1
Epigene’c and Transcriptome Analysis of the Switchgrass (Panicum virgatum) – Anthracnose (Colletotrichum navitas) Interac’on Deidrhe Clayton 1,4 , Elizabeth Fiedler 2 , Vasudevan Ayyappan 2 , Venu (Kal) Kalavacharla 2,3 1 Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 2 Molecular GeneBcs and EpiGenomics Laboratory, Delaware State University, Dover, DE 19901 3 Center for Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE 19901 4 Northeast Woody/Warmseason Biomass ConsorBum (NEWBio), Delaware State University, Dover, DE 19901 In the U.S. the rising demand for sustainable renewable energy has led to the development of a variety of bioenergy feedstocks. Currently, switchgrass is being reviewed as an energy crop for its poten’al use as a biofuel. The development of switchgrass as a leading bioenergy feedstock will require the successful propaga’on of the crop in both favorable and adverse condi’ons, including exposure to disease. Recent outbreaks of anthracnose, caused by Colletotrichum navitas, poses a threat to the crop's energy produc’on poten’al. Developing methods to improve disease resistance in switchgrass is impera’ve to increasing the crop's yield and overall poten’al as an energy producing crop. Understanding switchgrass genes involved in anthracnose resistance may be useful in the longterm. In this project we intend to use the epigene’c markers H3K9me2 and H4K12ac as tools in iden’fying genes within switchgrass that render the plant suscep’ble or resistant to C.navitas. More specifically, we will iden’fy differences in epigene’c modifica’ons between infected and uninfected plants of the AP13 and VS16 switchgrass genotypes. Having mastered techniques used in the iden’fica’on of these epigene’c modifica’ons within the common bean genotypes and fungal rust infected common bean (an ongoing project within our lab), we hope to iden’fy these markers and their associated genes within the aforemen’oned genotypes. Determina’on of these genes may serve as a pla[orm to develop anthracnoseresistant switchgrass genotypes. ABSTRACT INTRODUCTION OBJECTIVES LABORATORY TECHNIQUES CONT. RESULTS DISCUSSION CONCLUSION AND FUTURE DIRECTIONS REFERENCES ACKNOWLEDGMENTS This study was supported in part by the Northeast Woody/Warmseason Biomass Consor’um (NEWBio), funded by the Na’onal Ins’tute of Food and Agriculture (NIFA) and the Center for Integrated Biological and Environment Research (CIBER) at DSU. I would also like to personally thank the MGE Lab and each of the staff, graduate and undergraduate students that have helped me throughout my research efforts this summer. McLaughlin, S.B., and L.A. Kszos, Development of switchgrass (Pancium virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 2005. 28: p. 515535. Crouch, J., Beirn, L.A., et al., Anthracnose disease of switchgrass caused by the novel fungal species Colletrtrichum navitas. Mycological Research, 2009. 113: p. 14111421. Wang, Z., Gerstein, M., and M. Snyder, RNASeq: a revolu’onary tool for transcriptomics. Nature Review Gene’cs, 2009. 10(1): p. 5763. In this project we intend to iden’fy differences in epigene’c modifica’ons between anthracnose infected and uninfected switchgrass. The epigene’c markers that we are searching for include the histone modifica’ons H3K9me2 and H4K12ac. The histone modifica’on H3K9me2 consists of dimethyla’on of lysine 9 on histone core H3. This modifica’on is commonly found in heterochroma’n and is associated with repression of gene expression. The histone modifica’on H4K12ac consists of acetlya’on of lysine 12 on histone core H4. Addi’on of an acetyl group to posi’vely charged lysine neutralizes electrosta’c alrac’on between the histone protein and the DNA molecule. This neutraliza’on causes the DNA to unwind and enter into a euchroma’n state of which DNA is ac’vely transcribed (ac’va’on of gene expression). Epigene’c modifica’ons have the ability to alter the flow of gene’c informa’on and by using the histone modifiers H3K9me2 and H4K12ac as epigene’c markers, we will be able to trace gene expression palerns within anthracnose infected and uninfected switchgrass. Furthermore, iden’fica’on of these genes involved in the switchgrass – anthracnose interac’on may be useful in the development of anthracnose resistant plants. LABORATORY TECHNIQUES Develop a fungal