h +

f g-2

f cbo,

h -

f g-2

muo

n lo

sses

, gai

n va

riatio

ns

2 f cb

o, h

f g-2

Direct measurement:

This is a considerable complication of the analysis

Page 19: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

N0 Modulations with fcbo Included

2290.72

2290.73

2290.74

2290.75

2290.76

2290.77

2290.78

2290.79

x 10 2

0 2 4 6 8 10 12 14 16 18 20 22 24Detectors

ωa/2

π (H

z)

N0, A and φ Modulations with fcbo Included

2290.71

2290.72

2290.73

2290.74

2290.75

2290.76

2290.77

2290.78

x 10 2

0 2 4 6 8 10 12 14 16 18 20 22 24Detectors

ωa/2

π (H

z)

The proximity of 2 x and causes a relatively large artificial shift (bias) in the fitted frequency from indivi-dual calorimeters if the modulation of and/or are not accounted for in the fitting function.

ωa ωcbo

ωa

A(E) φ(E)

This bias cancels by an order of magnitude in the summed detector spectra (established in independent ways).

ωa = 229 074.05 ± 0.14Hz, χ2/d.o.f. = 24/19 ωa = 229 073.95 ± 0.16Hz, χ2/d.o.f. = 24/21

Page 20: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

• Averaged result from fits to the data from individual calorimeters in energy intervals. The fit function incorporates number, asymmetry, and phase modulation. The fit start-times are chosen so that there is no apparent need to incorporate e.g. detector gain effects.

• A fit to the summed calorimeter time spectrum for energies larger than 2 GeV and a start-time of 50µs. The fitting function incorporates the leading modulations (number and asymmetry) and uses an empirical description of detector gain effects.

• As above, using different methods to determine systematic effects.

• A fit to the ratio,

Four analyses to determine have been performed,ωa

r(t) =n1(t − τa/2) + n2(t + τ/2) − n3(t) − n4(t)n1(t − τa/2) + n2(t + τ/2) + n3(t) + n4(t)

in which are formed by randomly splitting the summed calori-meter time spectrum (for energies larger than 2 GeV and a start-time of 50µs).

n1 —n4

Page 21: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

After the 4 analyses of had been completed,ωa

After the 2 analyses of had been completed,ωp

ωa/(2π) = 229 074.11 (14)(7)Hz (0.7 ppm),

ωp/(2π) = 61 791 595 (15)Hz (0.2 ppm),

separately and independently, the anomalous magnetic moment was evaluated,

aµ =R

λ − R= 11 659 204 (7)(5) × 10−10 (0.7 ppm)

R =ωa

ωpλ =

µµ

µp= 3.18 334 539 (10)1where and

[1] W. Liu et al., PDG

Page 22: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;
Page 23: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Theory - StatusThe Standard Model prediction is evaluated as

aµ(SM) = aµ(QED) + aµ(had) + aµ(weak)

in which the QED and weak contributions have been calculated to high accuracy,

aµ(QED) = 11 658 470.6(3) × 10−10 (0.03 ppm)aµ(weak) = 15.1(4) × 10−10 (0.03 ppm)

The hadronic contribution is by far less certain (~0.6 ppm).

In lowest order it is evaluated with input, mostly from collision and decay data at low c.m. energies.

e+e−

τ−

Page 24: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

aµ(had; l.o.) ∝∫ ∞

4m2π

ds

s2K(s)R(s)

Figure reproduced from Davier et al. hep-ph/0208177

It is largely an experimental question, weighted towards lower energies...

Page 25: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Figures reproduced from Davier et al. hep-ph/0208177

~75% of aµ(had)

At first sight, the agreement is strikingly good. We need it to 1% however...

The recent analysis by Davier et al includes the most precise data to date:

Page 26: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Figure reproduced from Davier et al. hep-ph/0208177

Relative comparison of the spectral functions from data and from isospin-breaking corrected data.

e+e−π+π−

τ

τDavier et al: and data cannot presently be combined.e+e−

Page 27: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Radiative return data from e+e- facilities may help resolve the discrepancy.E.g. KLOE at Frascati (J. Lee-Franzini at Lepton Moments, June 2003):

Page 28: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Also, the higher order hadronic contributions,

continue to be scrutinized. Numerically most significant a mistake of sign was discovered in the contribution from hadronic light-by-light scattering, which resulted in a ~1.3 ppm shift (stated uncertainty ~0.4 ppm). M. Knecht et al., Phys. Rev. D65, 073034, 2002.

Page 29: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

- 11

6590

0010

10

× µaMeasurements Standard Model

160

180

200

220

160

180

200

220

BNL’98

BNL’99

BNL’00 WorldAverage

, DEHZ’02τ

, DEHZ’02-e+e

References: BNL’98 PRL 86 2227

BNL’99 PR 62D 091101

BNL’00 PRL 89 101804

(had;1) from hep-ph/0208177µ , DEHZ’02 aτ

(had;1) from hep-ph/0208177µ , DEHZ’02 a-e+e

Page 30: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Concluding remarks

Our present measurement and data:

• confirm previously measured values,

• form the most precise determination of of the positive muon to date (0.7 ppm)

• have an uncertainty that is mostly statistical and has a size about half the size of the weak contribution to

aµ+

aµ(SM)

Page 31: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

• has improved by about an order of magnitude in accuracy since the last CERN experiment (1979),

• has shifted significantly in the past year because of a corrected sign in the evaluation of hadronic light-by-light scattering (Knecht et al.),

• agrees/differs from the experimental value by 0 to 3 times the combined experimental and stated theoretical uncertainty, depending if or spectral functions are used to evaluate the contribution from hadronic vacuum polarization (Davier et al.),

• may benefit from final data, re-examination of the normalization, radiative return measurements (e.g. KLOE, BaBar), and possibly lattice QCD calculation (T. Blum).

The Standard Model evaluation:

e+e− τ

τ e+e−

Page 32: Ernst Sichtermann - Yale University · Ernst Sichtermann - Yale University Physics In Collision 2003 - DESY Zeuthen, Germany. (g ! 2)µ - Introduction and Motivation - Experiment;

Future:

• Analysis of our last data set - on the negative muon (our first) collected in 2001 - is well underway; we expect completion with an event sample of 3 billion analyzed electrons and further reduced systematics. For now, the collaboration continues the study of systematics in the muon precession frequency.

• Ongoing analysis of out-of-plane precession may result in a somewhat sharper direct limit on the muon EDM; a follow up experiment is being proposed.