45
Epigenetics, nutrition and bowel cancer risk John Mathers Human Nutrition Research Centre UK

Epigenetics, nutrition and bowel cancer risk John Mathers · Epigenetics, nutrition and bowel cancer risk John Mathers Human Nutrition Research Centre UK

  • Upload
    buidat

  • View
    218

  • Download
    1

Embed Size (px)

Citation preview

Epigenetics, nutrition and bowel cancer risk

John Mathers Human Nutrition Research Centre

UK

h"p://www.wcrf-­‐uk.org/research_science/expert_report.lasso  

•   WCRF/  AICR  Report  

•   Comprehensive  and  systemaEc  assessment  of  epidemiological  evidence  

•   2nd  ediEon  November  2007  

Diet  and  bowel  cancer  risk  .1  

Level of evidence

↓ Risk ↑ Risk

Convincing Physical activity Red meat; processed meat; alcoholic drinks (men); abdominal fat; adult height

Probable Foods containing dietary fibre; garlic; milk; calcium

alcoholic drinks (women)

Limited - suggestive Vegetables; fruits; folate; Se; fish; vitamin D

Fe; cheese; animal fats; sugar

Limited – no conclusion

Lots Lots

Substantial effect on risk unlikely

None identified None identified

Colo-­‐rectal  cancer  .2  

Overview of lecture

     Overview of epigenetic mechanisms

  Epigenetic events in bowel cancer

  Towards novel diet-related DNA methylation biomarkers of bowel cancer risk

  MicroRNA, diet and development of bowel cancer

Adapted  from  Rajagopalan  et  al.  (2003)  Nat.  Rev.  Cancer  3,  695-­‐701  

Colon  cancer  development  

•   ‘Advantageous’  mutaEons/  epimutaEons  become  ‘fixed’  

•     Development  of  genomic  instability  

•   <10%  of  adenomas  become  carcinomas  (Darwinian  process)  

Other  geneEc  and  epigeneEc  events  

Environment  

Phenotype  Epigenome  

Adapted  from  Zoghbi  HY  &  Beaudet  AL  (2007)  in  “Epigene2cs”  

Determinants  of  phenotype  

Environment    (diet)  

Receive  and  Record  

Time  

Reveal  

The  4  Rs  of  (nutriConal)  epigenomics  

Mathers  JC  (2008)  Proc.  Nutr.  Soc.  67,  390-­‐394  

Remember  

Costa  FF  (2008)  Gene  410,  9-­‐17  

EpigeneCc  Mechanisms  

DNA    methylaEon  

Histone  code  ChromaEn    conformaEon  

Non-­‐coding    RNAs  

EpigeneCc  marks  

DNA  methylaEon  

Histone  “decoraEon”  

Qiu  J  (2006)  Nature  441,  143-­‐145  

Molecular  mechanisms  linking  diet  with  bowel  cancer  risk    

All  cancers  arise  from  (unrepaired)  genomic  damage  so  “protecCve”  dietary  factors  “must”:  

•   ↓  genomic  damage  

•   ↑  genomic  repair  

•   ↑  removal  of  damaged  cells  by  apoptosis  

Hypothesis:  aberrant  methylaCon  of  DNA  repair  genes  links  diet  with  cancer  

Hypothesis:  

?  InflammaCon  

Tumour  

Gerson  SL  (2004)      

MGMT:  role  in  DNA  repair  

Jones  PA  &  Baylin  SB  (2002)  

EpigeneCc  events  in  cancer  development  –  silencing  of  DNA  repair  genes  

Shen  L  et  al.  (2005)  J.  Natl.  Cancer  Inst.  97,  1330-­‐1338  

MGMT  methylaCon  

correlates  with  loss  of  

expression  

Shen  L  et  al.  (2005)  J.  Natl.  Cancer  Inst.  97,  1330-­‐1338  

↑  MGMT  methylaCon  in  normal  mucosa  when  adjacent  tumour  is  methylated    

Causality?

Does aberrant methylation cause tumorigenesis?

29 genes often

methylated in cancer

Ohm JE et al. (2007) Nature Genetics 39, 237-242

Tumour suppressor

genes

Ohm JE et al. (2007) Nature Genetics 39, 237-242

Genes frequently hypermethylated in tumours have a stem cell-like

chromatin pattern

Adult cancers

‘Bivalent’ marks: Active mark – H3K4 Repressive mark – H3K27

Qiu  J  (2006)  Nature  441,  143-­‐145  

InterpretaCon  of  DNA  methylaCon  

measurements  

“Field  effect”  v.  focal  event?  

•   Crypt  cells  arise  from  stem  cells  at  base  of  individual  crypts  

•   Colo-­‐rectal  tumours  derive  from  a  stem  cell  in  a  single  crypt  

•   Nature  of  “field  effect”  in  vulnerable  colon?  

EpigeneCc  “field  effect”  

•   At  any  CpG,  methylaEon  is  a  binary  phenomenon  

•   Percentage  methylaEon  =  %  genomes  methylated  

•   Therefore  ≈    %  stem  cells  (and  crypts)  methylated  at  this  locus  

•   Crypts  are  epigeneEcally  heterogeneous  

EpigeneCc  diversity  in  colonic  mucosa  

Colo-­‐rectal  mucosal  crypts:  

•   MulEple,  independent,  clonal  units  

•   GeneEcally  idenEcal  •   EpigeneEcally  heterogeneous  

Why?  

•   Different  local  environments?  

•   StochasCc  events?  