infected and uninfected catalog (or library) of epigene’c modifica’ons present within switchgrass. Iden’fy the epigene’c markers H3K9me2 and H4K12ac and their associated DNA sequences within anthracnose infected and uninfected switchgrass. Used to profile DNA binding proteins and their respec’ve DNA sequences Dot blot prior to ChIP: iden’fica’on of proteins present Step 1: Lyse cells and fragment DNA and associated proteins Step 2: Spot sample onto dot blot membrane Step 3: Assay dots with H3K9me2 and H4K12ac an’bodies Step 4: Confirm presence of H3K9me2 or H4K12ac ChIP Step 1: Lyse cells and fragment DNA and associated proteins Step 2: Probe DNA and associated proteins with H3K9me2 and H4K12ac an’bodies Step 3: Incubate samples with magne’c beads and perform several washes to reverse DNA and protein/an’body crosslink Step 4: Purify isolated DNA Chroma’n Immunoprecipita’on (ChIP) Polymerase Chain Reac’on (PCR) Used to amplify DNA isolated from ChIP protocol. Step 1: DNA denatura’on Step 2: Primers anneal with target DNA sequence Step 3: Extension Primer List: Figure 1. ChIPseq protocol (Google images) Figure 1. PCR protocol (Google images) Name Descrip’on Primer Sequence Product Size (bp) AP13CTG11779 Protein involved in Chr segrega8on FAAGAGTTGAGGAAGCGCCAA RATGGATCCTGCTTATGGCCG 140 AP13ISTG58107 Heat stress transcrip8on factor FAGCTCGCTAGCTAGGCTTTG RTTCGATTCATCCATGCACGC 141 AP13CTG62773 Trans Ini8 factor TFIID FTTGTGGAGCACTACCTCGGA RTACTACCCTGGCCTTGCAGT 137 Kan1CTG35354 Biosyn sec metabolites FGGACGTGTCATCGTCAGACA RTTGACCACAGCTCACCACAA 107 Kan1SGLT49941 Plantpathogen interac8on FGCAATAGGGGTGGCAACAATG RGAAAACCGCACAGAAGGCAA 101 Kan1CTG33578 Plant transposon protein FCACGATTGTGGAAGCGCAAG RGTCAACATGGATGGTCGCCT 107 Kan1SGLT51359 Mem transporter protein FCCATGATCCTGGCCTACGG RGTTCATGACGTAGGGGTTGC 146 Kan1CTG05612 Puta8ve methyl transferase FACGCTCTTGACCTTCACCAG RGGATTCGGTGTTCACCCTGT 135 Kan1SGLT53307 Plant mobile domain 9transposons) FCGTGCAAAGGACAAACGGAG RTGTTTCGACCCAGGTGACAG 149 AP13CTG24496 Response during disease FCGATGCTCTGCAGTTTCGTG RATGCTGATGCGATCAAAGCAC 99 Table 1. List of primers used for PCR DNA probed with H3K9me2 an’body, H4K12ac an’body, and with no an’body was successfully amplified using primer set 1 (see figure 3). This test was used to show that each of the DNA types (used with an’body probe or with no probe) could be amplified. Primer sets 12 and 410 successfully amplified input DNA (see figure 4). This test was used to show that each of the 10 primer sets could be used to amplify isolated switchgrass ChIP DNA. Primer set 3 was unsuccessful in its amplifica’on of input DNA. Now that we have verified switchgrass DNA amplifica’on using the described primers, we can send samples for DNA sequencing. Developing reference and fungal infected switchgrass epigenomes will help us to reveal differences in gene expression pathways between anthracnose infected and uninfected switchgrass hosts. Understanding these gene expression pathways can provide a basis for developing switchgrass species that are gene’cally resistant to Colletotrichum navitas. Gene’cally resistant switchgrass would further increase switchgrass’s poten’al as a bioenergy crop. Next steps using AP13 and VS16 genotypes: Perform ChIP on fungal infected and uninfected AP13 and VS16 genotypes. Verify the presence of the H3K9me2 and H4K12ac epigene’c modifica’ons within the AP13 and VS16 genotypes. Amplify isolated ChIP DNA of the AP13 and VS16 genotypes and send for sequencing. Figure 3. PCR Analysis: H3, H4, and Input DNA with 11779 primer set Figure 4. PCR Analysis: Input DNA with 10 different primer sets PCR Product Analysis Key: Primer 1 11779 Primer 2 58107 Primer 3 62773 Primer 4 35354 Primer 5 49941 Primer 6 33578 Primer 7 51359 Primer 8 05612 Primer 9 53307 Primer 10 24496 Key: (IP) Input – Switchgrass DNA with no probe H3 – Switchgrass DNA with H3K9me2 probe H4 – Switchgrass DNA with H4K12ac probe (+) Posi’ve control (Wheat DNA with ac’n primer) () – Nega’ve control (Ac’n primer with no DNA) + H31 w/ Primer 1 H32 w/ Primer 1 H41 w/ Primer 1 H42 w/ Primer 1 H43 w/ Primer 1 IP1 w/Primer 1 IP2 w/Primer 1 IP3 w/Primer 1 + IP1 w/Primer 1 IP1 w/Primer 2 IP1 w/Primer 3 IP1 w/Primer 4 IP1 w/Primer 5 IP1 w/Primer 6 IP1 w/Primer 7 IP1 w/Primer 8 IP1 w/Primer 9 IP1 w/Primer 10 Ladder Ladder

