85
EPC Manual PRELIMINARY

EPC Manual PRELIMINARY - Gefran

  • Upload
    others

  • View
    24

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EPC Manual PRELIMINARY - Gefran

EPC Manual

PRELIMINARY

Page 2: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 2/2

Thank you for choosing this SIEI product. We will be glad to receive any possible information which could help us improving this manual. The e-mail address is the following: [email protected]. Keep the manual in a safe place and available to engineering and installation personnel during the product functioning period. SIEI S.p.A has the right to modify products, data and dimensions without notice. The data can only be used for the product description and they can not be understood as legally stated properties. All rights reserved History of Reviews Date Author Description 29/10/2001 GTT Draft 25/2/2002 SSS Review 17/07/2002 GTT Review in the calculation of the cams size 29/01/2003 GTT Review for the XO application 07/04/2003 NFN Review 08/04/2003 GTT Version 1.00 issue 05/05/2003 ??? Traduzione Italiano-Inglese 12/05/2003 GTT Add appendix H: how to configure the digital inputs and outputs 12/05/2003 GTT Version 1.10 issue

Page 3: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 3/3

Table of Contents 1. Introduction ................................................................................................................................................................ 6 2. Management of the floors........................................................................................................................................... 6

2.1. Arrangement of the cams.................................................................................................................................... 6 2.1.1. Slowing down cams.................................................................................................................................... 8 2.1.2. Qualification cams ...................................................................................................................................... 8 2.1.3. Floor counting cams ................................................................................................................................... 8 2.1.4. Arrangement of the floor counting cams .................................................................................................... 9 2.1.5. Dimensioning the floor counting cams ..................................................................................................... 11 2.1.6. Checking the arrangement of the floor counting cams ............................................................................. 11 2.1.7. Using the floor counting cams .................................................................................................................. 12 2.1.8. Checking the floor count .......................................................................................................................... 12

3. Commands and functions ......................................................................................................................................... 12 3.1. Mission ............................................................................................................................................................. 13 3.2. JogFwd command............................................................................................................................................. 14 3.3. JogRev command.............................................................................................................................................. 14 3.4. Zero cycle command......................................................................................................................................... 14

3.4.1. Minimum elevator travel limit .................................................................................................................. 15 3.5. Self Study command......................................................................................................................................... 16 3.6. AdjFloorPos and AdjFloorNeg parameter........................................................................................................ 16 3.7. FloorCall command .......................................................................................................................................... 17 3.8. Reverse command............................................................................................................................................. 17

3.8.1. Reverse command with Maintenance input = enable ............................................................................... 17 3.8.2. Reverse command before the 0 cycle not from the top floor.................................................................... 17 3.8.3. Reverse command before the 0 cycle from the top floor .......................................................................... 18 3.8.4. Reverse command after the 0 cycle .......................................................................................................... 18

3.9. Forward command ............................................................................................................................................ 18 3.9.1. Forward command with Maintenance input = enable............................................................................... 19 3.9.2. Forward command before the 0 cycle not from floor 0 ............................................................................ 19 3.9.3. Forward command before the 0 cycle from floor 0 .................................................................................. 19 3.9.4. Forward command after the 0 cycle.......................................................................................................... 19

3.10. Stop command .............................................................................................................................................. 20 3.11. Battery Run Mode function .......................................................................................................................... 20

3.11.1. Introduction .............................................................................................................................................. 20 3.11.2. Operation mode ........................................................................................................................................ 20

3.12. Realignment function.................................................................................................................................... 20 3.12.1. Dynamic realignment................................................................................................................................ 21 3.12.2. Static realignment ..................................................................................................................................... 21

4. Configurator ............................................................................................................................................................. 22 4.1. Console ............................................................................................................................................................. 23

4.1.1. Cage position ............................................................................................................................................ 23 4.1.2. Control status ............................................................................................................................................ 24 4.1.3. Mission status ........................................................................................................................................... 24 4.1.4. Status Buttons ........................................................................................................................................... 24

4.2. Application version........................................................................................................................................... 26 4.3. Index of the configuration pages ...................................................................................................................... 27

4.3.1. Elevator configuration .............................................................................................................................. 27 4.3.2. I/O configuration ...................................................................................................................................... 28 4.3.3. Control console......................................................................................................................................... 28 4.3.4. Status Buttons ........................................................................................................................................... 28

4.4. Management of the parameters from the Drive ................................................................................................ 29 4.4.1. Configuration............................................................................................................................................ 29 4.4.2. First Task .................................................................................................................................................. 30 4.4.3. Polling task ............................................................................................................................................... 30 4.4.4. Status buttons............................................................................................................................................ 30

4.5. Axis Configuration ........................................................................................................................................... 31 4.5.1. Mechanical constants................................................................................................................................ 31

Page 4: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 4/4

4.5.2. Speed and Acceleration limits .................................................................................................................. 32 4.5.3. Travel limits and initialization .................................................................................................................. 32 4.5.4. Zero search................................................................................................................................................ 32 4.5.5. Gains and compensations.......................................................................................................................... 32 4.5.6. Speed profile............................................................................................................................................. 33 4.5.7. Command buttons ..................................................................................................................................... 33 4.5.8. Status buttons............................................................................................................................................ 34

4.6. Compensations on the floor .............................................................................................................................. 35 4.6.1. Configuration of the compensation on the floor ....................................................................................... 35 4.6.2. Landing zone ............................................................................................................................................ 36 4.6.3. Next Stop function configuration ............................................................................................................. 36 4.6.4. Jerk Gain configuration ............................................................................................................................ 36 4.6.5. Floor counting........................................................................................................................................... 36 4.6.6. Mission heights ......................................................................................................................................... 37 4.6.7. Command buttons ..................................................................................................................................... 37 4.6.8. Status buttons............................................................................................................................................ 37

4.7. Over Speed protection ...................................................................................................................................... 38 4.7.1. Cage position ............................................................................................................................................ 38 4.7.2. Control status ............................................................................................................................................ 39 4.7.3. Over speed protection configuration......................................................................................................... 39 4.7.4. Mission status ........................................................................................................................................... 39 4.7.5. Command buttons ..................................................................................................................................... 40 4.7.6. Status buttons............................................................................................................................................ 41

4.8. Self Study ......................................................................................................................................................... 42 4.8.1. Status of the cam sensors .......................................................................................................................... 42 4.8.2. Cage position ............................................................................................................................................ 42 4.8.3. Self study status ........................................................................................................................................ 43 4.8.4. Position of the floor cams from 0 to 21 .................................................................................................... 44 4.8.5. Self study page 2....................................................................................................................................... 45 4.8.6. Command buttons ..................................................................................................................................... 45 4.8.7. Status buttons............................................................................................................................................ 45

4.9. Self Study page 2 .............................................................................................................................................. 46 4.9.1. Status of the cam sensors .......................................................................................................................... 46 4.9.2. Cage position ............................................................................................................................................ 46 4.9.3. Self study status ........................................................................................................................................ 47 4.9.4. Position of the floor cams from 22 to 31 .................................................................................................. 47 4.9.5. Position of the extremity cams.................................................................................................................. 48 4.9.6. Command buttons ..................................................................................................................................... 48 4.9.7. Status buttons............................................................................................................................................ 48

4.10. Configuration of digital inputs 1................................................................................................................... 49 4.10.1. Status buttons............................................................................................................................................ 50

4.11. Configuration of digital inputs 2................................................................................................................... 51 4.11.1. Status buttons............................................................................................................................................ 51

4.12. Assignment of the output signals.................................................................................................................. 52 4.12.1. Status buttons............................................................................................................................................ 52

4.13. Configuration of the analog inputs ............................................................................................................... 53 4.13.1. Status buttons............................................................................................................................................ 53

4.14. Incremental encoder configuration ............................................................................................................... 54 4.14.1. Configuration............................................................................................................................................ 54 4.14.2. Status buttons............................................................................................................................................ 54

4.15. Absolute encoder configuration.................................................................................................................... 56 4.15.1. Management of the card intended to read the absolute encoder ............................................................... 56 4.15.2. Status and configuration of the Abs Enc card........................................................................................... 56 4.15.3. Absolute encoder 1 ................................................................................................................................... 57 4.15.4. Absolute encoder 2 ................................................................................................................................... 57 4.15.5. Status buttons............................................................................................................................................ 57

4.16. Command page ............................................................................................................................................. 58 4.16.1. Cage position ............................................................................................................................................ 58 4.16.2. Control status ............................................................................................................................................ 59

Page 5: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 5/5

4.16.3. Mission status ........................................................................................................................................... 59 4.16.4. Command buttons ..................................................................................................................................... 59 4.16.5. Status buttons............................................................................................................................................ 60

5. Appendix A: floor count........................................................................................................................................... 61 6. Appendix B: floor cam ............................................................................................................................................. 65

6.1. Introduction ...................................................................................................................................................... 65 6.2. Sensors.............................................................................................................................................................. 65 6.3. Cam................................................................................................................................................................... 65 6.4. Position 1 .......................................................................................................................................................... 65 6.5. Position 2 .......................................................................................................................................................... 66 6.6. Position 3 .......................................................................................................................................................... 66 6.7. Position 4 .......................................................................................................................................................... 67 6.8. Position 5 .......................................................................................................................................................... 67 6.9. Position 6 .......................................................................................................................................................... 68

7. Appendix C: connection example............................................................................................................................. 69 7.1. Example of a connection table:......................................................................................................................... 69

8. Appendix D: Slink 4 serial command....................................................................................................................... 71 Introduction .................................................................................................................................................................. 72 8.1. General Information.......................................................................................................................................... 72 8.2. REGISTER command....................................................................................................................................... 72 8.3. Number of registers in the elevator application................................................................................................ 72 8.4. Definition of command registers ...................................................................................................................... 73

8.4.1. Command register 0: positioner commands 1........................................................................................... 73 8.4.2. Command register 1: positioner commands 2........................................................................................... 73 8.4.3. Command register 2: positioner commands 3........................................................................................... 73 8.4.4. Command register 3: Floor selection........................................................................................................ 74

8.5. Definition of status registers ............................................................................................................................. 74 8.5.1. Status register 0: positioner status 1 ......................................................................................................... 74 8.5.2. Status register 1: positioner status 2 ......................................................................................................... 74 8.5.3. Status register 2: actual floor .................................................................................................................... 75 8.5.4. Status register 3: target floor..................................................................................................................... 75

8.6. Master message format ..................................................................................................................................... 76 8.7. Slave message format ....................................................................................................................................... 76

9. Appendix E: coding of the alarms ............................................................................................................................ 77 10. Appendix F: coding of the Zero Found reset causes ............................................................................................ 78 11. Appendix G: command error codes ...................................................................................................................... 79 12. H appendix: configure the digital inputs and outputs ........................................................................................... 80

12.1. Introduction .................................................................................................................................................. 80 12.2. Fixed allocated inputs ................................................................................................................................... 80 12.3. Digital inputs which can be relocated........................................................................................................... 80 12.4. Control inputs ............................................................................................................................................... 80 12.5. Composition of the control word .................................................................................................................. 81

12.5.1. W0 Comp Out composition ...................................................................................................................... 81 12.6. Digital outputs .............................................................................................................................................. 82

12.6.1. Composition of DGFC-S Drv W 1 mon ................................................................................................... 82 12.7. Example: how to configure W0 Comp Out again......................................................................................... 82

12.7.1. W0 Comp Out composition ...................................................................................................................... 83 12.7.2. Configuring W1 decomp .......................................................................................................................... 83 12.7.3. Configuring W0 comp again .................................................................................................................... 83

12.8. Example for the transmission of DGFC-S Drv W 1 mon............................................................................. 84

Page 6: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 6/6

1. Introduction This manual is intended to include the information about the EPC application controlling an elevator cage.