Shibata  D  (2009)  J.  Pathol.    217,  199-­‐205  

Maintenance  of  DNA  

methylaCon  pa^erns  through  mitosis  

Shibata  D  (2009)  J.  Pathol.    217,  199-­‐205  

StochasCc  development  of  divergent  methylaCon  pa^erns  

↑  epigeneCc  diversity  with  age  (and  dietary  exposure?)  

Hypothesis:  “Field  effects”  occur  in  the  “normal”  colo-­‐rectal  epithelium  

Young,  healthy  

Older,  ↑  CRC  risk  

Similar  epigeneEc  pa"erns,  similar  gene  expression  

“High  risk”  stem  cells  in  individual  crypts  

Stool  as  a  surrogate  “Cssue”  for  DNA  methylaCon  measurements  

MethylaCon

 at  spe

cific  CpG

s  (%

)  

QuanCficaCon  of  gene  methylaCon  using  stool  samples  

Healthy  volunteers  

Belshaw NJ et al. (2004) Cancer Epid. Biomark. Prev. 13, 1495-1501

MethylaCon  of  promoter  region  of  oestrogen  receptor  gene  ↑  with  age  in  the  colon  

200  healthy    people  in    NE  England  

Age  (years)  

ESR1

 methylaCon

 (%)  

Garg  D  et  al.  unpublished  

Elliott GO et al. (2010) unpublished

↑ promoter methylation in DNA from stools compared with mucosa

0

10

20

30

40

APC CDH1 HPP1 ESR1 MLH1 p14

% M

eth

0

10

20

30

40

50

60

70

80

APC CDH1 HPP1 ESR1 MLH1 p14

% M

eth

50

60

70

80

% M

eth

**  

***  ***   ***  

***  

***  

***  

*  

C  

B  

Elliott GO et al. (2010) unpublished

↑ Methylation in stool from adenoma patients v. healthy volunteers

Healthy volunteer Adenoma patient

Stool-­‐based  DNA  methylaCon  measurements  

•   Human  DNA  can  be  harvested  from  stool  

•   Quality  of  DNA  is  adequate  for  quanEficaEon  of  promoter  methylaEon  

•   Some  results  as  anEcipated  e.g.  age-­‐dependent  ↑  in  ESR1  methylaEon  

•   Levels  of  methylaEon  are  consistently  higher  than  those  seen  in  corresponding  mucosal  biopsies  

•   ?  DifferenEal  survival  of  methylated  sequences?  

•   PotenEal  use  in  developing  biomarkers  of  CRC  risk  

“All seeing, all controlling”

Claudia Bentley (2006)

MicroRNA (miRNA)

  Large family of small (≈ 22 nucleotides long) non-coding RNAs;

  At least 721 miRNA in human genome;

  Regulate transcription of ≈30% of all protein-encoding genes through sequence-specific binding to RNA;

  Inhibit translation and/or signal degradation of target mRNA;

  Regulate almost all cellular processes investigated.

Gene regulation by miRNA

Ryan BM et al. (2010) Nature Rev. Cancer 10, 389-402

miRNA and cancer   Some miRNA which are normally “silent” in adult tissues become re-expressed

Persistent stem cell-like de-differentiated state

  miRNA over-expressed in tumours may act like oncogenes

↑ proliferation, ↓ apoptosis

  miRNA with tumour suppressor (TS) regulatory activity may beome down regulated

loss of TS activity

Jeffrey SS (2008) Nature Biotech. 26, 400-401

Oncomirs = miRNA with a role in cancer

Esquela-Kerscher A & Slack FJ (2006) Nature Rev. Cancer 6, 259-269

Toledo F & Bardot B (2009) Nature 460, 466-467

Anti-cancer effect of P53 via miRNA

Methylation of miR-34a in tumours

Lodygin D et al. (2008) Cell Cycle 7, 2591-2600

Methylation of promoter of miRNA-34a

gene detected in tumours including

bowel cancer

Diet, miRNA and bowel cancer risk

?

  Understanding aetiological mechanisms   Development of novel diet-responsive biomarkers of bowel cancer risk

Davidson LA et al. (2009) Carcinogenesis 30, 2077-2084

Effect of dietary factors on miRNA signatures in rat colon

Cellulose Pectin

Corn oil Fish oil

2*2*2 factorial designed study in Sprague-Dawley rats

  2 types of dietary fibre

  2 types of fat

  + and – AOM treatment

  Assayed 368 mature miRNAs in colonic mucosa

Davidson LA et al. (2009) Carcinogenesis 30, 2077-2084

Diet alters miRNA in rat colon

Cellulose

Pectin

Corn oil

Fish oil

Davidson LA et al. (2009) Carcinogenesis 30, 2077-2084

miRNA patterns linked with adenocarcinoma risk

Davidson LA et al. (2009) Carcinogenesis 30, 2077-2084

Fish oil “prevented” down regulation of 5 specific miRNA (oncomirs)

Summary

  Diet is a major modulator of bowel cancer risk

  Epigenetics mechanisms link dietary exposure with development of bowel cancer

  DNA methylation shows promise as route to novel (diet-related) biomarkers of bowel cancer risk

  DNA methylation measurements can be made in stool

  Altered miRNA patterns occur in cancer and may be diet responsive

Research  prioriCes  

•   Which  epigeneEc  changes  in  macroscopically  normal  mucosa  are  causal  for  ↑  bowel  cancer  risk?  

•   What  are  major  exposures  causing  ↑  epigeneEc  heterogeneity  with  age?  

•   What  dietary  (and  other  lifestyle)  factors  prevent,  or  reverse,  these  early  epigeneEc  changes?  

Acknowledgements  

Nigel Belshaw

Giles Elliott

Mike Bradburn

Dharmendra Garg

Wendy Bal

Liz Williams

Ian Johnson