Epigene’cand Transcriptome)Analysis)of)the)Switchgrass ...Epigene’cand Transcriptome)Analysis)of)the)Switchgrass)(Panicum(virgatum))–Anthracnose)(Colletotrichum(navitas)Interac’onDeidrheClayton

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Epigene’cand Transcriptome)Analysis)of)the)Switchgrass ...Epigene’cand Transcriptome)Analysis)of)the)Switchgrass)(Panicum(virgatum))–Anthracnose)(Colletotrichum(navitas)Interac’onDeidrheClayton

Epigene'c  and  Transcriptome  Analysis  of  the  Switchgrass  (Panicum  virgatum)  –  Anthracnose  (Colletotrichum  navitas)  Interac'on  

 Deidrhe  Clayton1,4,  Elizabeth  Fiedler2,  Vasudevan  Ayyappan2,  Venu  (Kal)  Kalavacharla2,3  

   1Department  of  Biological  Sciences,  University  of  Southern  California,  Los  Angeles,  CA  90089  

2Molecular  GeneBcs  and  EpiGenomics  Laboratory,  Delaware  State  University,  Dover,  DE  19901  3Center  for  Integrated  Biological  and  Environmental  Research  (CIBER),  Delaware  State  University,  Dover,  DE  19901  

4Northeast  Woody/Warm-­‐season  Biomass  ConsorBum  (NEWBio),  Delaware  State  University,  Dover,  DE  19901    