2. Management of the floors The control will recognise the position of the floors by means of a series of cams arranged along the travel of the elevator cage. The control will detect the position of these cams and therefore establish the height of every single floor and the number of existing floors through an initialization sequence, called Self Study. The distance of the floors may change at any floor except for some restrictions.

2.1. Arrangement of the cams The cams meant for the management of the floors shall be arranged as it is shown by the figure:

Page 7: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 7/7

UpperLimit There shall be one single landing zone cam inside this area.

Maximum landing zone

Maximum elevator travel limit

LowerLimit There shall be one single landing zone cam inside this area.

Minimum landing zone

Minimum elevator travel limit

Slowing down zone

Slowing down zone

SlowUpperLimit.

SlowLowerLimit

Page 8: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 8/8

Types of cams Three types of cams are used in the plant.

2.1.1. Slowing down cams • There are two types of slowing down cams:

• SlowLowerLimit read by means of the i_slowLowerLimit input; • SlowUpperLimit read by means of the i_slowUpperLimit input.

• These cams fulfil the following functions:

• SlowLowerLimit: if engaged, it can cause the elevator to slow down when it moves to the lowest floor at a speed that is not correct.

• SlowUpperLimit: if engaged, it can cause the elevator to slow down when it moves to the highest floor at a speed that is not correct.

The length of the slowing down cams shall be calculated in such a way that the cage moving at the maximum speed has got enough time to stop before reaching the extreme elevator travel limit starting from when a cam is engaged. There may be several landing zones in the area covered by the slowing down cams. You can use the qualification cams described by the paragraph here below as slowing down cams in some plants. In this case there shall be one single landing zone in the area covered by the slowing down cams.

2.1.2. Qualification cams • There are two types of qualification cams:

• LowerLimit read by means of the i_lowerLimit input; • UpperLimit read by means of the i_upperLimit input.

These cams are used to fulfil the following functions:

• Execution of the 0 cycle together with cam A and B. • Self Study sequence intended to store the position of the floors available in the plant.

The qualification cams are used to qualify the extreme landing zones and therefore to establish the top and bottom floor. As a consequence, there shall be one single landing zone in the area covered by the qualification cam.

2.1.3. Floor counting cams Every single floor available in the plant will correspond to a couple of floor counting cams. • These cams are called cam A and cam B and they are read by means of the i_camA and i_camB input. • The Landing Zone is the area determined by the OR of cam A with cam B. • There is a couple of cams for every single floor available in the plant. • These cams are used to fulfil the following functions:

• To count the floors. • To realign the position of the floor cage. • Zero cycle on the lowest floor, together with the LowerLimit qualification cam. • Zero cycle on the highest floor, together with the UpperLimit qualification cam. • Self Study sequence intended to store the position of the floors available in the plant.

Page 9: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 9/9

2.1.4. Arrangement of the floor counting cams The cams shall be arranged as follows with respect to the elevator level:

LC Cam A and cam B length. d1 = d2 Distance between the cam A lower edge and the floor line.

Distance between the cam B upper edge and the floor line. z1, z2, z3 >= LC / 2 Acquisition zone size. This value shall be higher than or equal to the MinimumCamLength / 2. Landing Zone = (LC / 2) * 3 Landing Zone size

LC

d1

d2

z1

z2

z2

Cam A

Cam B

Floor line

Landing Zone

Positive direction

Sensor B Sensor A

Page 10: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 10/10

A possible alternative to the arrangement of cams and sensors is shown by the following figure. This second manner is functionally perfectly corresponding to the one shown by the previous page, but its installation and maintenance are much easier. For further information refer to appendix B.

Landing zone cam

LC => MinimumCamLength Cam A and cam B length. d1 = d2 Distance between the cam A upper edge and the floor line.

Distance between the cam B lower edge and the floor line. z1, z2, z3 >= LC / 2 Acquisition zone size. This value shall be higher than or equal to the MinimumCamLength / 2. Landing Zone = (LC / 2) * 3 Landing Zone size

Floor line

LC

d1

d2

z1

z2

z2

Landing Zone

Positive direction

Sensor A

Sensor B

z1

Page 11: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 11/11

2.1.5. Dimensioning the floor counting cams The minimum length of a Landing Zone cam is set by the following formula: MinimumCamLength = MaximumElevatorSpeed * SamplingTime * nReadings * 2; where: MinimumCamLength Expressed in millimetres (mm) MaximumElevatorSpeed Maximum elevator speed expressed in millimetres per second (mm/sec) SamplingTime Sampling time 0.008 seconds. NReadings Number of cam samplings (readings) that shall be guaranteed when the elevator is

going through the cam at the Self Study speed. This value shall be higher than 2; constant 2 There are two zones along a cam length. The value shall be multiplied by 2 in order

to enable the control to discriminate the two zones (see the previous figure). The cam length shall therefore be higher than or equal to the MinimumCamLength. It shall be kept in mind that the landing zone size shall be reasonably “as large as possible” in order to adjust the cage position when it reaches the floor. For example, the cam A and cam B size is equal to 170 mm. in an application where the elevator is travelling at 1,750 mm/sec. The cam size is equal to 250 mm. in a single cam mode.

2.1.6. Checking the arrangement of the floor counting cams The cams shall be arranged in the same order on all the floors:

Correct cams sequence Incorrect cams sequence

Cams arranged incorrectly

Page 12: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 12/12

2.1.7. Using the floor counting cams The floor counting cams are arranged in such a way that a hypothetical incremental encoder is “applied” to the elevator tower. The cams correspond to the disk notches in this simulation. The two sensors arranged on the cage represent the photocells. The system will enable the user to detect the cage position in an absolute way since it is not affected by any count error caused by the cables either slipping or extending on the pulley. This encoder shall be initialized just as any other incremental encoder. This operation is automatically executed when the incremental motor encoder is initialized by executing the zero cycle sequence.

2.1.8. Checking the floor count Move the cage in the travel shaft to check the development of the floor count. If the floor count should occur contrary to what you wish, reverse the cam A and cam B inputs on the drive terminal board. Act as if it were a normal incremental encoder.

3. Commands and functions The commands available are listed here below: • JogFwd • JogRev • Cycle0 • SelfStudy • FloorCall • Forward • Reverse • Stop The special functions are listed here below: • Battery Run Mode; • Current Feed Forward.

Page 13: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 13/13

3.1. Mission A cage movement from a point to the other one is called mission. The speed profile of a mission is as follows:

The speed profile is determined by the following parameters:

• IniAccJerk Jerk value controlled along the first acceleration stretch, [mm/sec3] • Acceleration controlled acceleration value, [mm/sec2] • EndAccJerk Jerk value controlled at the end of the acceleration stretch, [mm/sec3] • Speed controlled speed value [mm/sec] • IniDecJerk Jerk value controlled along the first deceleration stretch, [mm/sec3]

Page 14: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 14/14

• Deceleration controlled deceleration value, [mm/sec2] • EndDecJerk Jerk value controlled at the end of the deceleration stretch, [mm/sec3]

3.2. JogFwd command The JogFwd command moves the cage in the positive direction. The operation modes of this command are listed here below: • On the climbing leading edge of the JogFwd command, the elevator starts moving in the positive direction that is

generally corresponding to a movement upwards. The following events may occur during handling: • The JogFwd command is removed: the elevator stops at any point after having completed the set deceleration

ramp. ATTENTION!!! The JogFwd command has got no handling limit as per specification. As a consequence, it is the user’s responsibility to take care of stopping the elevator on time.

3.3. JogRev command The JogRev command moves the cage in the negative direction. The operation modes of this command are listed here below: • On the climbing leading edge of the JogRev command, the elevator starts moving in the negative direction that is

generally corresponding to a movement downwards. The following events may occur during handling: • The JogRev command is removed: the elevator stops at any point after having completed the set deceleration

ramp. ATTENTION!!! The JogRev command has got no handling limit as per specification. As a consequence, it is the user’s responsibility to take care of stopping the elevator on time.

3.4. Zero cycle command The 0 cycle command is intended to initialize the encoder elevator and floor count. After having provided for the initialization, it will execute a positioning on floor 0 if the floor heights are operative. The 0 cycle is a sequence intended to: • Initialize the incremental motor encoder. • Initialize the floor count made by the realignment cams.

Home Zone There shall be one single landing zone cam inside this area.

Zero cam This cam is made up by the OR of cam A and cam B.

Elevator height sense of growth.

Minimum elevator travel limit. Never start the zero cycle sequence when the cage has exceeded this limit.

Page 15: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 15/15

The following requirements shall be fulfilled to enable the zero cycle sequence to operate correctly: 1. Set the ZeroSpd parameter representing the zero search speed. Select an adequately low value. 2. There shall be one single floor cam, the so-called zero cam, in the area limited by the Lower Limit cam. The

zero cam is made up by the OR of the two floor cams. 3. The zero cycle sequence shall never be started when the cage position is below the slowing down cam. The zero cycle sequence occurs as follows: 1. If the zero cam is not engaged, it will act as follows:

• Starts moving the cage in the negative direction. • As soon as the zero cam is engaged by the cage, the incremental encoder height and floor count are initialized. • Stops the cage and sets the ZeroFound variable = 1, then completes the zero cycle sequence.

2. If the zero cam is engaged, it will act as follows:

• Starts moving the cage in the positive direction. • As soon as the zero cam is released by the cage, the movement stops. • Starts moving the cage in the negative direction. • As soon as the zero cam is engaged by the cage, the incremental encoder height and floor count are initialized. • Stops the cage and sets the ZeroFound variable = 1, then completes the zero cycle sequence.

The zero sequence shall be executed at a low speed for several reasons. If the sequence is started when the cage is very far from the zero cam, the cycle execution time may be very long.

3.4.1. Minimum elevator travel limit The minimum elevator travel limit corresponds to the minimum zero cam limit. The elevator shall never exceed this limit. Some departures are only admitted for special maintenance requirements. The control will make no check and take no measure as a result of these departures if this limit is exceeded. As a consequence, any check and alarm measure will be referred to the external PLC. The PLC shall avoid activating the zero cycle sequence if the cage is below the zero cam. The non-observance of this instruction will force the cage to an extra travel into the pit and cause it to hit the tower floor.

Page 16: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 16/16

3.5. Self Study command The Self Study command is intended to detect the height of the cams signalling the position of the floors in the elevator travel shaft. The control will automatically detect these heights by executing a series of handling operations. This command should be only executed when the control is installed or when the floor identifying cams are moved. ATTENTION: before executing the self study, make sure that the cams, above all the slowing down cams, are properly arranged. Moreover, make sure that the slowing down cam is adequately sized to stop the control. It shall be kept in mind that the starts and stops of these sequences are prescribed by the positions of the cams. If the cams are not properly arranged, this may cause the cage to collide. The Self Study sequence is as follows: 1. The Self Study sequence becomes active on the climbing leading edge of the Self Study command. 2. The ZeroFound variable is set to FALSE. The control shall therefore execute a zero cycle sequence. 3. The control moves in the negative direction at the ZeroSpd speed until the Lower Limit cam is engaged. 4. After having engaged the lower limit cam, it goes on at the ZeroFound speed until cam B of floor zero is engaged.

The control will initialize the encoder height and the floor counter as well as set them to 0 on the upper edge of cam B.

5. It goes on in the negative direction at the same speed until cam A of floor 0 is engaged. After having engaged cam A, it will stop.

6. It sets the SelfStudyOK variable = FALSE. 7. It resets all the positions of the cams: A Low, B Low, A High, B High. It resets all ad just parameters: Adj Up and

Adj Dw. 8. It moves in the positive direction at the Self Study speed (JogSpeed 4). 9. During handling it detects the cage height on the edges of all the cams it may encounter, including the slowing

down and qualification cams. 10. When the upper slowing down cam, i.e. the Slow Upper Limit cam, is engaged, it will reduce the speed to the

value specified by ZeroSpd. 11. It goes on in the positive direction until cam B of the top floor is engaged. After having engaged it, it will stop. 12. It stores any height it may have detected. 13. It calculates the position of the lower edge of cam A and B of floor 0. Since these edges can not be reached by the

cage, the control assumes that the size of cam A of floor zero is the same as the size of cam A of floor one. As a consequence, it calculates the lower edge of cam A as follows:

A Low (floor 0) = A High (floor 0) – ( A High (floor 1) - A Low (floor 1)) A similar procedure is used to calculate the lower edge of cam B. 14. It calculates the position of the upper edge of cam A and B of the top floor. Since these edges can not be reached

by the cage, the control assumes that the size of cam A of the top floor is the same as the size of cam A of the second top floor. As a consequence, it calculates the upper edge of cam A as follows:

A High (top floor) = A Low (top floor) + ( A High (second top floor) - A Low (second top floor)) A similar procedure is used to calculate the upper edge of cam B. 15. It positions on the top floor. 16. It sets the SelfStudyOK variable = TRUE.

3.6. AdjFloorPos and AdjFloorNeg parameter The AdjFloorPos and AdjFloorNeg parameters enable the user to adjust the floor position without having to move the cams provided that the adjustment is reduced to a minimum. You can manually set up the value of these parameters after having automatically reset them after a self Study operation.

Page 17: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 17/17

3.7. FloorCall command This command enables the user to require the cage to position on a specific floor. This command will operate as follows: 1. The elevator has come to a halt on floor 0. 2. The cage is required to position on floor 8 on the climbing leading edge of the FloorCall command. 3. The elevator starts to position on floor 8. The following events may occur during handling: • The FloorCall command is removed: nothing occurs. • The FloorCall command is given again by setting a new floor. The following events may occur in this case:

• The floor newly called can not be reached since it has already been passed or because the elevator might not stop at the height of the new floor. The elevator will therefore go on to reach the original floor.

• The floor newly called can be reached. The elevator will therefore go on to reach the new floor. This command can be ONLY executed if the Self Study sequence has been successfully completed. The SelfStudyOk parameter is equal to TRUE.

3.8. Reverse command The Reverse command has got 4 operation modes: Case Cause Action Description 1 Maintenance input closed (enable) JogRev To execute the jog reverse command.

See paragraph “Reverse command with Maintenance input = enable”

2 Maintenance input open (disable) Zero cycle not executed (ZeroFound = FALSE) Cage stopping NOT on the top floor

See paragraph “Reverse command before the 0 cycle not from the top floor”

3 Maintenance input open (disable) Zero cycle not executed (ZeroFound = FALSE) Cage stopping on the top floor

See paragraph “Reverse command before the 0 cycle from the top floor”

4 Maintenance input open (disable) Zero cycle executed (ZeroFound = TRUE)

See paragraph “Reverse command after the 0 cycle”

3.8.1. Reverse command with Maintenance input = enable If the Maintenance input is closed (enable) when it is controlled by the Reverse command, the control acts as if the JogRev command had been set.

3.8.2. Reverse command before the 0 cycle not from the top floor If it is controlled by the Reverse command when the incremental encoder and the floor count have not been initialized yet as it is signalled by the ZeroFound variable = FALSE and the cage has not come to a halt on the top floor, the control will execute the following sequences: 1. Moves in the negative direction at the 0 Cycle speed (JogSpeed 2). 2. When it engages the LowerZone cam, it calculates the height where it will start reducing the speed. 3. When it reaches the height where it will start reducing the speed, it will reduce the speed to the value set in

ZeroSpd. 4. It continues at the ZeroSpeed speed until the landing zone of floor zero is engaged. The landing zone upper front of

floor zero will correspond to 0. 5. When it comes to a halt, it will initialize the incremental encoder and floor counter. 6. It positions on floor 0. This command can be ONLY executed if the Self Study sequence has been successfully completed. The SelfStudyOk parameter is equal to TRUE.

Page 18: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 18/18

3.8.3. Reverse command before the 0 cycle from the top floor If it is controlled by the Reverse command when the incremental encoder and the floor count have not been initialized yet as it is signalled by the ZeroFound variable = FALSE and the cage has come to a halt on the top floor, the control will execute the following sequences: 1. It moves in the negative direction at the ZeroSpd speed. 2. After having disengaged the top floor landing zone, it will initialize the incremental encoder and floor counter. 3. It restarts at the Floor Call speed (JogSpeed 1) to reach the target floor. This command can be ONLY executed if the Self Study sequence has been successfully completed. The SelfStudyOk parameter is equal to TRUE.

3.8.4. Reverse command after the 0 cycle The operation of the Reverse command after the 0 cycle execution as it is signalled by the ZeroFound output = TRUE is as follows: • On the climbing leading edge of the command, the elevator starts moving to reach floor 0. The following events

may occur during handling: • No event occurs: the elevator reaches floor 0 by executing the usual deceleration ramp that has been set up. • The Reverse command is removed: the elevator stops in any position after having executed the usual

deceleration ramp that has been set up. • The Stop command becomes TRUE, thus causing the elevator to stop on the first possible floor.

If the Stop command is TRUE on the climbing leading edge of the Reverse command, the elevator will move as far as the next floor. This command can be ONLY executed if the Self Study sequence has been successfully completed. The SelfStudyOk parameter is equal to TRUE.

3.9. Forward command The Forward command has got 4 operation modes: Case Cause Action Description 1 Maintenance input closed (enable) JogFwd To execute the jog forward command.

See paragraph “Forward command with Maintenance input = enable”

2 Maintenance input open (disable) Zero cycle not executed (ZeroFound = FALSE) Cage stopping NOT on the floor

See paragraph “Forward command before the 0 cycle not from the top floor”

3 Maintenance input open (disable) Zero cycle not executed (ZeroFound = FALSE) Cage stopping on top floor 0

See paragraph “Forward command before the 0 cycle from floor 0”

4 Maintenance input open (disable) Zero cycle executed (ZeroFound = TRUE)

See paragraph “Forward command after the 0 cycle”

Page 19: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 19/19

3.9.1. Forward command with Maintenance input = enable If the Maintenance input is closed (enable) when it is controlled by the Forward command, the control acts as if the JogFwd command had been set.

3.9.2. Forward command before the 0 cycle not from floor 0 If it is controlled by the Forward command when the incremental encoder and the floor count have not been initialized yet as it is signalled by the ZeroFound variable = FALSE and the cage has not come to a halt on floor 0, the control will execute the following sequences: 1. Moves in the positive direction at the 0 Cycle speed (JogSpeed 2). 2. When it engages the UpperZone cam, it calculates the height where it will start reducing the speed. 3. When it reaches the height where it will start reducing the speed, it will reduce the speed to the value set in

ZeroSpd. 4. It continues at the ZeroSpeed speed until the top floor landing zone is engaged. When it comes to a halt, it will

initialize the incremental encoder and floor counter. 5. It positions on the top floor. This command can be ONLY executed if the Self Study sequence has been successfully completed. The SelfStudyOk parameter is equal to TRUE.

3.9.3. Forward command before the 0 cycle from floor 0 If it is controlled by the Forward command when the incremental encoder and the floor count have not been initialized yet as it is signalled by the ZeroFound variable = FALSE and the cage has come to a halt on floor 0, the control will execute the following sequences: 1. It moves in the negative direction at the ZeroSpd speed. 2. After having disengaged the landing zone of floor 0, it will initialize the incremental encoder and floor counter. 3. It restarts at the Floor Call speed (JogSpeed 1) to reach the target floor. This command can be ONLY executed if the Self Study sequence has been successfully completed. The SelfStudyOk parameter is equal to TRUE.

3.9.4. Forward command after the 0 cycle The operation of the Forward command after the 0 cycle execution as it is signalled by the ZeroFound output = TRUE is as follows: • On the climbing leading edge of the command, the elevator starts moving to reach the top floor. The following

events may occur during handling: • No event occurs: the elevator reaches the top floor by executing the usual deceleration ramp that has been set

up. • The Forward command is removed: the elevator stops in any position after having executed the usual

deceleration ramp that has been set up. • The Stop command becomes TRUE, thus causing the elevator to stop on the first possible floor.

If the Stop command is TRUE on the climbing leading edge of the Forward command, the elevator will move as far as the next floor. This command can be ONLY executed if the Self Study sequence has been successfully completed. The SelfStudyOk parameter is equal to TRUE.

Page 20: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 20/20

3.10. Stop command The Stop command is active after the zero cycle (ZeroFound = TRUE). It will only interact with the Forward and Reverse commands. For further information read the paragraphs about the Forward and Reverse commands.

3.11. Battery Run Mode function

3.11.1.Introduction The "Battery Run Mode" function is used to manage the movement of the elevator when its operation is supplied by emergency power (power drop).

3.11.2.Operation mode The Battery Run operation mode is enabled in case of a power drop when the battery emergency power module is available. It is intended to enable the cage to reach the nearest floor so as to allow the passengers to get out of the cage and to avoid the traditional manoeuvre by hand. Since the battery power supply capacity is limited, it is important to reduce the energy absorption to a minimum during the movement. An automatic procedure is executed for this purpose at the time of the enable. It is intended to determine and signal which is the most economical sense of direction. The operator will execute the following movement by using the jog commands. The operation mode is detailed as follows: 1. In case of a power drop, the brake closes and the cage stops. The emergency logic will switch the drive power

supply onto the emergency module. When the drive is on again, raise the BatteryRun digital input to enable the Battery Run mode.

2. The drive will automatically execute the sequence here below: • It controls JogFwd at the speed set by the BM_TestSpd [d/s] parameter for the time set by the

DirectionDetTime [ms] parameter. It will therefore measure the torque required to move in the positive direction (cage going up);

• After having completed the movement before, it controls JogRev at the speed set by the BM_TestSpd [d/s] parameter for the time set by the DirectionDetTime [ms] parameter. It will therefore measure the torque required to move in the negative direction (cage going down);

• The most economical direction is established on the basis of the two measured torques. The weight unbalance between the cage and the counterweight is proportional to the sum of the two measured torques. For example, if the sum of the two torques is positive, it means that the unbalance is also positive, i.e. that the total cage weight is exceeding the counterweight. In this case, the most favourable direction is the negative one with the cage going down.