In  the  U.S.  the  rising  demand  for  sustainable  renewable  energy  has  led  to  the  development  of  a  variety  of  bioenergy  feedstocks.  Currently,  switchgrass  is  being  reviewed  as  an  energy  crop  for  its  poten'al  use  as  a  biofuel.  The  development  of  switchgrass  as  a  leading  bioenergy  feedstock  will  require  the  successful  propaga'on  of  the  crop  in  both  favorable  and  adverse  condi'ons,  including  exposure  to  disease.  Recent  outbreaks  of  anthracnose,  caused  by  Colletotrichum  navitas,  poses  a  threat  to  the  crop's  energy  produc'on  poten'al.  Developing  methods  to  improve  disease  resistance  in  switchgrass  is  impera've  to  increasing  the  crop's  yield  and  overall  poten'al  as  an  energy  producing  crop.  Understanding  switchgrass  genes  involved  in  anthracnose  resistance  may  be  useful  in  the  long-­‐term.  In  this  project  we  intend  to  use  the  epigene'c  markers  H3K9me2  and  H4K12ac  as  tools  in  iden'fying  genes  within  switchgrass  that  render  the  plant  suscep'ble  or  resistant  to  C.navitas.  More  specifically,  we  will  iden'fy  differences  in  epigene'c  modifica'ons  between  infected  and  uninfected  plants  of  the  AP13  and  VS16  switchgrass  genotypes.  Having  mastered  techniques  used  in  the  iden'fica'on  of  these  epigene'c  modifica'ons  within  the  common  bean  genotypes  and  fungal  rust  infected  common  bean  (an  ongoing  project  within  our  lab),  we  hope  to  iden'fy  these  markers  -­‐  and  their  associated  genes  -­‐  within  the  aforemen'oned  genotypes.  Determina'on  of  these  genes  may  serve  as  a  pla[orm  to  develop  anthracnose-­‐resistant  switchgrass  genotypes.  

ABSTRACT  

INTRODUCTION  

OBJECTIVES  

LABORATORY  TECHNIQUES  CONT.  

RESULTS  

DISCUSSION  

CONCLUSION  AND  FUTURE  DIRECTIONS  

REFERENCES      

ACKNOWLEDGMENTS      This  study  was  supported  in  part  by  the  Northeast  Woody/Warm-­‐season  Biomass  Consor'um  (NEWBio),  funded  by  the  Na'onal  Ins'tute  of  Food  and  Agriculture  (NIFA)  and  the  Center  for  Integrated  Biological  and  Environment  Research  (CIBER)  at  DSU.  I  would  also  like  to  personally  thank  the  MGE  Lab  and  each  of  the  staff,  graduate  and  undergraduate  students  that  have  helped  me  throughout  my  research  efforts  this  summer.  

McLaughlin,  S.B.,  and  L.A.  Kszos,  Development  of  switchgrass  (Pancium  virgatum)  as  a  bioenergy  feedstock  in  the  United  States.  Biomass  and  Bioenergy,  2005.  28:  p.  515-­‐535.    Crouch,  J.,  Beirn,  L.A.,  et  al.,  Anthracnose  disease  of  switchgrass  caused  by  the  novel  fungal  species  Colletrtrichum  navitas.  Mycological  Research,  2009.  113:  p.  1411-­‐1421.    Wang,  Z.,  Gerstein,  M.,  and  M.  Snyder,  RNA-­‐Seq:  a  revolu'onary  tool  for  transcriptomics.  Nature  Review  Gene'cs,  2009.  10(1):  p.  57-­‐63.    

 In  this  project  we  intend  to  iden'fy  differences  in  epigene'c  modifica'ons  between  anthracnose  infected  and  uninfected  switchgrass.  The  epigene'c  markers  that  we  are  searching  for  include  the  histone  modifica'ons  H3K9me2  and  H4K12ac.  The  histone  modifica'on  H3K9me2  consists  of  dimethyla'on  of  lysine  9  on  histone  core  H3.  This  modifica'on  is  commonly  found  in  heterochroma'n  and  is  associated  with  repression  of  gene  expression.  The  histone  modifica'on  H4K12ac  consists  of  acetlya'on  of  lysine  12  on  histone  core  H4.  Addi'on  of  an  acetyl  group  to  posi'vely  charged  lysine  neutralizes  electrosta'c  alrac'on  between  the  histone  protein  and  the  DNA  molecule.  This  neutraliza'on  causes  the  DNA  to  unwind  and  enter  into  a  euchroma'n  state  of  which  DNA  is  ac'vely  transcribed  (ac'va'on  of  gene  expression).  Epigene'c  modifica'ons  have  the  ability  to  alter  the  flow  of  gene'c  informa'on  and  by  using  the  histone  modifiers  H3K9me2  and  H4K12ac  as  epigene'c  markers,  we  will  be  able  to  trace  gene  expression  palerns  within  anthracnose  infected  and  uninfected  switchgrass.  Furthermore,  iden'fica'on  of  these  genes  involved  in  the  switchgrass  –  anthracnose  interac'on  may  be  useful  in  the  development  of  anthracnose  resistant  plants.      