• The most favourable direction is indicated through the two batteryFwd and batteryRev outputs on the basis of the point above:

batteryFwd = FALSE, batteryRev = TRUE Recommended negative direction; batteryFwd = TRUE, batteryRev = FALSE Recommended positive direction;

• All the commands are inhibited except for the jog. 3. Now, the operator can move the cage in the jog mode so as to reach the next floor. The most unfavourable

direction is not inhibited. It is at the operator’s discretion to choose whether to follow the indicated direction or not. If you move in the most expensive direction, you can not be sure that you will reach the floor.

4. Now, the Battery Run mode can be disabled by lowering the batteryRun input.

3.12. Realignment function The elevator cage is not mechanically integral with the motor pulley. The cage ropes are therefore likely to slide on the motor pulley for various mechanical reasons. This may cause the cage position to change compared to what has been calculated by the control through the encoder on the monitor, thus generating some misalignments. These misalignments may cause the cage to position incorrectly compared to the floor. The control is equipped with the following realignment functions in order to find a remedy for these inconveniences: • Static realignment. • Dynamic realignment. Both functions are enabled by a parameter allowing the user to enable them independently in order to make installation easier. The functions shall be enabled before having executed the Self Study.

Page 21: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 21/21

3.12.1.Dynamic realignment This function compares the actual motor height with the height of the landing zone it will encounter during the execution of a mission on the floor. If it should detect a deviation, it will correct the target height so as to position correctly on the target floor.

3.12.2.Static realignment The static realignment function behaves just as the dynamic realignment function. However, this function is activated when the landing zone cam of the target floor is engaged by the cage. In this case, you can change the deceleration jerk values in order to position correctly on the floor. If the cage misalignment should be so great that you can not stop on the floor even if you increase the slowing down jerk values, the control will exceed the floor height and stop at the first possible point. If this point should be beyond the landing zone area, thus preventing the user from opening the door, an alarm signal will be triggered to start the realignment procedure (rephasing).

Page 22: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 22/22

4. Configurator The configurator is a tool operating in the Windows environment and enabling the user to configure and examine the EPC control functions.

Page 23: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 23/23

4.1. Console

4.1.1. Cage position Field Measurement

unit Ipa Description

Act. Floor (enc) # 1218 Number of the floor where the cage is positioned or where it is going through. It is calculated by the position encoder (see appendix A)

Act. Floor (land) # 6884 Number of the floor where the cage is positioned or where it is going through. It is calculated by the floor cams. (see appendix A)

Ideal position mm 6856 Ideal cage height Actual position mm 6854 Actual cage height Error position mm 6858 Difference between the ideal and actual cage height Land A BOOL 6880 Status of the sensor reading the floor A cam Land B BOOL 6881 Status of the sensor reading the floor B cam Land cnt. # 6883 Counter of the floor cams (see appendix A) Lower limit BOOL 6873 Status of the sensor reading the Lower Limit cam Slow Lower Limit BOOL 6877 Status of the sensor reading the Slow Lower Limit cam Slow Upper Limit BOOL 6878 Status of the sensor reading the Slow Upper Limit cam Upper Limit BOOL 6874 Status of the sensor reading the Upper Limit cam

Page 24: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 24/24

4.1.2. Control status Field Measurement

unit Ipa Description

DriveReady BOOL 1200 Drive Status Start BOOL 1202 Drive Start Status notFastStop BOOL 1201 FAST STOP input status posStatus 1217 EPC control status ZeroFound BOOL 1226 It informs whether the encoder and floor count has been initialized or

not. ZeroFoundCause 5023 It informs about what caused the ZeroFound variable to reset last. freeAxis BOOL 1225 This variable is ENABLE when the cage is executing no command. CommandIn 1262 Recognised input command NoBkake 1273 Internal brake release command StartOut 1312 Internal drive enable

4.1.3. Mission status Field Measurement

unit Ipa Description

Command 1220 Input command CmdResult 1219 Result of the input command analysis before its execution SeqResult 1234 Command execution result TargetFloor # 6886 Target floor Command Position

mm 6884 Target floor height

BatteryRun BOOL 1224 SelfStudyRun BOOL 1245 It signals when the Self Study function is active ZeroSearchRun BOOL 1247 It signals when the Zero Search function is active Act. Sel. Speed mm/sec 1239 It signals the selected speed value SpeedRef Rpm 1208 Drive controlled speed reference value FeedRate 0.01 – 1 6702 Internal speed reducer value (1 = no reduction)

4.1.4. Status Buttons Button Description Configuration It activates the configuration page About … It opens the page with the information about the application version Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

Page 25: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 25/25

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 26: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 26/26

4.2. Application version

Field Ipa Description Diagram version WPD 2 Win+Drive diagram and application version Firmware version 1 Basic firmware version of the APC card Library Type 5002 Identifier of the diagram associated library Library Version 5003 Version of the diagram associated library Base Time DPRAM 4 DPRAM time base Page Version Configurator version Button Description Exit It exits from the page

Page 27: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 27/27

4.3. Index of the configuration pages

4.3.1. Elevator configuration Button Description DriveParRead It opens the page intended to manage the parameters that can be directly read from the

drive. Axis configuration It opens the page intended to configure the positioner controlling the cage movement. Landing Zone Ad just It opens the page intended to manage the cage position compensations. OverSpeedProtection It opens the page intended to manage the function controlling the speed at the extreme

cage travel positions. SelfStudy It opens the pages intended to manage and analyse the Self Study function and the heights

of the floor cams. Current Feed-Forward It opens the page intended to configure the feed-forward current. Torque Battery Run Door Configuration It opens the page intended to configure the door opening sequence.

Page 28: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 28/28

4.3.2. I/O configuration Button Description Digital Inputs 1 It opens the page intended to configure the digital inputs (commands) Digital Inputs 2 It opens the page intended to configure the digital inputs (sensors) Digital Outputs 1 It opens the page intended to configure the digital outputs Analog Input It opens the page intended to configure the analog inputs Incremental Encoder It opens the page intended to configure the incremental encoder Absolute Encoder It opens the page intended to configure the absolute encoder

4.3.3. Control console Button Description Command It opens the page of commands.

4.3.4. Status Buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 29: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 29/29

4.4. Management of the parameters from the Drive Some information that has been set in the drive can be also used by the EPC control. This page allows the user to enable or disable the use of the drive parameters and to analyse their values.

4.4.1. Configuration Field Measurement

unit Ipa Description

Enable read drive parameters

BOOL It enables the reading of the drive parameters

Polling time Sec Refresh time of the drive parameters Start read parameters

BOOL It informs whether the refresh of the drive parameters has started or not.

Enable Test BOOL It enables the reading test of the drive parameters Start read parameters

BOOL It forces the refresh of the drive parameters

Page 30: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 30/30

4.4.2. First Task Drive parameters read from the FIRST task, i.e. only at the control start-up. Field Measurement

unit Ipa Description

SpeedBaseValue rpm 1885 Maximum speed Tnom Nm 100 Nominal torque Std_enc_pulses ppr 1890 Pulses of the encoder read by the regulation card (XE connector) Gearbox_ratio # 1002 Reduction ratio Pulley_diam mm 1003 Pulley diameter

4.4.3. Polling task Drive parameters read by the Polling task at regular intervals Field Measurement

unit Ipa Description

Door Open Speed mm/sec Ramp Out Enable BOOL Multi speed 0 mm/sec Multi speed 1 mm/sec Multi speed 2 mm/sec Multi speed 3 mm/sec Multi speed 4 mm/sec Multi speed 5 mm/sec Multi speed 6 mm/sec Multi speed 7 mm/sec MR0 acc ini jerk mm/sec3 MR0 acceleration mm/sec2 MR0 acc end jerk mMm/sec3 MR0 dec ini jerk mm/sec3 MR0 deceleration mm/sec2 MR0 dec end jerk mm/sec3

4.4.4. Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 31: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 31/31

4.5. Axis Configuration Page intended to configure the position control managing the cage.

Attention: the parameters marked with an asterisk (*) are calculated starting from the drive parameters if the Enable read drive parameters parameter is set to enable. As a consequence, the values on the display are the result of any calculation you may have made. Any new value you may have manually set in these fields is not taken into account.

4.5.1. Mechanical constants Field * Measurement

unit Ipa Description Calculations

Pulses * Cnts 5051 Number of pulses in an encoder revolution.

Std_enc_pulses

DltDisp * mm 5061 Space covered by the cage in an encoder revolution.

(Pulley_diameter * 3.14) / gearbox_ratio

Revol Rev 5071 It shall be set to 1. OutNorm * Rpm*sec/mm 5251 Mechanical constant between positioner

and motor. 60 / DltDisp

Page 32: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 32/32

4.5.2. Speed and Acceleration limits Field * Measurement

unit Ipa Description Calculations

MaxSpd * mm/sec 5161 Maximum cage speed (SpeedBaseValue / 60) * DltDisp

MaxAcc * mm/sec2 5171 Maximum cage acceleration in a second. MaxSpd / 1 sec. MinRefvel Rpm 5261 Minimum permissible cage speed

4.5.3. Travel limits and initialization Field * Measurement

unit Ipa Description Calculations

Preset mm 5121 Height value at the zero cycle initialization point.

Maximum mm 5151 Maximum cage travel value. Set this value to 100000000. Actually, the elevator has got no electronic travel restriction.

Minimum mm 5141 Minimum cage travel value. Set this value to -100000000. Actually, the elevator has got no electronic travel restriction.

4.5.4. Zero search Field * Measurement

unit Ipa Description Calculations

ZeroSpd mm/sec 5081 Zero search speed

4.5.5. Gains and compensations Field * Measurement

unit Ipa Description Calculations

GainAdaptEn. 6437 Manager of the adaptive function of proportional gains:

• Gain 1: constant proportional gain, PropGain 1

• Gain 2 & 3: variable proportional gain between PropGain 2 and PropGain 3

PropGain 1 1 / sec 5181 Proportional gain 1 PropGain 2 1 / sec 6348 Proportional gain 2 PropGain 3 1 / sec 6350 Proportional gain 3 ActPropGain 1/ sec 5971 Actual proportional gain value G.Adapt SpdLim

mm/sec 6352

AdaptRef 0-1 SpeedFFwd % 5191 Speed feed forward percentage Inertia Kg * m2 5271 Inertia MaxJerkGain > 1 Maximum Jerk Gain value during the

final correction

Page 33: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 33/33

4.5.6. Speed profile Field * Measurement

unit Ipa Description Calculations from drive

par. IniSpeed mm/sec 5321 Initial speed IniDisp mm 5331 Space to be covered at the initial speed.

Set to zero to remove the first stretch that has been covered at the IniSpeed speed.

IniDerJerk mm/sec4 Jerk derivative. Set to 100000 to cancel its effects.

IniAccJerk * mm/sec3 Initial Jerk during the acceleration MR0 acc ini jerk Accel * mm/sec2 Acceleration MR0 acceleration EndAccJerk * mm/sec3 Final Jerk during the acceleration MR0 acc end jerk Speed 0 (none) * mm/sec Speed 0, generally not used Multi speed 0 Speed 1 (Fwd&rev))

* mm/sec Speed 1, generally used for the Forward, Reverse and Floor Call commands.

Multi speed 1

Speed 2 (0 Cycle)

* mm/sec Speed 2, generally used to execute any creeping movement during the zero cycle

Multi speed 2

Speed 3 (Jog) * mm/sec Speed 3, generally used for the jog commands.

Multi speed 3

Speed 4 (SelfStudy)

* mm/sec Speed 4, for the self study sequence Multi speed 4

Speed 5 * mm/sec Speed 5, generally not used Multi speed 5 Speed 6 * mm/sec Speed 6, generally not used Multi speed 6 Speed 7 * mm/sec Speed 7, generally not used Multi speed 7 IniDecJerk * mm/sec3 Initial Jerk during the deceleration MR0 dec ini jerk Decel * mm/sec2 Deceleration MR0 deceleration EndDecJerk * mm/sec3 Final Jerk during the deceleration MR0 dec end jerk LandingSpeed mm/sec Minimum final positioning speed

4.5.7. Command buttons Attention: the command buttons will only act on the EPC position control. This means that the external elevator control logic might be improperly managed. These commands shall be understood as a test tool for the elevator study. Button Description 0 Cycle It requires the execution of the Zero Cycle command Fwd It requires the execution of the Forward command Rev It requires the execution of the Reverse command Floor Call It requires the execution of the Floor Call command, the target floor is specified in the box

on the right of the button. J+ It requires the execution of the Jog+ command J- It requires the execution of the Jog- command

Page 34: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 34/34

4.5.8. Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 35: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 35/35

4.6. Compensations on the floor This page enables the user to manage the compensations on the floor.

4.6.1. Configuration of the compensation on the floor Field Measurement

unit Ipa Description

En. Static Adjust BOOL It enables the cage height compensation on the target floor En. Dynamic Adjust

BOOL It enables the cage height compensation on the intermediate floors. This function is automatically disabled if En. Static Ad just is set to disable.

Search Space mm Search space the positioner will cover at a low speed if the cage should complete the mission without engaging the target floor landing zone.

Delay LZ Sec Delay time of the sensors reading the floor cams Thr. Stat. Cmp. mm Threshold below which the calculated static compensation is not

applied. Thr. Dyn. Cmp. mm Threshold below which the calculated dynamic compensation is not

applied.

Page 36: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 36/36

4.6.2. Landing zone Field Measurement

unit Ipa Description

Creeping space mm Creeping space at a low speed on the target floor. Set this value to zero to disable the function.

Creeping FR % Maximum speed percentage that shall be supported on the creeping space on the target floor. Set this value to 100 to disable the function.

End Ramp Type # Set this value to zero.

4.6.3. Next Stop function configuration Field Measurement

unit Ipa Description

Advance Next Stop

mm Height advance space of the next floor where you can stop.

Advance Next Stop K

# Advance space multiplier for the floor just after the starting one.

Adv. Next Stop Max time

mSec Maximum Next Stop output duration time.

4.6.4. Jerk Gain configuration Field Measurement

unit Ipa Description

MaxJerkGain > 1 Maximum Jerk Gain value during the final correction Actual jerk gain # Actual Jerk Gain value

4.6.5. Floor counting Field Measurement

unit Ipa Description

Land A BOOL 6880 Status of the sensor reading the floor A cam Land B BOOL 6881 Status of the sensor reading the floor B cam Land cnt. # 6883 Counter of the floor cams. (see appendix A) Floor cnt. active BOOL It informs whether the floor count by means of the landing zone is

active or not. ZeroFound BOOL 1226 It informs whether the encoder and floor count has been initialized or

not. Act. Floor (enc) # 1218 Number of the floor where the cage is positioned or where it is going

through. It is calculated by the position encoder. (see appendix A). Act. Floor (land) # 6884 Number of the floor where the cage is positioned or where it is going

through. It is calculated by the floor cams. (see appendix A).

Page 37: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 37/37

4.6.6. Mission heights Field Measurement

unit Ipa Description

Command position

mm Controlled height

Destination Position

mm Target height

Ad just position mm Calculated cage height correction Ideal position mm 6856 Ideal cage height Actual position mm 6854 Actual cage height Error position mm 6858 Difference between the ideal and actual cage height

4.6.7. Command buttons Attention: the command buttons will only act on the EPC position control. This means that the external elevator control logic might be improperly managed. These commands shall be understood as a test tool for the elevator study. Button Description 0 Cycle It requires the execution of the Zero Cycle command Fwd It requires the execution of the Forward command Rev It requires the execution of the Reverse command Floor Call It requires the execution of the Floor Call command, the target floor is specified in the box

on the right of the button. J+ It requires the execution of the Jog+ command J- It requires the execution of the Jog- command

4.6.8. Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 38: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 38/38

4.7. Over Speed protection This page enables the user to configure and control the high speed protection functions at the extreme cage travel limits.

4.7.1. Cage position Field Measurement

unit Ipa Description

Act. Floor (enc) # 1218 Number of the floor where the cage is positioned or where it is going through. It is calculated by the position encoder. (see appendix A).

Act. Floor (land) # 6884 Number of the floor where the cage is positioned or where it is going through. It is calculated by the floor cams. (see appendix A).

Ideal position Mm 6856 Ideal cage height Actual position Mm 6854 Actual cage height Error position Mm 6858 Difference between the ideal and actual cage height Land A BOOL 6880 Status of the sensor reading the floor A cam Land B BOOL 6881 Status of the sensor reading the floor B cam Land cnt. # 6883 Counter of the floor cams. (see appendix A) Lower limit BOOL 6873 Status of the sensor reading the Lower Limit cam

Page 39: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 39/39

Slow Lower Limit BOOL 6877 Status of the sensor reading the Slow Lower Limit cam Slow Upper Limit BOOL 6878 Status of the sensor reading the Slow Upper Limit cam Upper Limit BOOL 6874 Status of the sensor reading the Upper Limit cam

4.7.2. Control status Field Measurement

unit Ipa Description

DriveReady BOOL 1200 Drive Status. Start BOOL 1202 Drive Start Status notFastStop BOOL 1201 FAST STOP input status posStatus 1217 EPC control status ZeroFound BOOL 1226 It informs whether the encoder and floor count has been initialized or

not. freeAxis BOOL 1225 This variable is TRUE when the cage is executing no command. CommandIn 1262 Recognised input command NoBkake 1273 Internal brake release command StartOut 1312 Internal drive enable

4.7.3. Over speed protection configuration Field Measurement

unit Ipa Description

Over speed % % Maximum speed value when the Slow Lower Limit Zone slowing down cam is engaged.

Decel mm/sec2 Deceleration value when the function becomes active. Ini Dec Jerk mm/sec3 Initial slowing down jerk value when the function becomes active. End Dec Jerk mm/sec3 Final slowing down jerk value when the function becomes active.

4.7.4. Mission status Field Measurement

unit Ipa Description

Command 1220 Input command CmdResult 1219 Result of the input command analysis before its execution SeqResult 1234 Command execution result TargetFloor # 6886 Target floor Command Position

mm 6884 Target floor height

BatteryRun BOOL 1224 SelfStudyRun BOOL 1245 It signals when the Self Study function is active ZeroSearchRun BOOL 1247 It signals when the Zero Search function is active Act. Sel. Speed mm/sec 1239 It signals the speed value that is currently selected, but not

necessarily used. SpeedRef Rpm 1208 Drive controlled speed reference value FeedRate 0.01 - 1 6702 Internal speed reducer value. (1 = no reduction)

Page 40: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 40/40

4.7.5. Command buttons Attention: the command buttons will only act on the EPC position control. This means that the external elevator control logic might be improperly managed. These commands shall be understood as a test tool for the elevator study. Button Description 0 Cycle It requires the execution of the Zero Cycle command Fwd It requires the execution of the Forward command Rev It requires the execution of the Reverse command Floor Call It requires the execution of the Floor Call command, the target floor is specified in the box

on the right of the button. J+ It requires the execution of the Jog+ command J- It requires the execution of the Jog- command

Page 41: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 41/41

4.7.6. Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 42: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 42/42

4.8. Self Study

4.8.1. Status of the cam sensors Field Measurement

unit Ipa Description

Land A BOOL 6880 Status of the sensor reading the floor A cam Land B BOOL 6881 Status of the sensor reading the floor B cam Land cnt. # 6883 Counter of the floor cams. (see appendix A) Lower limit BOOL 6873 Status of the sensor reading the Lower Limit cam Slow Lower Limit BOOL 6877 Status of the sensor reading the Slow Lower Limit cam Slow Upper Limit BOOL 6878 Status of the sensor reading the Slow Upper Limit cam Upper Limit BOOL 6874 Status of the sensor reading the Upper Limit cam

4.8.2. Cage position Field Measurement

unit Ipa Description

Act. Floor (enc) # 1218 Number of the floor where the cage is positioned or where it is going through. It is calculated by the position encoder. (see appendix A).

Page 43: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 43/43

Act. Floor (land) # 6884 Number of the floor where the cage is positioned or where it is going through. It is calculated by the floor cams. (see appendix A).

Ideal position mm 6856 Ideal cage height Actual position mm 6854 Actual cage height Error position mm 6858 Difference between the ideal and actual cage height Floor cnt. active BOOL It informs whether the floor count by means of the landing zone is

active or not ZeroFound BOOL 1226 It informs whether the encoder and floor count has been initialized or

not.

4.8.3. Self study status Field Measurement

unit Ipa Description

FloorsNum # Number of the floors that have been detected in the plant. CmdResult 1219 Result of the input command analysis before its execution SeqResult 1234 Command execution result SelfStudyOK BOOL It signals whether the Self Study function has been properly

completed or not. SelfStudyRun BOOL 1245 It signals when the Self Study function is active

Page 44: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 44/44

4.8.4. Position of the floor cams from 0 to 21 n A Low B Low A High B High Adj Up Adj Dw Number of the floor

Low edge height of cam A

Low edge height of cam B

High edge height of cam A

High edge height of cam B

Floor adjustment value when it moves in the positive direction (upwards)

Floor adjustment value when it moves in the negative direction (downwards)

# mm mm mm mm mm mm

Cam A

Cam B

Floor line

Positive direction

A High

B High

A Low

B Low

Page 45: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 45/45

4.8.5. Self study page 2 Button Description Page 2 It opens self study page 2

4.8.6. Command buttons Attention: the command buttons will only act on the EPC position control. This means that the external elevator control logic might be improperly managed. These commands shall be understood as a test tool for the elevator study. Button Description Self Study It requires the execution of the Self Study command Memo Adj 0 Cycle It requires the execution of the Zero Cycle command Fwd It requires the execution of the Forward command Rev It requires the execution of the Reverse command Floor Call It requires the execution of the Floor Call command, the target floor is specified in the box

on the right of the button. J+ It requires the execution of the Jog+ command J- It requires the execution of the Jog- command

4.8.7. Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 46: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 46/46

4.9. Self Study page 2

4.9.1. Status of the cam sensors Field Measurement

unit Ipa Description

Land A BOOL 6880 Status of the sensor reading the floor A cam Land B BOOL 6881 Status of the sensor reading the floor B cam Land cnt. # 6883 Counter of the floor cams. (see appendix A) Lower limit BOOL 6873 Status of the sensor reading the Lower Limit cam Slow Lower Limit BOOL 6877 Status of the sensor reading the Slow Lower Limit cam Slow Upper Limit BOOL 6878 Status of the sensor reading the Slow Upper Limit cam Upper Limit BOOL 6874 Status of the sensor reading the Upper Limit cam

4.9.2. Cage position Field Measurement

unit Ipa Description

Page 47: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 47/47

Act. Floor (enc) # 1218 Number of the floor where the cage is positioned or where it is going through. It is calculated by the position encoder. (see appendix A).