LABORATORY  TECHNIQUES    

•  Develop  a  fungal  infected  and  uninfected  catalog  (or  library)  of  epigene'c  modifica'ons  present  within  switchgrass.  

•  Iden'fy  the  epigene'c  markers  H3K9me2  and  H4K12ac  and  their  associated  DNA  sequences  within  anthracnose  infected  and  uninfected  switchgrass.  

Used  to  profile  DNA  binding  proteins  and  their  respec've  DNA  sequences      Dot  blot  prior  to  ChIP:  iden'fica'on  of  proteins  present  •  Step  1:  Lyse  cells  and  fragment  DNA  and  associated  proteins  •  Step  2:  Spot  sample  onto  dot  blot  membrane  •  Step  3:  Assay  dots  with  H3K9me2  and  H4K12ac  an'bodies  •  Step  4:  Confirm  presence  of  H3K9me2  or  H4K12ac    ChIP  •  Step  1:  Lyse  cells  and  fragment  DNA  and  associated  proteins  •  Step  2:  Probe  DNA  and  associated  proteins  with  H3K9me2  and  

H4K12ac  an'bodies  •  Step  3:  Incubate  samples  with  magne'c  beads  and  perform  

several  washes  to  reverse  DNA  and  protein/an'body  cross-­‐link  •  Step  4:  Purify  isolated  DNA  

Chroma'n  Immunoprecipita'on  (ChIP)

Polymerase  Chain  Reac'on  (PCR)

Used  to  amplify  DNA  isolated  from  ChIP  protocol.  •  Step  1:  DNA  

denatura'on  •  Step  2:  Primers  

anneal  with  target  DNA  sequence  

•  Step  3:  Extension      Primer  List:  

Figure  1.  ChIP-­‐seq  protocol  (Google  images)  

Figure  1.  PCR  protocol  (Google  images)  

Name     Descrip'on   Primer  Sequence   Product  Size  (bp)  

AP13CTG11779   Protein  involved  in  Chr  segrega8on  

F-­‐AAGAGTTGAGGAAGCGCCAA  R-­‐ATGGATCCTGCTTATGGCCG  

140  

AP13ISTG58107   Heat  stress  transcrip8on  factor  

F-­‐AGCTCGCTAGCTAGGCTTTG  R-­‐TTCGATTCATCCATGCACGC  

141  

AP13CTG62773   Trans  Ini8  factor  TFIID   F-­‐TTGTGGAGCACTACCTCGGA  R-­‐TACTACCCTGGCCTTGCAGT  

137  

Kan1CTG35354   Biosyn  sec  metabolites   F-­‐GGACGTGTCATCGTCAGACA  R-­‐TTGACCACAGCTCACCACAA  

107  

Kan1SGLT49941   Plant-­‐pathogen  interac8on  

F-­‐GCAATAGGGGTGGCAACAATG  R-­‐GAAAACCGCACAGAAGGCAA  

101  

Kan1CTG33578   Plant  transposon  protein  

F-­‐CACGATTGTGGAAGCGCAAG  R-­‐GTCAACATGGATGGTCGCCT  

107  

Kan1SGLT51359   Mem  transporter  protein  

F-­‐CCATGATCCTGGCCTACGG  R-­‐GTTCATGACGTAGGGGTTGC  

146  

Kan1CTG05612   Puta8ve  methyl  transferase  

F-­‐ACGCTCTTGACCTTCACCAG  R-­‐GGATTCGGTGTTCACCCTGT  

135  

Kan1SGLT53307   Plant  mobile  domain  9transposons)  

F-­‐CGTGCAAAGGACAAACGGAG  R-­‐TGTTTCGACCCAGGTGACAG  

149  

AP13CTG24496   Response  during  disease  

F-­‐CGATGCTCTGCAGTTTCGTG  R-­‐ATGCTGATGCGATCAAAGCAC  

99  

Table  1.  List  of  primers  used  for  PCR  

•  DNA  probed  with  H3K9me2  an'body,  H4K12ac  an'body,  and  with  no  an'body  was  successfully  amplified  using  primer  set  1  (see  figure  3).  •  This  test  was  used  to  show  that  each  of  the  DNA  

types  (used  with  an'body  probe  or  with  no  probe)  could  be  amplified.    