Act. Floor (land) # 6884 Number of the floor where the cage is positioned or where it is going through. It is calculated by the floor cams. (see appendix A).

Ideal position mm 6856 Ideal cage height Actual position mm 6854 Actual cage height Error position mm 6858 Difference between the ideal and actual cage height Floor cnt. Active BOOL It informs whether the floor count by means of the landing zone is

active or not ZeroFound BOOL 1226 It informs whether the encoder and floor count has been initialized or

not.

4.9.3. Self study status Field Measurement

unit Ipa Description

FloorsNum # Number of the floors that have been detected in the plant CmdResult 1219 Result of the input command analysis before its execution SeqResult 1234 Command execution result SelfStudyOK BOOL It signals whether the Self Study function has been properly

completed or not. SelfStudyRun BOOL 1245 It signals when the Self Study function is active

4.9.4. Position of the floor cams from 22 to 31 n A Low B Low A High B High Adj Up Adj Dw Number of the floor

Low edge height of cam A

Low edge height of cam B

High edge height of cam A

High edge height of cam B

Floor adjustment value when it moves in the positive direction (upwards)

Floor adjustment value when it moves in the negative direction (downwards)

# mm mm mm mm mm mm

Page 48: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 48/48

4.9.5. Position of the extremity cams Field Measurement

unit Ipa Description

Lower limit position

mm Lower Limit cam upper position

Upper limit position

mm Upper Limit cam lower position

Slow lower limit position

mm Slow Lower Limit cam upper position

Slow upper limit position

mm Slow Upper Limit cam lower position

4.9.6. Command buttons Attention: the command buttons will only act on the EPC position control. This means that the external elevator control logic might be improperly managed. These commands shall be understood as a test tool for the elevator study. Button Description Self Study It requires the execution of the Self Study command Memo Adj 0 Cycle It requires the execution of the Zero Cycle command Fwd It requires the execution of the Forward command Rev It requires the execution of the Reverse command Floor Call It requires the execution of the Floor Call command, the target floor is specified in the box

on the right of the button. J+ It requires the execution of the Jog+ command J- It requires the execution of the Jog- command

4.9.7. Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 49: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 49/49

4.10. Configuration of digital inputs 1

Signal Description Pos Enable It enables the position control NotHold Hold command (stop mission) Mainten. Mode It defines the Maintenance signal origin:

• Variable • Serial • Digital input

Maintenance If the signal origin is a digital input, it selects the digital input ZeroSearch Zero Search command JogFwd Jog+ command JogRev Jog- command Forward Forward command Reverse Reverse command SelfStudy Self Study command MemoAdj MemoAdj command Batt. RunMode BatteryRun FloorMode It defines the target floor value origin

Page 50: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 50/50

• Digital input • Serial • Variable

Floor Call Floor call command StopFloor Stop Floor signal FloorSel0 FloorSel1 FloorSel2 FloorSel3 FloorSel4

If Floor Mode is set as a digital input, the state of these signals specifies the target floor

Speed Mode It defines the origin of the speed value to be used:

• Digital input • Serial • Variable

SpeedSel0 SpeedSel1 SpeedSel2

If Speed Mode is set as a digital input, the state of these signals specifies which speed, between speed 0 and speed 7, shall be used for the selected command. If these inputs are set to zero (disable or FALSE), the speeds are used according to the predefined diagram.

4.10.1.Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 51: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 51/51

4.11. Configuration of digital inputs 2

Signal Description SlowLowerLimit Input dedicated to the reading of the sensor intended to detect the Slow Lower Limit camSlowUpperLimit Input dedicated to the reading of the sensor intended to detect the Slow Upper Limit camLowerLimit Input dedicated to the reading of the sensor intended to detect the Lower Limit cam UpperLimit Input dedicated to the reading of the sensor intended to detect the Upper Limit cam

4.11.1.Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 52: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 52/52

4.12. Assignment of the output signals

4.12.1.Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 53: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 53/53

4.13. Configuration of the analog inputs

4.13.1.Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 54: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 54/54

4.14. Incremental encoder configuration

4.14.1.Configuration Field Measurement

unit Ipa Description

TargetEncNum # It specifies which encoder is used for the position control. axisPos Cnt It displays the height of the count encoder. Reverse It reverses the encoder sense of growth and the control positive

direction. IndexStoring It displays the control register for the encoder height latch. ActPos mm It displays the actual cage height.

4.14.2.Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status

Page 55: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 55/55

Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 56: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 56/56

4.15. Absolute encoder configuration

4.15.1.Management of the card intended to read the absolute encoder Field Measurement

unit Ipa Description

Presence Board BOOL It is TRUE if the ENC-ABS card has been detected. The card presence is only checked at the start-up.

Enable Enc. abs BOOL It enables the Absolute Encoder card.

4.15.2.Status and configuration of the Abs Enc card Field Measurement

unit Ipa Description

Version Firmware version of the absolute encoder card Working mode # Card working mode Working active # Active working mode NBit # Number of bits of the connected absolute encoder

Page 57: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 57/57

4.15.3.Absolute encoder 1 Field Measurement

unit Ipa Description

EAbsQref Bit Reference height of absolute encoder 1 EAbsBit Bit Number of bits in an absolute encoder 1 revolution EAbsDeltaSpace Dis Space covered by the cage in an encoder revolution EncAbs Gray GRAY codified hexadecimal absolute encoder height EncAbs [hex] Hexadecimal absolute encoder height EncAbs [dec] Decimal absolute encoder height

4.15.4.Absolute encoder 2 Field Measurement

unit Ipa Description

EAbsQref Bit Reference height of absolute encoder 2 EAbsBit Bit Number of bits in an absolute encoder 2 revolution EAbsDeltaSpace Dis Space covered by the cage in an encoder revolution EncAbs Gray GRAY codified hexadecimal absolute encoder height EncAbs [hex] Hexadecimal absolute encoder height EncAbs [dec] Decimal absolute encoder height

4.15.5.Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 58: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 58/58

4.16. Command page

4.16.1.Cage position Field Measurement

unit Ipa Description

Act. Floor (enc) # 1218 Number of the floor where the cage is positioned or where it is going through. It is calculated by the position encoder. (see appendix A).

Act. Floor (land) # 6884 Number of the floor where the cage is positioned or where it is going through. It is calculated by the floor cams. (see appendix A).

Ideal position mm 6856 Ideal cage height Actual position mm 6854 Actual cage height Error position mm 6858 Difference between the ideal and actual cage height Land A BOOL 6880 Status of the sensor reading the floor A cam Land B BOOL 6881 Status of the sensor reading the floor B cam Land cnt. # 6883 Counter of the floor cams. (see appendix A) Lower limit BOOL 6873 Status of the sensor reading the Lower Limit cam Slow Lower Limit BOOL 6877 Status of the sensor reading the Slow Lower Limit cam Slow Upper Limit BOOL 6878 Status of the sensor reading the Slow Upper Limit cam

Page 59: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 59/59

Upper Limit BOOL 6874 Status of the sensor reading the Upper Limit cam

4.16.2.Control status Field Measurement

unit Ipa Description

DriveReady BOOL 1200 Drive Status. Start BOOL 1202 Drive Start Status notFastStop BOOL 1201 FAST STOP input status posStatus 1217 EPC control status ZeroFound BOOL 1226 It informs whether the encoder and floor count has been initialized or

not. ZeroFoundCause 5023 It informs about what caused the ZeroFound variable to reset last. freeAxis BOOL 1225 This variable is TRUE when the cage is executing no command. CommandIn 1262 Recognised input command NoBkake 1273 Internal brake release command StartOut 1312 Internal drive enable

4.16.3.Mission status Field Measurement

unit Ipa Description

Command 1220 Input command CmdResult 1219 Result of the input command analysis before its execution SeqResult 1234 Command execution result TargetFloor # 6886 Target floor Command Position

mm 6884 Target floor height

BatteryRun BOOL 1224 SelfStudyRun BOOL 1245 It signals when the Self Study function is active ZeroSearchRun BOOL 1247 It signals when the Zero Search function is active Act. Sel. Speed mm/sec 1239 It signals the speed value that is currently selected, but not

necessarily used. SpeedRef Rpm 1208 Drive controlled speed reference value FeedRate 0.01 – 1 6702 Internal speed reducer value. (1 = no reduction)

4.16.4.Command buttons Attention: the command buttons will only act on the EPC position control. This means that the external elevator control logic might be improperly managed. These commands shall be understood as a test tool for the elevator study. Button Description 0 Cycle It requires the execution of the Zero Cycle command Fwd It requires the execution of the Forward command

Page 60: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 60/60

Rev It requires the execution of the Reverse command Floor Call It requires the execution of the Floor Call command, the target floor is specified in the box

on the right of the button. J+ It requires the execution of the Jog+ command J- It requires the execution of the Jog- command

4.16.5.Status buttons Button Description Idle It forces the control into the Idle status Ready It forces the control into the Ready status Run It forces the control into the Run status Reset Alarm It resets any pending alarm Get Status It requests for the control status Refresh It rereads all the values of the parameters displayed on the page Save It saves the parameters in the flash memory. This command can be only executed when the

control is in the Idle status. Exit It exits from the page and closes the configurator.

Page 61: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 61/61

5. Appendix A: floor count The floors are counted in two ways:

1. Through the incremental encoder. 2. By counting the floor cams A and B

Both the counts are not correct before having executed the zero cycle, i.e when the ZeroFound variable =FALSE. The values the various counters will assume are shown by the table:

Page 62: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 62/62

ch. A ch. B Cnt. Floor Floor E. 0 0 0 0 0 1 0 1 0 0 1 1 2 0 0 0 0 1 3 0 0 0 0 4 1 0-1 1 0 5 1 1 1 1 6 1 1 1 0 1 7 1 1 0 0 8 2 1-2 1 0 9 2 2 1 1 10 2 2 2 0 1 11 2 2 0 0 12 3 2-3 1 0 13 3 3 1 1 14 3 3 3 0 1 15 3 3 0 0 16 4 3-4 1 0 17 4 4 1 1 18 4 4 4 0 1 19 4 4 0 0 20 5 4-5 1 0 21 5 5 1 1 22 5 5 5 0 1 23 5 5 0 0 24 6 5-6 1 0 25 6 6 1 1 26 6 6 6 0 1 27 6 6 0 0 28 7 6-7 1 0 29 7 7 1 1 30 7 7 7 0 1 31 7 7 0 0 32 8 7-8 1 0 33 8 8 1 1 34 8 8 8 0 1 35 8 8 0 0 36 9 8-9 1 0 37 9 9 1 1 38 9 9 9 0 1 39 9 9 0 0 40 10 9-10 1 0 41 10 10 1 1 42 10 10 10 0 1 43 10 10 0 0 44 11 10-11 1 0 45 11 11 1 1 46 11 11 11 0 1 47 11 11 ch. A ch. B Cnt. Floor Floor E.

Page 63: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 63/63

ch. A ch. B Cnt. Floor Floor E. 0 0 48 12 11-12 1 0 49 12 12 1 1 50 12 12 12 0 1 51 12 12 0 0 52 13 12-13 1 0 53 13 13 1 1 54 13 13 13 0 1 55 13 13 0 0 56 14 13-14 1 0 57 14 14 1 1 58 14 14 14 0 1 59 14 14 0 0 60 15 14-15 1 0 61 15 15 1 1 62 15 15 15 0 1 63 15 15 0 0 64 16 15-16 1 0 65 16 16 1 1 66 16 16 16 0 1 67 16 16 0 0 68 17 16-17 1 0 69 17 17 1 1 70 17 17 17 0 1 71 17 17 0 0 72 18 17-18 1 0 73 18 18 1 1 74 18 18 18 0 1 75 18 18 0 0 76 19 18-19 1 0 77 19 19 1 1 78 19 19 19 0 1 79 19 19 0 0 80 20 19-20 1 0 81 20 20 1 1 82 20 20 20 0 1 83 20 20 0 0 84 21 20-21 1 0 85 21 21 1 1 86 21 21 21 0 1 87 21 21 0 0 88 22 21-22 1 0 89 22 22 1 1 90 22 22 22 0 1 91 22 22 0 0 92 23 22-23 1 0 93 23 23 1 1 94 23 23 23 0 1 95 23 23 ch. A ch. B Cnt. Floor Floor E.

Page 64: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 64/64

ch. A ch. B Cnt. Floor Floor E. 0 0 96 24 23-24 1 0 97 24 24 1 1 98 24 24 24 0 1 99 24 24 0 0 100 25 24-25 1 0 101 25 25 1 1 102 25 25 25 0 1 103 25 25 0 0 104 26 25-26 1 0 105 26 26 1 1 106 26 26 26 0 1 107 26 26 0 0 108 27 26-27 1 0 109 27 27 1 1 110 27 27 27 0 1 111 27 27 0 0 112 28 27-28 1 0 113 28 28 1 1 114 28 28 28 0 1 115 28 28 0 0 116 29 28-29 1 0 117 29 29 1 1 118 29 29 29 0 1 119 29 29 0 0 120 30 29-30 1 0 121 30 30 1 1 122 30 30 30 0 1 123 30 30 0 0 124 31 30-31 1 0 125 31 31 1 1 126 31 31 31 0 1 127 31 31 ch. A ch. B Cnt. Floor Floor E.

Page 65: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 65/65

6. Appendix B: floor cam

6.1. Introduction How to “apply an encoder” by means of 2 sensors and 1 cam.

6.2. Sensors

6.3. Cam

6.4. Position 1

A

B125mm

250mm

A

B100 mm

225 mm

300 mm

550 mm

B

A

1

Page 66: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 66/66

6.5. Position 2

6.6. Position 3

A

B

0 mm

125 mm

300 mm

550 mm

B

A

1

175 mm

2

A

B

0 mm

125 mm

300 mm

550 mm

B

A

1

175 mm

2

425 mm

3

Page 67: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 67/67

6.7. Position 4

6.8. Position 5

A

B

0 mm

125 mm

300 mm

550 mm

B

A

1

175 mm

2

425 mm

3 4

A

B

0 mm

125 mm

300 mm

550 mm

B

A

1

175 mm

2

425 mm

3 4 5

Page 68: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 68/68

6.9. Position 6

A

B

0 mm

125 mm

300 mm

550 mm

B

A

1

175 mm

2

425 mm

3 4 5 6

Page 69: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 69/69

7. Appendix C: connection example

7.1. Example of a connection table: Digital inputs drive signal

cmdIn OTIS names

assignment Dig. inp.

Terminals card

1 Enable Enable 0 12 16 regulation 2 0 Fwd cmd Forward 1 13 16 regulation 3 1 Rev cmd Reverse 2 14 16 regulation 4 2 DBD Contactor feedback

(DBD) 3 15 16 regulation

5 3 JOG cmd Maintenance 4 36 16 regulation 6 4 STOP cmd Stop 5 37 16 regulation 7 5 DBP

feedback door open feedback (DBP)

6 38 16 regulation

8 6 ULZ cam A (ULZ) (Door open src/Landing init src)

7 39 16 regulation

9 7 1LS lower zone (1LS) 31 35 D8R4 10 8 2LS upper zone (2LS) 32 35 D8R4 11 9 33 35 D8R4 12 10 LRN cmd Self Study

(LRN) 34 35 D8R4

13 11 DLZ cam B (DLZ) 36 40 D8R4 14 12 37 40 D8R4 15 13 Brake

feedback Brake feedback 38 40 D8R4

16 14 39 40 D8R4

Page 70: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 70/70

Digital outputs channel bit Pad B OTIS

names assignment NO C NC card

1 0 SW Contactor output (SW) 41 regulation 2 1 Door

open mon

door open 42 regulation

3 2 Drive ready

Drive OK 80 82 regulation

4 3 Brake cont mon

Brake output 83 85 regulation

5 4 DS1 DS1 114 111 112 D8R4 6 5 DS2 DS2 214 211 212 D8R4 7 6 DS3 DS3 314 311 312 D8R4 8 7 IP next stop output (IP) 414 411 412 D8R4 Analog Inputs Terminals card channel pad assignment 1 3 pre-torque 1 2 regulation 2 2 3 4 regulation 3 1 5 6 regulation Analog Outputs channel pad assignment 1 2

Page 71: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 71/71

8. Appendix D: Slink 4 serial command The EPC control can be controlled by a remote control by means of a serial command dedicated and transmitted according to the SLINK 4 serial protocol modes. For further information about Slink4 refer to the corresponding manual.

Page 72: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 72/72

Introduction Specification of the SLINK4 protocol REGISTER command intended to manage the elevator application.

8.1. General Information This message enables the user to transmit the command registers and to receive the status registers. Each register has got a one-byte size. The quantity and meaning of the registers depend upon the application where they are used.

8.2. REGISTER command Master command Byte Name Meaning field type 1-4 M_HEAD Master message head 5-6 COMMAND Command code: S4_REGISTER = 10100 T_USHORT 7 N_CMD_REG Number of command registers T_UCHAR 8 CMD_REG Command registers T_UCHAR 8 + n CKSUM T_UCHAR Slave answer Byte Name Meaning field type 1- 4 S_HEAD Slave message head 5- 6 RESULT Result of the requested service T_USHORT 7 N_STS_REG Number of the status registers T_UCHAR 8 STS_REG Status registers T_UCHAR 8 + n CKSUM This command enables the user to send the command registers through the Master command and to receive the status registers through the Slave answer. The quantity and meaning of the registers depend upon the application where they are used.

8.3. Number of registers in the elevator application The number of registers used for the management of the elevator application is as follows: • Command registers: 4 • Status registers: 4

Page 73: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 73/73

8.4. Definition of command registers

8.4.1. Command register 0: positioner commands 1 Bit Description Note 0 Positioner enable Not active 1 Hold Not active 2 Alarm reset Not active 3 Zero cycle start ZeroSearch (zero search command) 4 Jog+ handling JogFwd 5 Jog- handling JogRev 6 Jog+ handling with preset space delta Not active 7 Jog- handling with preset space delta Not active

8.4.2. Command register 1: positioner commands 2 Bit Description Note 0 Forward command Forward 1 Reverse command Reverse 2 Floor call FloorCall 3 Floor self-learning SelfStudy 4 Battery mode selection BatteryRunning 5 Speed selection 0 6 Speed selection 1 7 Speed selection 2

8.4.3. Command register 2: positioner commands 3 Bit Description Note 0 100% override set Reserved for future uses 1 S ramp enable Reserved for future uses 2 AdjFloor height memo Reserved for future uses 3 0 Reserved for future uses 4 0 Reserved for future uses 5 0 Reserved for future uses 6 0 Reserved for future uses 7 0 Reserved for future uses

Page 74: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 74/74

8.4.4. Command register 3: Floor selection Bit Description Note 0 SelFloor0 1 SelFloor1 2 SelFloor2 3 SelFloor3 4 SelFloor4 5 SelFloor5 6 SelFloor6 7 SelFloor7

8.5. Definition of status registers

8.5.1. Status register 0: positioner status 1 Bit Description Note 0 Axis ok 1 Closed position ring 2 Axis not moving 3 Executed 0 cycle ZeroFound 4 Target In 1 Not active 5 Target In 2 Not active 6 0 Reserved for future uses 7 0 Reserved for future uses

8.5.2. Status register 1: positioner status 2 Bit Description Note 0 Floor self-learning in progress 1 Active battery mode 2 Cycle 0 in progress 3 The requested floor can not be reached 4 0 Reserved for future uses 5 0 Reserved for future uses 6 Battery fwd 7 Battery Rev

Page 75: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 75/75

8.5.3. Status register 2: actual floor Bit Description Note 0 ActFloor0 1 ActFloor1 2 ActFloor2 3 ActFloor3 4 ActFloor4 5 ActFloor5 6 ActFloor6 7 ActFloor7

Actual floor coding

8.5.4. Status register 3: target floor Bit Description Note 0 TargFloor0 1 TargFloor1 2 TargFloor2 3 TargFloor3 4 TargFloor4 5 TargFloor5 6 TargFloor6 7 TargFloor7

Target floor coding

Page 76: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 76/76

8.6. Master message format The master message will assume this format in the elevator application: Master command Byte Name Meaning Value field type

1 START_M Message start 0x02 T_UCHAR 2 LEN Message length including start and

checksum 12 T_UCHAR

3 SLAVE Target slave address Between 1 and 127 0 by-pass 255 broadcast

T_UCHAR

4 OPZ_SR_SINCRO This byte is divided into 2 fields: SINCRO : bit 0-4 synchronizer. SR : bit 5 services OPZ : bit 6-7 option address

SINCRO = 1÷15 SR = 0 OPZ = 0

T_UCHAR

5-6 COMMAND S4_REGISTER 10100 T_USHORT 7 N_CMD_REG 4 4 T_UCHAR 8 CMD_REG_0 Command register 0 T_UCHAR 9 CMD_REG_1 Command register 1 T_UCHAR

10 CMD_REG_2 Command register 2 T_UCHAR 11 CMD_REG_3 Command register 3 T_UCHAR 12 CKSUM T_UCHAR

8.7. Slave message format The slave message will assume this format in the elevator application: Slave answer Byte Name Meaning field type

1 START_S Message start 0x03 T_UCHAR 2 LEN Message length including start and

checksum 12 T_UCHAR

3 SLAVE Address of the answering slave Between 1 and 127 0 by-pass 255 broadcast

T_UCHAR

4 OPZ_SR_SINCRO This byte is divided into 2 fields: SINCRO : bit 0-4 synchronizer. SR : bit 5 services OPZ : bit 6-7 option address

SINCRO = 1÷15 SR = 0 OPZ = 0

T_UCHAR

5- 6 RESULT Result of the requested service T_USHORT 7 N_STS_REG Number of the status registers 4 T_UCHAR 8 STS_REG_0 Status register 0 T_UCHAR 9 STS_REG_1 Status register 1 T_UCHAR

10 STS_REG_2 Status register 2 T_UCHAR 11 STS_REG_3 Status register 3 T_UCHAR 12 CKSUM T_UCHAR

Page 77: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 77/77

9. Appendix E: coding of the alarms List of the alarms typical of the EPC control. For the coding of the general alarms refer to the APC card manual. Alarm Name Description 12 – 1 Height alarm It occurs when the controlled height exceeds the minimum or maximum

electronic limit switches. 12 - 2 Dynamic error alarm It occurs when the module of the difference between the actual height

and the ideal height is higher than MaxDinErr during handling. | Qi – Qr | > MaxDinErr

12-3 Static error alarm It occurs when the module of the difference between the actual height and the ideal height is higher than MaxStatErr after the cage has come to a halt. | Qi – Qr | > MaxStatErr

12-4 Positioning alarm It occurs when the cage can not position at the controlled height. 12-5 Absolute encoder alarm It occurs when there are some problems in reading the absolute encoder. 12-… Drive parameters reading alarm If the second coding number is higher than 1000, it means that there

have been some problems in reading a drive parameter. The drive parameter ipa is equal to the second coding number minus 1000.