•  Primer  sets  1-­‐2  and  4-­‐10  successfully  amplified  input  DNA  (see  figure  4).  •  This  test  was  used  to  show  that  each  of  the  10  

primer  sets  could  be  used  to  amplify  isolated  switchgrass  ChIP  DNA.  

•  Primer  set  3  was  unsuccessful  in  its  amplifica'on  of  input  DNA.  

•  Now  that  we  have  verified  switchgrass  DNA  amplifica'on  using  the  described  primers,  we  can  send  samples  for  DNA  sequencing.  

•  Developing  reference  and  fungal  infected  switchgrass  epigenomes  will  help  us  to  reveal  differences  in  gene  expression  pathways  between  anthracnose  infected  and  uninfected  switchgrass  hosts.  

•  Understanding  these  gene  expression  pathways  can  provide  a  basis  for  developing  switchgrass  species  that  are  gene'cally  resistant  to  Colletotrichum  navitas.  

•  Gene'cally  resistant  switchgrass  would  further  increase  switchgrass’s  poten'al  as  a  bioenergy  crop.  

 Next  steps  using  AP13  and  VS16  genotypes:  •  Perform  ChIP  on  fungal  infected  and  uninfected  AP13  

and  VS16  genotypes.  •  Verify  the  presence  of  the  H3K9me2  and  H4K12ac  

epigene'c  modifica'ons  within  the  AP13  and  VS16  genotypes.  

•  Amplify  isolated  ChIP  DNA  of  the  AP13  and  VS16  genotypes  and  send  for  sequencing.  

 

Figure  3.  PCR  Analysis:  H3,  H4,  and  Input  DNA  with  11779  primer  set  

Figure  4.  PCR  Analysis:  Input  DNA  with  10  different  primer  sets    

PCR  Product  Analysis  

Key:    Primer  1  -­‐  11779  Primer  2  -­‐  58107  Primer  3  -­‐  62773  Primer  4  -­‐  35354  Primer  5  -­‐  49941  Primer  6  -­‐  33578  Primer  7  -­‐  51359  Primer  8  -­‐  05612  Primer  9  -­‐  53307  Primer  10  -­‐  24496  

Key:    (IP)  Input  –  Switchgrass  DNA  with  no  probe    H3  –    Switchgrass  DNA  with  H3K9me2  probe    H4  –  Switchgrass  DNA  with  H4K12ac  probe    (+)  -­‐    Posi've  control  (Wheat  DNA  with  ac'n  primer)    (-­‐)  –  Nega've  control  (Ac'n  primer  with  no  DNA)  

+

H3-­‐1  w/Primer  1  

H3-­‐2  w/Primer  1  

H4-­‐1  w/Primer  1  

H4-­‐2  w/Primer  1  

H4-­‐3  w/Primer  1  

IP-­‐1  w/Primer  1  

IP-­‐2  w/Primer  1  

IP-­‐3  w/Primer  1  

-­‐  

+

-­‐  IP-­‐1  w/Primer  1  

IP-­‐1  w/Primer  2  

IP-­‐1  w/Primer  3  

IP-­‐1  w/Primer  4  

IP-­‐1  w/Primer  5  

IP-­‐1  w/Primer  6  

IP-­‐1  w/Primer  7  

IP-­‐1  w/Primer  8  

IP-­‐1  w/Primer  9  

IP-­‐1  w/Primer  10  

Ladder  

Ladder