Page 78: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 78/78

10. Appendix F: coding of the Zero Found reset causes List of the causes that have brought about the reset of the zero found variable the encoder initialization. Cause Name Description 1 Init System reset 2 Encoder alarm Problems in managing the encoder 3 Alarm floor count Problems in counting the floors 4 Drive Enable The drive enable has been removed while a mission was being executed. 5 Cams The cage can not stop on the floor cams at the end of a floor call

command. 6 Cams 2 The cage can not stop on the floor cams at the end of a floor call

command. 7 Drive encoder alarm Problems in managing the encoder signalled by the drive. 8 Limit switch alarm Problems with the limit switches.

Page 79: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 79/79

11. Appendix G: command error codes List of the causes of the errors that may occur while starting or executing a command. Error Name Description 0 CMD_OK command successfully executed 1 CMD_IN_PROGRESS command in progress 2 UNKNOWN_CMD unknown command 3 MACHINE_BUSY machine busy 4 SEQ_BUSY sequencer busy 5 NO_AXIS command without specifying any axis 6 TOO_MANY_AXES command on too many axes 7 AXIS_BUSY axis busy 8 MIN_POS the position is lower than the Minimum Height 9 MAX_POS the position is higher than the Maximum Height 10 INVALID_SPEED set speed invalid 11 INVALID_ACCEL set acceleration invalid 12 INVALID_JERK set jerk invalid 13 INVALID_DER_JERK jerk derivative invalid 14 NORM_OUT_ZERO output normalising parameter invalid 15 ZERO_REQUIRED it is necessary to execute the axis zero 16 ZERO_SEQUENCE cycle 0 sequence not executable 17 NO_POINT no point stored 18 ENC_ABSOLUTE absolute encoder problems 19 IN_POSITION axis already in position 20 HOLD control in hold mode 2000 FLOOR_NUM_EXCEED_LIMIT

S the floor number is outside the limits

2001 AXIS_IN_POSITION the elevator is already in position 2002 ERR_INDEX_STORING problems in managing the index storing 2003 ERR_FLOOR_CNT problems in counting the floors with the cams 2004 ERR_SELF_STUDY_ABORTED the self study has aborted 2005 AXIS_BUSY_NOT_RUNNING axis busy, but not running 2006 MACHINE_MAINTENANCE the machine is being serviced 2007 SELF_STUDY_REQUIRED the self study has not been executed 2010 OUT_OF_LANDING_ZONE the elevator is outside the landing zone 2011 ERR_OUT_OF_UPPER_ZONE upper zone exceeded 2012 ERR_OUT_OF_LOWER_ZONE lower zone exceeded 2013 ERR_ZONE_LOW LOW zone problems 2014 ERR_ZONE_HIGH HIGH zone problems 2015 COMMAND_ABORTED command aborted 2016 ERR_FLOOR_CNT_AH problems in counting the floors with cam AH 2017 ERR_FLOOR_CNT_AL problems in counting the floors with cam AL 2018 ERR_FLOOR_CNT_BH problems in counting the floors with cam AH 2019 ERR_FLOOR_CNT_BL problems in counting the floors with cam AL 2020 ERR_ZONE_LOW_POS the lower limit has not been detected 2021 ERR_ZONE_HIGH_POS the higher limit has not been detected 2022 ERR_ZONE_SLOW_LOW_POS the slow lower limit has not been detected 2023 ERR_ZONE_SLOW_HIGH_POS the slow higher limit has not been detected

Page 80: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 80/80

12. H appendix: configure the digital inputs and outputs

12.1. Introduction This appendix shows how to configure the digital inputs and outputs of the Avy drive, version 2.x or following versions. It also contains an example to send control signals via the field bus.

12.2. Fixed allocated inputs The inputs suitable to read the sensors detecting the A and B floor counting cams are allocated in a fixed way and they can NOT be relocated: Signal name Card Terminals Note A cam Regulation 39 16 Input qualifying the standard encoder B cam Expansion card Input qualifying the expansion encoder

(the terminals change according to the used expansion card)

12.3. Digital inputs which can be relocated The signals described in the following table can be allocated at will into the digital inputs supplied by the regulation card and by the installed expansion card. These signals can not be transmitted via the field bus or other serial systems. Signal name Suggested card Suggested

terminals Note

Lower zone Upper zone Slow lower zone Slow lower zone

12.4. Control inputs The control input signals can be supplied either through the digital inputs or through the signals coming from the field bus. Signal name Suggested card Suggested

terminals Note

Pos Enable NotHold Mainten. Mode Maintenance

Page 81: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 81/81

ZeroSearch JogFwd JogRev Forward Reverse SelfStudy MemoAdj Batt. RunMode BatteryRun FloorMode Floor Call StopFloor FloorSel0 FloorSel1 FloorSel2 FloorSel3 FloorSel4 Speed Mode SpeedSel0 SpeedSel1 SpeedSel2

12.5. Composition of the control word All digital inputs are gathered into the W0CompOut word of the drive and through this word they are sent to the APC card. In the standard configuration the W0CompOut word is configured as follows:

12.5.1.W0 Comp Out composition Signal Terminal Card Note

0 Input 1 12 16 Regulation 1 Input 2 13 16 Regulation 2 Input 3 14 16 Regulation 3 Input 4 15 16 Regulation 4 Input 5 36 16 Regulation 5 Input 6 37 16 Regulation 6 Input 7 38 16 Regulation 7 Input 8 39 16 Regulation 8 Input 9 31 35 D8R4 9 Input 10 32 35 D8R4

10 Input 11 33 35 D8R4 11 Input 12 34 35 D8R4 12 Input 13 36 40 D8R4 13 Input 14 37 40 D8R4

Page 82: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 82/82

14 Input 15 38 40 D8R4 15 Input 16 39 40 D8R4

The configuration of W0 Comp Out can be modified via the following drive menu: I-O Config

Bits Word Bits Word 0 Src

12.6. Digital outputs The digital outputs are gathered into the DGFC-S Drv W 1 mon word and through this word they can be transferred to the drive where it is possible to address them on the desired digital outputs. The DGFC-S Drv W 1 mon word is made of:

12.6.1.Composition of DGFC-S Drv W 1 mon Signal Terminal Card Note

0 Passed brake point 1 Self study run 2 Battery mode run 3 Zero search run 4 Zero found 5 Pos ready 6 Battery Fwd 7 Battery Rew 8 Floor in zone 9 Next stop

10 11 Ds1 12 Ds2 13 Ds3 14 Start out 15 Door Open

The signals contained in the DGFC-S Drv W 1 mon word can be connected to the drive digital outputs via the following menu: I-O Config

Word – Bit

Word 0 – bits src

12.7. Example: how to configure W0 Comp Out again

Page 83: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 83/83

Assume that W0 comp out has to be configured as follows:

12.7.1.W0 Comp Out composition Signal Terminal Card Note

0 Input 1 12 16 Regulation 1 Input 2 13 16 Regulation 2 Input 3 14 16 Regulation 3 Input 4 15 16 Regulation 4 Input 5 36 16 Regulation 5 Input 6 37 16 Regulation 6 Input 7 38 16 Regulation 7 Input 8 39 16 Regulation 8 SBI word 0 bit 0 9 SBI word 0 bit 1

10 SBI word 0 bit 2 11 SBI word 0 bit 3 12 SBI word 0 bit 4 13 SBI word 0 bit 5 14 SBI word 0 bit 6 15 SBI word 0 bit 6

The operations to be performed are:

1. Configure W1 decomp in order to decompose the bits of the SBI 0 word 2. Configure W0 comp again according to the previous table.

12.7.2.Configuring W1 decomp The 0 word of the SBI field bus card, called SBI Drv W0 mon, contains the control signals. This word has to be decomposed into single bits using the W1 decomp block. Assign the SBI Drv W0 mon word to the W1 decomp block. This operation can be performed via the following menu: I-O Config Word 1 Bits src W1 decomp src = SBI Drv W0 mon

12.7.3.Configuring W0 comp again

W0 comp must contain the digital inputs and the control signals deriving from the SBI card. This configuration can be performed using the following menu:

I-O Config

Page 84: EPC Manual PRELIMINARY - Gefran

SIEI S.p.A. Manuale Epc_gb 84/84

Word – Bit

Word 0 – bits src Word 0 B0 src DI 1 monitor Word 0 B1 src DI 2 monitor Word 0 B2 src DI 3 monitor Word 0 B3 src DI 4 monitor Word 0 B4 src DI 5 monitor Word 0 B5 src DI 6 monitor Word 0 B6 src DI 7 monitor Word 0 B7 src DI 8 monitor Word 0 B8 src Bit 0 W1 decomp Word 0 B9 src Bit 1 W1 decomp Word 0 B10 src Bit 2 W1 decomp Word 0 B11 src Bit 3 W1 decomp Word 0 B12 src Bit 4 W1 decomp Word 0 B13 src Bit 5 W1 decomp Word 0 B14 src Bit 6 W1 decomp Word 0 B15 src Bit 7 W1 decomp

12.8. Example for the transmission of DGFC-S Drv W 1 mon The following menu allows the transmission, via the SBI, of the DGFC-S Drv W 1 mon word, which contains the status of the outputs of the APC card:

Communication SBI DRV-SBI word Drv –SBI W src Drv –SBI w0 src = DGFC-S Drv W1 mon

Page 85: EPC Manual PRELIMINARY - Gefran

Via Carducci, 24 21040 Gerenzano VA – ItaliaTel. +39 – 02.967.60.1 Fax +39 – 02.968.26.53

Industrial control system Via Calamelli, 40 40026 Imola BO – ItaliaTel. +39 – 0542.640.245 Fax +39 – [email protected]

[email protected]. +39 - 02.967.60.500Fax. +39 - 02.967.60.277

Information:[email protected] Assistance:[email protected]

North ItalyVia Carducci, 24 21040 Gerenzano VA – ItaliaTel. +39 – 02.967.60.309Fax +39 – [email protected]

Germany: SIEI AREG - GemmrigheimTel. +49 - 7143 - [email protected]: SIEI FRANCE - SaverneTel. +33 - 3 - [email protected]:SIEI UK - KingsbridgeTel. +44 - 1548 - [email protected] Asia:SIEI ASIA - - SingaporeTel. +65 - [email protected] ASIA -Shanghai Representative OfficeTel. +86 - 21 - [email protected]:SIEI AMERICA - CharlotteTel. +1 - 704 - [email protected]:SIEI EST - LjubljanaTel. +386 - 1- [email protected]

SISTEMI

1S5E97

Manuale EPC -HGB 05/03*Draft* / 12.5.2003